Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (62)

Search Parameters:
Keywords = Arctic marine ecosystem

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 3278 KiB  
Article
Marine Highways and Barriers: A Case Study of Limacina helicina Phylogeography Across the Siberian Arctic Shelf Seas
by Galina A. Abyzova, Tatiana V. Neretina, Mikhail A. Nikitin, Anna O. Shapkina and Alexander L. Vereshchaka
Diversity 2025, 17(8), 522; https://doi.org/10.3390/d17080522 - 27 Jul 2025
Viewed by 377
Abstract
The planktonic pteropod Limacina helicina is increasingly studied as a bioindicator of climate-driven changes in polar marine ecosystems. Although broadly distributed across the Arctic Basin and the North Pacific, its population structure and dispersal pathways remain poorly understood, especially in the Siberian Arctic. [...] Read more.
The planktonic pteropod Limacina helicina is increasingly studied as a bioindicator of climate-driven changes in polar marine ecosystems. Although broadly distributed across the Arctic Basin and the North Pacific, its population structure and dispersal pathways remain poorly understood, especially in the Siberian Arctic. We analyzed mitochondrial COI sequences from populations sampled in the Barents, Kara, Laptev, East Siberian, and White Seas, as well as adjacent Pacific regions. Three major haplogroups (H1, H2, H3) were identified with distinct spatial patterns. H1 is widespread, occurring across the Pacific and most Arctic seas except the White Sea. H2 is confined to the western Arctic shelves (Barents–Kara–Laptev), and H3 is unique to the White Sea. We found a pronounced genetic discontinuity corresponding to hydrographic barriers, particularly the strong freshwater inflow from the Lena River, which restricts eastward dispersal of H2 from the Laptev to the East Siberian Sea. These patterns suggest postglacial expansions from geographically separated populations that survived the Last Glacial Maximum in isolated marine regions. The White Sea population is highly isolated and genetically distinct. Our results highlight how both glacial history and modern oceanography shape Arctic plankton diversity and define biogeographic boundaries in a rapidly changing climate. Full article
(This article belongs to the Special Issue 2025 Feature Papers by Diversity’s Editorial Board Members)
Show Figures

Figure 1

15 pages, 1797 KiB  
Article
First Insights into Bioaccumulation Patterns in Different Tissues of the Greenland Shark Somniosus microcephalus from Kulusuk (Southeastern Greenland)
by Francesca Romana Reinero, Emilio Sperone, Samira Gallo, Donatella Barca, Francesco Luigi Leonetti, Gianni Giglio and Primo Micarelli
Biology 2025, 14(7), 857; https://doi.org/10.3390/biology14070857 - 15 Jul 2025
Viewed by 384
Abstract
Marine environmental pollution has been rapidly increasing in Arctic waters, and the release and bioaccumulation of trace elements in Arctic marine species may pose significant risks to both ecosystem health and human well-being. As a top predator, the Greenland shark is an ideal [...] Read more.
Marine environmental pollution has been rapidly increasing in Arctic waters, and the release and bioaccumulation of trace elements in Arctic marine species may pose significant risks to both ecosystem health and human well-being. As a top predator, the Greenland shark is an ideal sentinel species for ecotoxicological studies in this region. In this study, trace element analyses were conducted on various tissues from two Greenland sharks—a male and a female—collected in Kulusuk (southeastern Greenland). Eleven trace elements (Mn55, Co59, Cu63, Zn64, As75, Se82, Rb85, Mo98, Ag107, Cd112, and Pb208) were measured in different skin samples from both specimens and in the muscle and fat of the female using an Inductively Coupled Plasma Mass Spectrometer (ICP-MS). Principal Component Analyses (PCAs) revealed sex-related differences in skin bioaccumulation patterns, likely due to sampling of different skin regions. Notably, skin tissues from both sharks showed the highest concentration of trace elements, especially for As75 (9.39–41.13 ppm) and Zn64 (24.34–50.99 ppm) and with the exception of Ag107. These findings suggest that environmental exposure may play a more significant role than dietary intake in trace element accumulation in this area. This study represents the first investigation of trace element bioaccumulation in Greenland sharks from Kulusuk. While the results offer important preliminary insights into the species’ ecotoxicology, further research involving more specimens and tissues is needed to confirm these trends. These initial findings contribute to filling key data gaps and have implications for both environmental monitoring and public health within the Greenlandic community. Full article
(This article belongs to the Section Marine Biology)
Show Figures

