Cadmium Bioconcentration and Translocation Potential in Day Neutral and Photoperiod Sensitive Hemp Grown Hydroponically for the Medicinal Market
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setting
2.2. Mineral Analysis
2.3. Plant Growth and Biomass Yield
2.4. Cannabinoid Analysis
2.5. Statistical Analysis
3. Results and Discussion
3.1. Plant Height and Biomass Yield
3.2. Cd Concentration in Hemp Tissues
3.3. Nutrient Partitioning
3.4. Total THC and CBD in Hemp Flower
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Clarke, R.C.; Merlin, M.D. Cannabis Evolution and Ethnobotany; University of California Press: Berkeley, CA, USA; Los Angeles, CA, USA, 2013; pp. 29–57. [Google Scholar]
- Cherney, J.; Small, E. Industrial Hemp in North America: Production, Politics and Potential. Agronomy 2016, 6, 58. [Google Scholar] [CrossRef] [Green Version]
- US Department of Agriculture. Establishment of A Domestic Hemp Production Program; Federal Register: Washington, DC, USA, 2019; Volume 84, pp. 58522–58564.
- Clarke, R.C.; Merlin, M.D. Cannabis Domestication, Breeding History, Present-day Genetic Diversity, and Future Prospects. Crit. Rev. Plant Sci. 2016, 35, 293–327. [Google Scholar] [CrossRef]
- Potter, D.J. Cannabis Horticulture. In Handbook of Cannabis; Pertwee, R.G., Ed.; Oxford University Press: Cary, NC, USA, 2014; pp. 65–88. [Google Scholar]
- Ranalli, P. Advances in Hemp Research; The Haworth Press, Inc.: Binghamton, NY, USA, 1999. [Google Scholar]
- Amaducci, S.; Colauzzi, M.; Zatta, A.; Venturi, G. Flowering dynamics in monoecious and dioecious hemp genotypes. J. Ind. Hemp. 2008, 13, 5–19. [Google Scholar] [CrossRef]
- Hall, J.; Bhattarai, S.P.; Midmore, D.J. Review of flowering control in industrial hemp. J. Nat. Fibers. 2012, 9, 23–36. [Google Scholar] [CrossRef]
- Rosenthal, E. The Big Book of Buds: More Marijuana Varieties from the World’s Great Seed Breeders; Quick Trading Co.: Oakland, CA, USA, 2010; Volume 4. [Google Scholar]
- Small, E. Cannabis: A Complete Guide; CRC Press: Boca Raton, FL, USA, 2017; ISBN 978-1-4987-6163-5. [Google Scholar]
- Coolong, T.; Cassity-Duffey, K.; Joy, N. Role of planting date on yield and cannabinoid content of day-neutral and photoperiod-sensitive hemp in Georgia, USA. Horttechnology 2023, 33, 138–145. [Google Scholar] [CrossRef]
- Chaney, R.L.; Baklanov, I.A. Phytoremediation and Phytomining. In Phytoremediation; Advances in Botanical Research; Cuypers, A., Vangronsveld, J., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 189–221. [Google Scholar]
- Nesler, A.; Furini, A. Phytoremediation: The utilization of Plants to Reclaim Polluted Sites. In Plants and Heavy Metals; Furini, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 75–86. ISBN 978-94-007-4440-0. [Google Scholar]
- Greger, M. Metal Availability and Concentration in Plants. In Heavy Metal Stress in Plants; Prasad, M.N.V., Hagemeyer, J., Eds.; Springer: Berlin/Heidelberg, Germany, 1999; pp. 1–27. [Google Scholar]
