Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = Au nanourchins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4717 KB  
Article
Localized Surface Plasmon Resonance-Based Gas Sensor with a Metal–Organic-Framework-Modified Gold Nano-Urchin Substrate for Volatile Organic Compounds Visualization
by Cong Wang, Hao Guo, Bin Chen, Jia Yan, Fumihiro Sassa and Kenshi Hayashi
Sensors 2025, 25(21), 6522; https://doi.org/10.3390/s25216522 - 23 Oct 2025
Cited by 1 | Viewed by 957
Abstract
Volatile organic compound (VOC) monitoring is crucial for environmental safety and health, but conventional gas sensors often suffer from poor selectivity or lack spatial information. Here, we report a localized surface plasmon resonance (LSPR) gas sensor based on Au nano-urchins coated with a [...] Read more.
Volatile organic compound (VOC) monitoring is crucial for environmental safety and health, but conventional gas sensors often suffer from poor selectivity or lack spatial information. Here, we report a localized surface plasmon resonance (LSPR) gas sensor based on Au nano-urchins coated with a zeolitic imidazolate framework (ZIF-8) for both the quantitative detection and visualization of VOCs. Substrates were fabricated by immobilizing Au nano-urchins (~90 nm) on 3-aminopropyltriethoxysilane-modified glass and subsequently growing ZIF-8 crystals (~250 nm) for different durations. Scanning electron microscopy and optical analysis revealed that 90 min of ZIF-8 growth provided the optimal coverage and strongest plasmonic response. Using a spectrometer-based LSPR system, the optimized substrate exhibited clear, concentration-dependent responses to three representative VOCs, 2-pentanone, acetic acid, and ethyl acetate, over nine concentrations, with detection limits of 12.7, 14.5, and 36.3 ppm, respectively. Furthermore, a camera-based LSPR visualization platform enabled real-time imaging of gas plumes and evaporation-driven diffusion, with differential pseudo-color mapping providing intuitive spatial distributions and concentration dependence. These results demonstrate that ZIF-8-modified Au nano-urchin substrates enable sensitive and reproducible VOC detection and, importantly, transform plasmonic sensing into a visual modality, offering new opportunities for integrated LSPR–surface-enhanced Raman scattering dual-mode gas sensing in the future. Full article
(This article belongs to the Special Issue Nano/Micro-Structured Materials for Gas Sensor)
Show Figures

Figure 1

18 pages, 7953 KB  
Article
Targeted Cancer Therapy with Gold–Iron Oxide Nanourchins: Inducing Oxidative Stress, Paraptosis, and Sensitizing Tumor Cells to Cisplatin
by Jessica Ruzzolini, Cecilia Anceschi, Martin Albino, Elena Balica, Beatrice Muzzi, Claudio Sangregorio, Elena Frediani, Noemi Formica, Francesca Margheri, Anastasia Chillà, Gabriella Fibbi and Anna Laurenzana
Antioxidants 2025, 14(4), 422; https://doi.org/10.3390/antiox14040422 - 31 Mar 2025
Viewed by 1377
Abstract
Nanotechnology has revolutionized cancer therapy by enabling targeted drug delivery and overcoming limitations associated with conventional chemotherapy. In this study, we explored the anticancer potential of gold–iron oxide (Au-Fe3O4@PEG) nanourchins (NUs), a class of nanoparticles with unique shape, surface [...] Read more.
Nanotechnology has revolutionized cancer therapy by enabling targeted drug delivery and overcoming limitations associated with conventional chemotherapy. In this study, we explored the anticancer potential of gold–iron oxide (Au-Fe3O4@PEG) nanourchins (NUs), a class of nanoparticles with unique shape, surface features, and plasmonic properties. We tested NUs on several cancer cell lines, including A375 (melanoma), MCF7 (breast), A549 (lung), and MIA PaCa-2 (pancreatic), and observed significant dose-dependent cytotoxicity, with A549 cells exhibiting the highest resistance. Our findings also demonstrate that NUs induce oxidative stress, disrupt mitochondrial function, and activate autophagic and paraptotic cell death pathways in A549 lung cancer cells. Additionally, we explored the potential of NUs to enhance the efficacy of platinum-based chemotherapy, specifically cisplatin, in A549. The results provide valuable insights into the therapeutic potential of NUs in the context of cancer treatment, particularly for overcoming drug resistance and enhancing the effectiveness of conventional chemotherapy. Full article
Show Figures