Figure 1

18 pages, 1210 KiB  
Article
Under-Resourced Learning Programs Imperil Active Stewardship of Alaska’s Marine Systems for Food Security
by John Fraser, Rosemary Aviste, Megan Harwell and Jin Liu
Sustainability 2025, 17(14), 6436; https://doi.org/10.3390/su17146436 - 14 Jul 2025
Viewed by 358
Abstract
The future of marine sustainability depends on public understanding and trust in the policy recommendations that emerge from scientific research. For common pool marine resource decisions made by the people who depend on these resources for their food, employment, and economic future, understanding [...] Read more.
The future of marine sustainability depends on public understanding and trust in the policy recommendations that emerge from scientific research. For common pool marine resource decisions made by the people who depend on these resources for their food, employment, and economic future, understanding the current status of these marine systems and change is essential to ensure these resources will persist into the future. As such, the informal learning infrastructure is essential to increasing marine science literacy in a changing world. This mixed-methods research study analyzed the distribution and accessibility of marine science education and research across Alaska’s five geographic regions. Using the PRISMA framework, we synthesized data from 198 institutions and analyzed peer-reviewed literature on marine ecosystems to identify geographic and thematic gaps in access to informal science learning and research focus. In parallel, we undertook geospatial analysis and resource availability to describe the distribution of resources, types of informal learning infrastructure present across the state, regional presence, and resources to support informal marine science learning opportunities. Findings from this multifactor research revealed a concentration of resources in urban hubs and a lack of consistent access to learning resources for rural and Indigenous communities. The configurative literature review of 9549 publications identified topical underrepresentation of the Bering Sea and Aleutian Islands, as well as a lack of research on seabirds across all regions. Considered together, these results recommend targeted investments in rural engagement with marine science programming, culturally grounded partnerships, and research diversification. This review concludes that disparities in learning resource support and government-funded priorities in marine wildlife research have created conditions that undermine the local people’s participation in the sustainability of sensitive resources and are likely exacerbating declines driven by rapid change in Arctic and sub-Arctic waters. Full article
Show Figures

Figure 1

19 pages, 2902 KiB  
Article
Prediction of the Marine Dynamic Environment for Arctic Ice-Based Buoys Using Historical Profile Data
by Jingzi Zhu, Yu Luo, Tao Li, Yanhai Gan and Junyu Dong
J. Mar. Sci. Eng. 2025, 13(6), 1003; https://doi.org/10.3390/jmse13061003 - 22 May 2025
Viewed by 385
Abstract
In this paper, the time-series model is used to predict whether an ocean buoy is about to be inside a vortex. Marine buoys are an important tool for collecting ocean data and studying ocean dynamics, climate change, and ecosystem health. A vortex is [...] Read more.
In this paper, the time-series model is used to predict whether an ocean buoy is about to be inside a vortex. Marine buoys are an important tool for collecting ocean data and studying ocean dynamics, climate change, and ecosystem health. A vortex is an important ocean dynamic process. If we can predict that a buoy is about to enter a vortex, we can automatically adjust the buoy’s sampling frequency to better observe the vortex’s structure and development. To address this requirement, based on the profile data, including latitude and longitude, temperature, and salinity, collected by 56 buoys in the Arctic Ocean from 2014 to 2023, this paper uses the TSMixer time-series model to predict whether an ocean buoy is about to be inside a vortex. The TSMixer model effectively captures the spatio-temporal characteristics of multivariate time series through time-mixing and feature-mixing mechanisms, and the accuracy of the model reaches 84.6%. The proposed model is computationally efficient and has a low memory footprint, which is suitable for real-time applications and provides accurate prediction support for marine monitoring. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