- Kirkham, M.B. Cadmium in Plants on Polluted Soils: Effects of Soil Factors, Hyperaccumulation, and Amendments. Geoderma 2006, 137, 19–32. [Google Scholar] [CrossRef]
- De Vos, B.; De Souza, M.F.; Michels, E.; Meers, E. Industrial Hemp (Cannabis sativa L.) Field Cultivation in a Phytoattenuation Strategy and Valorization Potential of The Fibers for Textile Production. Environ. Sci. Pollut. Res. 2023, 30, 41665–41681. [Google Scholar] [CrossRef] [PubMed]
- Golia, E.E.; Bethanis, J.; Ntinopoulos, N.; Kaffe, G.-G.; Komnou, A.A.; Vasilou, C. Investigating the Potential of Heavy Metal Accumulation from Hemp: The Use of Industrial Hemp (Cannabis sativa L.) for Phytoremediation of Heavily and Moderated Polluted Soils. Sustain. Chem. Pharm. 2023, 31, 100961. [Google Scholar] [CrossRef]
- Placido, D.F.; Lee, C.C. Potential of Industrial Hemp for Phytoremediation of Heavy Metals. Plants 2022, 11, 595. [Google Scholar] [CrossRef] [PubMed]
- Rheay, H.T.; Omondi, E.C.; Brewer, C.E. Potential of hemp (Cannabis sativa L.) for paired phytoremediation and bioenergy production. GCB Bioenergy 2021, 13, 525–536. [Google Scholar] [CrossRef]
- Shi, G.; Cai, Q. Zinc Tolerance and Accumulation in Eight Oil Crops. J. Plant Nutr. 2010, 33, 982–997. [Google Scholar] [CrossRef]
- DalCorso, G.; Manara, A.; Furini, A. An Overview of Heavy Metal Challenge in Plants: From Roots to Shoots. Metallomics 2013, 5, 1117–1132. [Google Scholar] [CrossRef]
- Ismael, M.A.; Elyamine, A.M.; Moussa, M.G.; Cai, M.; Zhao, X.; Hu, C. Cadmium in plants: Uptake, Toxicity, and its Interactions with Selenium Fertilizers. Metallomics 2019, 11, 255–277. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2001; pp. 73–122. [Google Scholar]
- Sebastian, A.; Nangia, A.; Prasad, M.N.V.; Rattanapolsan, L.; Nakbanpote, W. Cadmium Toxicity and Tolerance in Micro- and Phytobiomes. In Cadmium Toxicity and Tolerance in Plants; Hasanuzzaman, M., Prasad, M.N.V., Fujita, M., Eds.; Academic Press: San Diego, CA, USA, 2019; pp. 19–46. ISBN 978-0-12-814864-8. [Google Scholar]
- Codex Alimentarius. General Standard for Contaminants and Toxins in Food and Feed [CXS 193-1995]; FAO: Rome, Italy, 2019; pp. 47–48. Available online: https://www.fao.org/fao-who-codexalimentarius (accessed on 12 February 2023).
- Ahmad, A.; Hadi, F.; Ali, N. Effective Phytoextraction of cadmium (Cd) with increasing concentration of total phenolics and free proline in Cannabis sativa (L) plant under various treatments of fertilizers, plant growth regulators and sodium salt. Int. J. Phytoremediat. 2015, 17, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Angelova, V.; Ivanova, R.; Delibaltova, V.; Ivanov, K. Bio-accumulation and Distribution of Heavy Metals in Fibre Crops (flax, cotton and hemp). Ind. Crops Prod. 2004, 19, 197–205. [Google Scholar] [CrossRef]
- Citterio, S.; Santagostino, A.; Fumagalli, P.; Prato, N.; Ranalli, P.; Sgorbati, S. Heavy metal Tolerance and Accumulation of Cd, Cr and Ni by Cannabis sativa L. Plant Soil 2003, 256, 243–252. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, R.; Kumar, V.; Rani, A.; Jain, R. Cannabis sativa: A Plant Suitable for Phytoremediation and Bioenergy Production. In Phytoremediation Potential of Bioenergy Plants; Baudh, K., Singh, B., Korstad, J., Eds.; Springer: Singapore, 2017; pp. 269–285. [Google Scholar]
