Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = Autoflow

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 4731 KiB  
Article
Establishment of an Efficient In Vitro Propagation Protocol for Cannabis sativa L. subsp. ruderalis Janish
by Giuseppe N. Basile, Luigi Tedone, Cataldo Pulvento, Giuseppe De Mastro and Claudia Ruta
Horticulturae 2023, 9(11), 1241; https://doi.org/10.3390/horticulturae9111241 - 17 Nov 2023
Cited by 4 | Viewed by 3833
Abstract
Cannabis sativa L., subsp. ruderalis Janish., ‘Finola’ is a dioecious cultivar of Finnish origin. This cultivar is very interesting because its cultivation cycle lasts less than 3 months. The aim of this study was to define an efficient micropropagation protocol to ensure in [...] Read more.
Cannabis sativa L., subsp. ruderalis Janish., ‘Finola’ is a dioecious cultivar of Finnish origin. This cultivar is very interesting because its cultivation cycle lasts less than 3 months. The aim of this study was to define an efficient micropropagation protocol to ensure in vitro multiplication and rooting and in vivo acclimatization. Two different explant sources were tested: seed-derived in vitro explants and nodal segments containing axillary buds from selected mother plants. Shoot proliferation was tested on different growth media enriched with cytokinin alone or cytokinin in combination with auxins. Among all combinations, the best results were obtained by combining the Basal Medium (BM—a Murashige and Skoog modified medium) with sucrose (20 g L−1), thidiazuron (TDZ 0.4 mg L−1), and 1-naphthalenacetic acid (NAA 0.2 mg L−1). Regarding rooting induction, the plants developed an extensive root system under red/blue lights on BM enriched with sucrose (30 g L−1) and indol-3 butyric acid (0.1 mg L−1), which allowed the survival of more than 90 percent of the plantlets once transplanted into the climate-controlled greenhouse. Full article
(This article belongs to the Special Issue In Vitro Technology and Micropropagated Plants)
Show Figures

Figure 1

12 pages, 765 KiB  
Article
Cadmium Bioconcentration and Translocation Potential in Day Neutral and Photoperiod Sensitive Hemp Grown Hydroponically for the Medicinal Market
by Amanda O. Marabesi, Jason T. Lessl and Timothy W. Coolong
Water 2023, 15(12), 2176; https://doi.org/10.3390/w15122176 - 9 Jun 2023
Cited by 3 | Viewed by 2762
Abstract
Heavy metal contamination of agricultural soils is potentially concerning when growing crops for human consumption. Industrial hemp (Cannabis sativa L.) has been reported to tolerate the presence of heavy metals such as cadmium (Cd) in the soil. Therefore, the objectives of this [...] Read more.
Heavy metal contamination of agricultural soils is potentially concerning when growing crops for human consumption. Industrial hemp (Cannabis sativa L.) has been reported to tolerate the presence of heavy metals such as cadmium (Cd) in the soil. Therefore, the objectives of this study were to evaluate Cd uptake and translocation in two day-length sensitive (DLS) and two day-neutral (DN) hemp varieties grown for the medicinal market and to determine the impact of Cd exposure on cannabinoid concentrations in flowers. A hydroponic experiment was conducted by exposing plants to 0 mg·L−1 Cd and 2.5 mg·L−1 Cd in the nutrient solution. Cadmium concentrations ranged from 16.1 to 2274.2 mg·kg−1 in roots, though all four varieties accumulated significant concentrations of Cd in aboveground tissues, with translocation factors ranging from 6.5 to 193. Whole-plant bioconcentration factors ranged from 20 to 1051 mg·kg−1. Cannabinoid concentrations were negatively impacted by Cd exposure in DN varieties but were unaffected in DLS varieties. Biomass was reduced by Cd exposure demonstrating that these varieties might not be suitable for growth on contaminated soil or for phytoremediation. There is potential for Cd accumulation in flowers, showing the need for heavy metal testing of C. sativa consumer products. Full article
Show Figures