11 pages, 7136 KiB  
Article
Quantifying Area Back Scatter of Marine Organisms in the Arctic Ocean by Machine Learning-Based Post-Processing of Volume Back Scatter
by Ole Arve Misund, Anna Nikolopoulos, Vegard Stürzinger, Haakon Hop, Paul Dodd and Rolf J. Korneliussen
Sensors 2025, 25(10), 3121; https://doi.org/10.3390/s25103121 - 15 May 2025
Viewed by 907
Abstract
As the sea ice reduces in both extent and thickness and the Arctic Ocean opens, there is substantial interest in mapping the marine ecosystem in this remote and until now largely inaccessible ocean. We used the R/V Kronprins Haakon during surveys in the [...] Read more.
As the sea ice reduces in both extent and thickness and the Arctic Ocean opens, there is substantial interest in mapping the marine ecosystem in this remote and until now largely inaccessible ocean. We used the R/V Kronprins Haakon during surveys in the Central Arctic Ocean (CAO) in 2022 and 2023 to record the marine ecosystem using modern fisheries acoustics and net sampling. The 2022 survey reached all the way to the North Pole. In a first, principally manually based post-processing of these acoustic recordings using the Large-Scale Survey Post-processing System (LSSS), much effort was used to remove segments of noise due to icebreaking operations. In a second, more sophisticated post-processing, the KORONA module of LSSS with elements of machine learning was applied for further noise reduction and to allocate the area back-scattering recordings to taxonomic groups as order, families and even species of fish and plankton organisms. These results highlight the need for further advances in post-processing systems to enable the direct allocation of back-scattered acoustic energy to taxonomic categories, including species-level classifications. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Graphical abstract

17 pages, 2391 KiB  
Article
Elemental Distribution in Tissues of Shorthorn Sculpins (Myoxocephalus scorpius) from Kongsfjorden in Svalbard
by Francisco Ardini, Federico Moggia, Davide Di Blasi, Paola Rivaro, Marco Grotti and Laura Ghigliotti
J. Mar. Sci. Eng. 2024, 12(12), 2245; https://doi.org/10.3390/jmse12122245 - 6 Dec 2024
Cited by 1 | Viewed by 923
Abstract
The shorthorn sculpin (Myoxocephalus scorpius) is considered a suitable sentinel species for marine pollution in the Arctic due to its ecology and stationary habits. To evaluate its role as a bioindicator for potential natural and anthropic impacts on the marine ecosystem [...] Read more.
The shorthorn sculpin (Myoxocephalus scorpius) is considered a suitable sentinel species for marine pollution in the Arctic due to its ecology and stationary habits. To evaluate its role as a bioindicator for potential natural and anthropic impacts on the marine ecosystem of the Kongsfjorden (Svalbard, Norwegian Arctic), 33 female and male specimens of shorthorn sculpins were collected in July 2018 in proximity of the Ny-Ålesund international research facility and analyzed for the content of 25 major and trace elements and methylmercury (MeHg) in the muscle, liver, gonads, and gills by using spectroscopic techniques. Most elements had their maximum average concentrations in the gills (Al, Cr, Fe, Mn, Na, Ni, Pb, Se, Si, Sr, and V), while the livers featured higher contents of some toxic and heavy metals (As, Cd, Cu, Mo, and Zn). The muscle was characterized by high contents of Ca, K, and Mg, while Ba, Co, and P were mostly concentrated in the gonads. The gonads presented higher concentrations of Cr, K, Mg, Ni, P, and V for the males and Co, Cu, Fe, Mn, and Se for the females. Both the total Hg and MeHg concentrations in the muscle correlated with the fish size, indicating bioaccumulation, although high Se/Hg molar ratios (11.0 ± 2.2) suggested a low toxic potential of mercury. Full article
(This article belongs to the Special Issue Chemical Contamination on Coastal Ecosystems—Edition II)
Show Figures