- Ali, N.A.; Bernal, M.P.; Ater, M. Tolerance and Bioaccumulation of Copper in Phragmites australis and Zea mays. Plant Soil 2002, 239, 103–111. [Google Scholar] [CrossRef]
- Liu, W.X.; Liu, J.W.; Wu, M.Z.; Li, Y.; Zhao, Y.; Li, S.R. Accumulation and Translocation of Toxic Heavy Metals in Winter Wheat (Triticum aestivum L.) Growing in Agricultural Soil of Zhengzhou, China. Bull. Environ. Contam. Toxicol. 2009, 82, 343–347. [Google Scholar] [CrossRef] [Green Version]
- Pachura, P.; Ociepa-Kubicka, A.; Skowron-Grabowska, B. Assessment of the Availability of Heavy Metals to Plants Based on the Translocation Index and the Bioaccumulation Factor. Desalin. Water Treat. 2015, 57, 1469–1477. [Google Scholar] [CrossRef]
- Zayed, A.; Gowthaman, S.; Norman, T. Phytoaccumulation of Trace Elements by Wetland Plants: I. Duckweed. J. Environ. Qual. 1998, 27, 715–721. [Google Scholar] [CrossRef]
- Luyckx, M.; Hausman, J.F.; Blanquet, M.; Guerriero, G.; Lutts, S. Silicon reduces cadmium absorption and increases root-to-shoot translocation without impacting growth in young plants of hemp (Cannabis sativa L.) on a short-term basis. Environ. Sci. Pollut. Res. 2021, 28, 37963–37977. [Google Scholar] [CrossRef]
- Marabesi, A.O.; Nambeesan, S.U.; van Iersel, M.W.; Lessl, J.T.; Coolong, T.W. Cadmium exposure is associated with increased transcript abundance of multiple heavy metal associated transporter genes in roots of hemp (Cannabis sativa L.). Front. Plant Sci. 2023, 14, 1183249. [Google Scholar] [CrossRef]
- Hoagland, D.R.; Arnon, D.I. The Water Culture Method for Growing Plants without Soil. Calif. Agric. Exp. Sta. Circ. 1950, 347, 32. [Google Scholar]
- USEPA Method 3052. Microwave assisted acid digestion of siliceous and organically based matrices. In Test methods for evaluating solid waste, 3rd ed.; US Environmental Protection Agency: Washington, DC, USA, 1995. [Google Scholar]
- Creed, J.T.; Brockhoff, C.A.; Martin, T.D. US-EPA Method 200.8: Determination of Trace Elements in Waters and Wastes by Inductively Coupled Plasma Mass Spectrometry; Revision 5.4 EMMC Version; Environmental Monitoring Systems Laboratory Office of Research and Development, U.S. Environmental Protection Agency: Cincinnati, OH, USA, 1994.
- Shi, G.; Cai, Q. Cadmium Tolerance and Accumulation in Eight Potential Energy Crops. Biotechnol. Adv. 2009, 27, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Ćaćić, M.; Perčin, A.; Zgorelec, Ž.; Kisić, I. Evaluation of heavy metals accumulation potential of hemp (Cannabis sativa L.). J. Cent. Eur. Agric. 2019, 20, 700–711. [Google Scholar] [CrossRef]
- Shi, G.; Liu, C.; Cui, M.; Ma, Y.; Cai, Q. Cadmium Tolerance and Bioaccumulation of 18 Hemp Accessions. Appl. Biochem. Biotechnol. 2012, 168, 163–173. [Google Scholar] [CrossRef]