Figure 1

17 pages, 2807 KiB  
Article
Integration of Power-Free and Self-Contained Microfluidic Chip with Fiber Optic Particle Plasmon Resonance Aptasensor for Rapid Detection of SARS-CoV-2 Nucleocapsid Protein
by Ting-Chou Chang, Aileen Y. Sun, Yu-Chung Huang, Chih-Hui Wang, Shau-Chun Wang and Lai-Kwan Chau
Biosensors 2022, 12(10), 785; https://doi.org/10.3390/bios12100785 - 23 Sep 2022
Cited by 18 | Viewed by 3662
Abstract
The global pandemic of COVID-19 has created an unrivalled need for sensitive and rapid point-of-care testing (POCT) methods for the detection of infectious viruses. For the novel coronavirus SARS-CoV-2, the nucleocapsid protein (N-protein) is one of the most abundant structural proteins of the [...] Read more.
The global pandemic of COVID-19 has created an unrivalled need for sensitive and rapid point-of-care testing (POCT) methods for the detection of infectious viruses. For the novel coronavirus SARS-CoV-2, the nucleocapsid protein (N-protein) is one of the most abundant structural proteins of the virus and it serves as a useful diagnostic marker for detection. Herein, we report a fiber optic particle plasmon resonance (FOPPR) biosensor which employed a single-stranded DNA (ssDNA) aptamer as the recognition element to detect the SARS-CoV-2 N-protein in 15 min with a limit of detection (LOD) of 2.8 nM, meeting the acceptable LOD of 106 copies/mL set by the WHO target product profile. The sensor chip is a microfluidic chip based on the balance between the gravitational potential and the capillary force to control fluid loading, thus enabling the power-free auto-flowing function. It also has a risk-free self-contained design to avoid the risk of the virus leaking into the environment. These findings demonstrate the potential for designing a low-cost and robust POCT device towards rapid antigen detection for early screening of SARS-CoV-2 and its related mutants. Full article
(This article belongs to the Special Issue Feature Issue of Optical and Photonic Biosensors Section)
Show Figures

Figure 1

16 pages, 2972 KiB  
Review
Comparison of Volume-Guaranteed or -Targeted, Pressure-Controlled Ventilation with Volume-Controlled Ventilation during Elective Surgery: A Systematic Review and Meta-Analysis
by Volker Schick, Fabian Dusse, Ronny Eckardt, Steffen Kerkhoff, Simone Commotio, Jochen Hinkelbein and Alexander Mathes
J. Clin. Med. 2021, 10(6), 1276; https://doi.org/10.3390/jcm10061276 - 19 Mar 2021
Cited by 24 | Viewed by 4995
Abstract
For perioperative mechanical ventilation under general anesthesia, modern respirators aim at combining the benefits of pressure-controlled ventilation (PCV) and volume-controlled ventilation (VCV) in modes typically named “volume-guaranteed” or “volume-targeted” pressure-controlled ventilation (PCV-VG). This systematic review and meta-analysis tested the hypothesis that PCV-VG modes [...] Read more.
For perioperative mechanical ventilation under general anesthesia, modern respirators aim at combining the benefits of pressure-controlled ventilation (PCV) and volume-controlled ventilation (VCV) in modes typically named “volume-guaranteed” or “volume-targeted” pressure-controlled ventilation (PCV-VG). This systematic review and meta-analysis tested the hypothesis that PCV-VG modes of ventilation could be beneficial in terms of improved airway pressures (Ppeak, Pplateau, Pmean), dynamic compliance (Cdyn), or arterial blood gases (PaO2, PaCO2) in adults undergoing elective surgery under general anesthesia. Three major medical electronic databases were searched with predefined search strategies and publications were systematically evaluated according to the Cochrane Review Methods. Continuous variables were tested for mean differences using the inverse variance method and 95% confidence intervals (CI) were calculated. Based on the assumption that intervention effects across studies were not identical, a random effects model was chosen. Assessment for heterogeneity was performed with the χ2 test and the I2 statistic. As primary endpoints, Ppeak, Pplateau, Pmean, Cdyn, PaO2, and PaCO2 were evaluated. Of the 725 publications identified, 17 finally met eligibility criteria, with a total of 929 patients recruited. Under supine two-lung ventilation, PCV-VG resulted in significantly reduced Ppeak (15 studies) and Pplateau (9 studies) as well as higher Cdyn (9 studies), compared with VCV [random effects models; Ppeak: CI −3.26 to −1.47; p < 0.001; I2 = 82%; Pplateau: −3.12 to −0.12; p = 0.03; I2 = 90%; Cdyn: CI 3.42 to 8.65; p < 0.001; I2 = 90%]. For one-lung ventilation (8 studies), PCV-VG allowed for significantly lower Ppeak and higher PaO2 compared with VCV. In Trendelenburg position (5 studies), this effect was significant for Ppeak only. This systematic review and meta-analysis demonstrates that volume-targeting, pressure-controlled ventilation modes may provide benefits with respect to the improved airway dynamics in two- and one-lung ventilation, and improved oxygenation in one-lung ventilation in adults undergoing elective surgery. Full article
(This article belongs to the Section Anesthesiology)
Show Figures