Figure 1

15 pages, 3125 KB  
Article
The Graphene Oxide/Gold Nanoparticles Hybrid Layers for Hydrogen Peroxide Sensing—Effect of the Nanoparticles Shape and Importance of the Graphene Oxide Defects for the Sensitivity
by Krystian Pupel, Kacper Jędrzejewski, Sylwia Zoladek, Marcin Palys and Barbara Palys
Molecules 2025, 30(3), 533; https://doi.org/10.3390/molecules30030533 - 24 Jan 2025
Cited by 6 | Viewed by 1841
Abstract
Graphene oxide (GO) and reduced graphene oxides (RGOs) show intrinsic electrocatalytic activity towards the electrocatalytic reduction of H2O2. Combining these materials with gold nanoparticles results in highly sensitive electrodes, with sensitivity in the nanomolar range because the electrocatalytic properties [...] Read more.
Graphene oxide (GO) and reduced graphene oxides (RGOs) show intrinsic electrocatalytic activity towards the electrocatalytic reduction of H2O2. Combining these materials with gold nanoparticles results in highly sensitive electrodes, with sensitivity in the nanomolar range because the electrocatalytic properties of GO and nanoparticles are synergistically enhanced. Understanding the factors influencing such synergy is crucial to designing novel catalytically active materials. In this contribution, we study gold nanostructures having shapes of nanospheres (AuNSs), nanourchins (AuNUs), and nanobowls (AuNBs) combined with GO or electrochemically reduced graphene oxide (ERGO). We investigate the amperometric responses of the hybrid layers to H2O2. The AuNUs show the highest sensitivity compared to AuNBs and AuNSs. All materials are characterized by electron microscopy and Raman spectroscopy. Raman spectra are deconvoluted by fitting them with five components in the 1000–1800 cm−1 range (D*, D, D”, G, and D′). The interaction between nanoparticles and GO is visualized by the relative intensities of Raman bands (ID/IG) and other parameters in the Raman spectra, like various D”, D* band positions and intensities. The ID/IG parameter is linearly correlated with the sensitivity (R2 = 0.97), suggesting that defects in the graphene structure are significant factors influencing the electrocatalytic H2O2 reduction. Full article
(This article belongs to the Special Issue Advances in Electrochemical Nanocomposites)
Show Figures

Figure 1

15 pages, 3706 KB  
Article
Alprazolam Detection Using an Electrochemical Nanobiosensor Based on AuNUs/Fe-Ni@rGO Nanocomposite
by Emadoddin Amin Sadrabadi, Fatemeh Khosravi, Ali Benvidi, Amin Shiralizadeh Dezfuli, Pouria Khashayar, Patricia Khashayar and Mostafa Azimzadeh
Biosensors 2022, 12(11), 945; https://doi.org/10.3390/bios12110945 - 31 Oct 2022
Cited by 14 | Viewed by 4760
Abstract
Despite all the psychological advantages of alprazolam, its long list of toxic properties and interactions has caused concern and highlighted the need for a reliable sensing method. In this study, we developed a simple, highly sensitive electrochemical nanobiosensor to determine the desirable dose [...] Read more.
Despite all the psychological advantages of alprazolam, its long list of toxic properties and interactions has caused concern and highlighted the need for a reliable sensing method. In this study, we developed a simple, highly sensitive electrochemical nanobiosensor to determine the desirable dose of alprazolam, averting the undesirable consequences of overdose. Gold nanourchins (AuNUs) and iron-nickel reduced graphene oxide (Fe-Ni@rGO) were immobilized on a glassy carbon electrode, which was treated beforehand. The electrode surface was characterized using cyclic voltammetry, Fourier transform infrared spectroscopy, scanning electron microscopy/energy-dispersive X-ray spectroscopy, and differential pulse voltammetry. The fabricated sensor showed two linear ranges (4 to 500 µg L−1 and 1 to 50 mg L−1), low limit of detection (1 µg L−1), high sensitivity, good repeatability, and good recovery. Increased –OH and carboxyl (-COOH) groups on the electrode surface, resulting in improved the adsorption of alprazolam and thus lower limit of detection. This nanobiosensor could detect alprazolam powder dissolved in diluted blood serum; we also studied other benzodiazepine drugs (clonazepam, oxazepam, and diazepam) with this nanobiosensor, and results were sensible, with a significant difference. Full article
(This article belongs to the Special Issue Nanomaterials and Their Applications in Sensing and Biosensing)
Show Figures