- Majid, S.; Khwakaram, A.; Ghafoor, M.R.; Ahmed, Z. Bioaccumulation, Enrichment and Translocation Factors of some Heavy Metals in Typha Angustifolia and Phragmites Australis Species Growing along Qalyasan Stream in Sulaimani City/IKR. J. Zankoy Sulaimani 2014, 16, 93–109. [Google Scholar] [CrossRef]
- Bernstein, N.; Gorelick, J.; Zerahia, R.; Koch, S. Impact of N, P, K, and Humic Acid Supplementation on the Chemical Profile of Medical Cannabis (Cannabis sativa L). Front. Plant Sci. 2019, 10, 736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, A.; Khan, S.; Alam, M.; Khan, M.A.; Aamir, M.; Qamar, Z.; Ur Rehman, Z.; Perveen, S. Toxic Metal Interactions Affect the Bioaccumulation and Dietary Intake of Macro- and Micro-Nutrients. Chemosphere 2016, 146, 121–128. [Google Scholar] [CrossRef]
- Ahmad, P.; Abdel Latef, A.A.; Abd Allah, E.F.; Hashem, A.; Sarwat, M.; Anjum, N.A.; Gucel, S. Calcium and Potassium Supplementation Enhanced Growth, Osmolyte Secondary Metabolite Production, and Enzymatic Antioxidant Machinery in Cadmium-Exposed Chickpea (Cicer arietinum L.). Front. Plant Sci. 2016, 7, 513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomes, M.P.; Marques, T.C.L.L.S.E.M.; Soares, A.M. Cadmium Effects on Mineral Nutrition of the Cd-hyperaccumulator Pfaffia glomerata. Biologia 2013, 68, 223–230. [Google Scholar] [CrossRef] [Green Version]
- Sarwar, N.; Malhi, S.S.; Zia, M.H.; Naeem, A.; Bibi, S.; Farid, G. Role of Mineral Nutrition in Minimizing Cadmium Accumulation by Plants. J. Sci. Food Agricul. 2010, 90, 925–937. [Google Scholar] [CrossRef]
- Husain, R.; Weeden, H.; Bogush, D.; Deguchi, M.; Soliman, M.; Potlakayala, S.; Katam, R.; Goldman, S.; Rudrabhatla, S. Enhanced tolerance of industrial hemp (Cannabis sativa L.) plants on abandoned mine land soil leads to overexpression of cannabinoids. PLoS ONE 2019, 14, e0221570. [Google Scholar] [CrossRef]
- Yang, R.; Berthold, E.C.; McCurdy, C.R.; da Silva Benevenute, S.; Brym, Z.T.; Freeman, J.H. Development of Cannabinoids in Flowers of Industrial Hemp (Cannabis sativa L.): A Pilot Study. J. Agric. Food Chem. 2020, 68, 6058–6064. [Google Scholar] [CrossRef] [PubMed]
- Trancoso, I.; de Souza, G.A.R.; dos Santos, P.R.; dos Santos, K.D.; de Miranda, R.M.D.S.N.; da Silva, A.L.P.M.; Santos, D.Z.; García-Tejero, I.F.; Campostrini, E. Cannabis sativa L.: Crop Management and Abiotic Factors that Affect Phytocannabinoid Production. Agronomy 2022, 12, 1492. [Google Scholar] [CrossRef]
N | P | K | Ca | Mg | B | Cu | Mo | Fe | Mn | Zn | |
---|---|---|---|---|---|---|---|---|---|---|---|
(mg·L−1) | |||||||||||
Well water | ND | <0.01 | 2.7 | 12.1 | 2.1 | <0.01 | <0.05 | <0.01 | <0.1 | <0.1 | <0.1 |
Nutrient solution i | 105 | 15.5 | 117 | 100 | 24.3 | 0.3 | 0.01 | 0.005 | 0.5 | 0.25 | 0.025 |
Total concentration | 105 | 15.5 | 119.7 | 112.1 | 26.4 | 0.3 | <0.05 | <0.01 | 0.5 | 0.25 | <0.1 |
Flower + Leaf | Stems | Roots | Whole Plant | |||||
---|---|---|---|---|---|---|---|---|
Biomass (g·Plant−1) i | ||||||||
Variety | Control | Treated | Control | Treated | Control | Treated | Control | Treated |