Figure 1

11 pages, 1107 KiB  
Article
Volume-Controlled Versus Dual-Controlled Ventilation during Robot-Assisted Laparoscopic Prostatectomy with Steep Trendelenburg Position: A Randomized-Controlled Trial
by Jin Ha Park, In Kyeong Park, Seung Ho Choi, Darhae Eum and Min-Soo Kim
J. Clin. Med. 2019, 8(12), 2032; https://doi.org/10.3390/jcm8122032 - 21 Nov 2019
Cited by 15 | Viewed by 3308
Abstract
Dual-controlled ventilation (DCV) combines the advantages of volume-controlled ventilation (VCV) and pressure-controlled ventilation (PCV). Carbon dioxide (CO2) pneumoperitoneum and steep Trendelenburg positioning for robot-assisted laparoscopic radical prostatectomy (RALRP) has negative effects on the respiratory system. We hypothesized that the use of [...] Read more.
Dual-controlled ventilation (DCV) combines the advantages of volume-controlled ventilation (VCV) and pressure-controlled ventilation (PCV). Carbon dioxide (CO2) pneumoperitoneum and steep Trendelenburg positioning for robot-assisted laparoscopic radical prostatectomy (RALRP) has negative effects on the respiratory system. We hypothesized that the use of autoflow as one type of DCV can reduce these effects during RALRP. Eighty patients undergoing RALRP were randomly assigned to receive VCV or DCV. Arterial oxygen tension (PaO2) as the primary outcome, respiratory and hemodynamic data, and postoperative fever rates were compared at four time points: 10 min after anesthesia induction (T1), 30 and 60 min after the initiation of CO2 pneumoperitoneum and Trendelenburg positioning (T2 and T3), and 10 min after supine positioning (T4). There were no significant differences in PaO2 between the two groups. Mean peak airway pressure (Ppeak) was significantly lower in group DCV than in group VCV at T2 (mean difference, 5.0 cm H2O; adjusted p < 0.001) and T3 (mean difference, 3.9 cm H2O; adjusted p < 0.001). Postoperative fever occurring within the first 2 days after surgery was more common in group VCV (12%) than in group DCV (3%) (p = 0.022). Compared with VCV, DCV did not improve oxygenation during RALRP. However, DCV significantly decreased Ppeak without hemodynamic instability. Full article
(This article belongs to the Section Anesthesiology)
Show Figures

Figure 1

16 pages, 1763 KiB  
Article
Enhancing Residential Water End Use Pattern Recognition Accuracy Using Self-Organizing Maps and K-Means Clustering Techniques: Autoflow v3.1
by Ao Yang, Hong Zhang, Rodney A. Stewart and Khoi Nguyen
Water 2018, 10(9), 1221; https://doi.org/10.3390/w10091221 - 10 Sep 2018
Cited by 24 | Viewed by 5119
Abstract
The aim of residential water end-use studies is to disaggregate water consumption into different water end-use categories (i.e., shower, toilet, etc.). The authors previously developed a beta application software (i.e., Autoflow v2.1) that provides an intelligent platform to autonomously categorize residential water [...] Read more.
The aim of residential water end-use studies is to disaggregate water consumption into different water end-use categories (i.e., shower, toilet, etc.). The authors previously developed a beta application software (i.e., Autoflow v2.1) that provides an intelligent platform to autonomously categorize residential water consumption data and generate management analysis reports. However, the Autoflow v2.1 software water end use event recognition accuracy achieved was between 75 to 90%, which leaves room for improvement. In the present study, a new module augmented to the existing procedure improved flow disaggregation accuracy, which resulted in Autoflow v3.1. The new module applied self-organizing maps (SOM) and K-means clustering algorithms for undertaking an initial pre-grouping of water end-use events before the existing pattern recognition procedures were applied (i.e., ANN, HMM, etc.) For validation, a dataset consisting of over 100,000 events from 252 homes in Australia were employed to verify accuracy improvements derived from augmenting the new hybrid SOM and K-means algorithm techniques into the existing Autoflow v2.1 software. The water end use event categorization accuracy ranged from 86 to 94.2% for the enhanced model (Autoflow v3.1), which was a 1.7 to 9% improvement on event categorization. Full article
(This article belongs to the Special Issue Smart Technologies and Water Supply Planning)
Show Figures

Figure 1

Back to TopTop