Figure 1

9 pages, 1156 KB  
Article
Assembled Au/ZnO Nano-Urchins for SERS Sensing of the Pesticide Thiram
by Grégory Barbillon, Octavio Graniel and Mikhael Bechelany
Nanomaterials 2021, 11(9), 2174; https://doi.org/10.3390/nano11092174 - 25 Aug 2021
Cited by 37 | Viewed by 4218
Abstract
In this paper, we are relating a significant improvement of the SERS effect achieved with assembled Au/ZnO nano-urchins. This improvement is realized thanks to an excellent capacity of adsorption (denoted K) for thiram molecules on these plasmonic nano-urchins, which is a key [...] Read more.
In this paper, we are relating a significant improvement of the SERS effect achieved with assembled Au/ZnO nano-urchins. This improvement is realized thanks to an excellent capacity of adsorption (denoted K) for thiram molecules on these plasmonic nano-urchins, which is a key point to be taken into account for obtaining a SERS spectrum. Moreover, this outlook may be employed for different types of plasmonic substrates and for a wide number of molecules. We studied the capacity of the assembled Au/ZnO nano-urchins to be sensitive to the pesticide thiram, which adsorbs well on metals via the metal–sulfur bond. For the thiram detection, we found a limit concentration of 10 pM, a value of this capacity of adsorption (K) of 9.5 × 106 M1 and a factor of analytical enhancement equal to 1.9 × 108. Full article
Show Figures

Figure 1

30 pages, 5192 KB  
Review
Anisotropic Gold Nanoparticles in Biomedical Applications
by Claudia Kohout, Cristina Santi and Laura Polito
Int. J. Mol. Sci. 2018, 19(11), 3385; https://doi.org/10.3390/ijms19113385 - 29 Oct 2018
Cited by 117 | Viewed by 14471
Abstract
Gold nanoparticles (AuNPs) play a crucial role in the development of nanomedicine, principally due to their unique photophysical properties and high biocompatibility. The possibility to tune and customize the localized surface plasmon resonance (LSPR) toward near-infrared region by modulating the AuNP shape is [...] Read more.
Gold nanoparticles (AuNPs) play a crucial role in the development of nanomedicine, principally due to their unique photophysical properties and high biocompatibility. The possibility to tune and customize the localized surface plasmon resonance (LSPR) toward near-infrared region by modulating the AuNP shape is one of the reasons for the huge widespread use of AuNPs. The controlled synthesis of no-symmetrical nanoparticles, named anisotropic, is an exciting goal achieved by the scientific community which explains the exponential increase of the number of publications related to the synthesis and use of such type of AuNPs. Even with such steps forward and the AuNP translation in clinic being done, some key issues are still remain and they are related to a reliable and scalable production, a full characterization, and to the development of nanotoxicology studies on the long run. In this review we highlight the very recent advances on the synthesis of the main classes of anisotropic AuNPs (nanorods, nanourchins and nanocages) and their use in the biomedical fields, in terms of diagnosis and therapeutics. Full article
(This article belongs to the Special Issue Translating Gold Nanoparticles to Diagnostics and Therapeutics)
Show Figures

Graphical abstract

12 pages, 4541 KB  
Article
Galvanic-Cell-Reaction-Driven Deposition of Large-Area Au Nanourchin Arrays for Surface-Enhanced Raman Scattering
by Zhongbo Li, Kexi Sun, Zhaofang Du, Bensong Chen and Xuan He
Nanomaterials 2018, 8(4), 265; https://doi.org/10.3390/nano8040265 - 23 Apr 2018
Cited by 12 | Viewed by 6195
Abstract
Here we report a low-cost synthetic approach for the direct fabrication of large-area Au nanourchin arrays on indium tin oxide (ITO) via a facile galvanic-cell-reaction-driven deposition in an aqueous solution of chloroauric acid and poly(vinyl pyrrolidone) (PVP). The homogeneous Au nanourchins are composed [...] Read more.
Here we report a low-cost synthetic approach for the direct fabrication of large-area Au nanourchin arrays on indium tin oxide (ITO) via a facile galvanic-cell-reaction-driven deposition in an aqueous solution of chloroauric acid and poly(vinyl pyrrolidone) (PVP). The homogeneous Au nanourchins are composed of abundant sharp nanotips, which can served as nanoantennas and increase the local electromagnetic field enhancement dramatically. Finite element theoretical calculations confirm the strong electromagnetic field can be created around the sharp nanotips and located in the nanogaps between adjacent tips of the Au nanourchins. In addition, the interparticle nanogaps between the neighboring Au nanourchins may create additional hotspots, which can induce the higher electromagnetic field intensity. By using rhodamine 6G as a test molecule, the large-area Au nanourchin arrays on ITO exhibit active, uniform, and reproducible surface-enhanced Raman scattering (SERS) effect. To trial their practical application, the Au nanourchin arrays are utilized as SERS substrates to detect 3,3’,4,4’-tetrachlorobiphenyl (PCB-77) one congener of polychlorinated biphenyls (PCBs) as a notorious class of persistent organic pollutants. The characteristic Raman peaks can be still identified when the concentration of PCB-77 is down to 5 × 10−6 M. Full article
Show Figures

Graphical abstract

Back to TopTop