Apricot Auto | 40.0 ± 2.3 AB a | 9.9 ± 2.0 B b | 17.7 ± 1.2 A a | 6.5 ± 1.0 A b | 8.3 ± 0.3 B a | 3.2 ± 0.4 B b | 66.0 ± 3.2 B a | 19.5 ± 2.7 AB b |
Alpha Explorer | 37.8 ± 2.2 B a | 8.2 ± 1.4 B b | 23.6 ± 1.5 A a | 4.5 ± 0.8 A b | 7.1 ± 0.7 B a | 2.1 ± 0.4 B b | 68.4 ± 3.3 B a | 14.8 ± 2.4 B b |
Von | 46.2 ± 1.3 AB a | 22.2 ± 7.2 AB b | 29.3 ± 1.7 A a | 15.2 ± 5.6 A a | 20.1 ± 1.0 A a | 13.3 ± 2.9 A a | 95.6 ± 1.5 A a | 50.7 ± 15.3 A b |
T1 | 48.6 ± 2.4 A a | 28.5 ± 5.6 A b | 27.7 ± 6.5 A a | 13.9 ± 2.7 A a | 22.9 ± 2.0 A a | 9.7 ± 2.7 AB b | 99.2 ± 6.4 A a | 52.2 ± 9.6 A b |
Flower | Root | Leaf | Stem | |||||
---|---|---|---|---|---|---|---|---|
Cd concentration (mg·kg−1 dw) i | ||||||||
Control | Treated | Control | Treated | Control | Treated | Control | Treated | |
Apricot Auto | 1.2 A ab | 38.1 A c | 3.8 A a | 1056.8 A a | 1.0 A b | 44.9 AB c | 0.5 A c | 116.3 A b |
Alpha Explorer | 0.6 A ab | 51.0 A d | 3.4 A a | 2274.2 A a | 3.0 A a | 92.5 A c | 0.3 A b | 176.4 A b |
Von | 0.4 A a | 11.9 B b | 1.1 A a | 512.4 A a | 2.1 A a | 18.2 BC b | ND A b | 1.8 C c |
T1 | ND B a | 0.2 C b | ND B a | 16.1 B a | 0.8 A a | 8.22 C a | 0.6 A a | 26.8 B a |
BCF i | TF (%) | |||||
---|---|---|---|---|---|---|
Whole Plant | Root | Leaf | Stem | Flower | Whole Plant | |
Apricot Auto | 527.5 B | 446.1 B a | 18.3 B b | 47.6 AB b | 15.5 A b | 28.5 B |
Alpha Explorer | 1051.8 A | 920.1 A a | 37.9 A b | 73.2 A b | 20.6 A b | 14.3 B |
Von | 213.8 BC | 201.4 BC a | 7.0 BC b | 0.7 C b | 4.8 B b | 6.5 B |
T1 | 20.9 C | 6.2 C ab | 3.4 C b | 11.2 BC a | 0.1 B b | 193.0 A |
Concentration in Flowers (% dw) i | ||||
---|---|---|---|---|
Total THC | Total CBD | |||
Control | Treated | Control | Treated | |
Apricot Auto | 0.53 ± 0.05 A a | ND B b | 9.18 ± 0.69 A a | 1.82 ± 0.86 B b |
Alpha Explorer | 0.36 ± 0.01 A a | ND B b | 8.37 ± 0.30 A a | 1.18 ± 0.84 B b |
Von | 0.53 ± 0.07 A a | 0.43 ± 0.04 A a | 11.38 ± 1.29 A a | 9.44 ± 1.31 A a |
T1 | 0.43 ± 0.04 A a | 0.36 ± 0.05 A a | 10.19 ± 0.90 A a | 7.64 ± 1.04 A a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marabesi, A.O.; Lessl, J.T.; Coolong, T.W. Cadmium Bioconcentration and Translocation Potential in Day Neutral and Photoperiod Sensitive Hemp Grown Hydroponically for the Medicinal Market. Water 2023, 15, 2176. https://doi.org/10.3390/w15122176
Marabesi AO, Lessl JT, Coolong TW. Cadmium Bioconcentration and Translocation Potential in Day Neutral and Photoperiod Sensitive Hemp Grown Hydroponically for the Medicinal Market. Water. 2023; 15(12):2176. https://doi.org/10.3390/w15122176
Chicago/Turabian StyleMarabesi, Amanda O., Jason T. Lessl, and Timothy W. Coolong. 2023. "Cadmium Bioconcentration and Translocation Potential in Day Neutral and Photoperiod Sensitive Hemp Grown Hydroponically for the Medicinal Market" Water 15, no. 12: 2176. https://doi.org/10.3390/w15122176
APA StyleMarabesi, A. O., Lessl, J. T., & Coolong, T. W. (2023). Cadmium Bioconcentration and Translocation Potential in Day Neutral and Photoperiod Sensitive Hemp Grown Hydroponically for the Medicinal Market. Water, 15(12), 2176. https://doi.org/10.3390/w15122176