Figure 1

14 pages, 2689 KiB  
Article
The rDNA Diversity, Interseasonal Dynamic, and Functional Role of Cyanobacteria Synechococcus in the Sub-Arctic White Sea
by Tatiana A. Belevich, Irina A. Milyutina, Olga V. Vorob’eva and Aleksey V. Troitsky
Plants 2024, 13(22), 3153; https://doi.org/10.3390/plants13223153 - 9 Nov 2024
Viewed by 1043
Abstract
Planktonic unicellular cyanobacteria are the dominant biomass producers and carbon fixers in the global ocean ecosystem, but they are not abundant in polar seawater. The interseasonal dynamics of picocyanobacterial (PC) abundance, picophytoplankton primary production, and phylogenetic diversity of PC Synechococcus were studied in [...] Read more.
Planktonic unicellular cyanobacteria are the dominant biomass producers and carbon fixers in the global ocean ecosystem, but they are not abundant in polar seawater. The interseasonal dynamics of picocyanobacterial (PC) abundance, picophytoplankton primary production, and phylogenetic diversity of PC Synechococcus were studied in the sub-Arctic White Sea. The PC abundance varied from 0.2–0.3 × 106 cells/L in February to 5.2–16.7 × 106 cells/L in July. Picophytoplankton primary production ranged from 0.22 mg C/m3 per day in winter to 11.32 mg C/m3 per day in summer. Synechococcus abundance positively correlated with water temperature and river discharge that increased in recent years in the White Sea. Phylogenetic analysis of the 16S rRNA gene and ITS region clone libraries from the White Sea and Barents Sea eDNA revealed picocyanobacterial sequences related to marine Synechococcus subclusters 5.1-I, 5.I-IV, 5.2, and 5.3. All Synechococcus S5.1-I were common in the White and Barents seas and were consistently present in the picophytoplankton composition throughout the year. Synechococcus S5.2 and S5.3 appear in the PC community in summer, suggesting their river origin, and Synechococcus S5.1-IV inhabits only the Barents Sea and was not detected in the White Sea. A unique Synechococcus phylotype was revealed. It is expected that the increase in the abundance of PC and their increasing role in ecosystem functioning, as well as the enrichment of the species composition with new phylotypes in the semi-enclosed sub-Arctic White Sea, which is vulnerable to the effects of climate change, will be characteristic of all Arctic seas in general. Full article
(This article belongs to the Special Issue Microalgae Genomics and Metagenomics)
Show Figures

Figure 1

27 pages, 1309 KiB  
Article
Trophic Position Stability of Benthic Organisms in a Changing Food Web of an Arctic Fjord Under the Pressure of an Invasive Predatory Snow Crab, Chionoecetes opilio
by Anna K. Zalota, Polina Yu. Dgebuadze, Alexander D. Kiselev, Margarita V. Chikina, Alexey A. Udalov, Daria V. Kondar, Alexey V. Mishin and Sergey M. Tsurikov
Biology 2024, 13(11), 874; https://doi.org/10.3390/biology13110874 - 28 Oct 2024
Viewed by 1605
Abstract
The introduction of a large predatory snow crab, Chionoecetes opilio, into the Kara Sea is a unique situation where the impact of an invasive species affecting an otherwise undisturbed ecosystem can be observed unhindered by other ecosystem stressors. Trophic interactions are one [...] Read more.
The introduction of a large predatory snow crab, Chionoecetes opilio, into the Kara Sea is a unique situation where the impact of an invasive species affecting an otherwise undisturbed ecosystem can be observed unhindered by other ecosystem stressors. Trophic interactions are one of the principal relationships between animals and can help assess an ecosystem’s stability. The trophic positions and sources of organic material for the most common benthic species of Blagopoluchiya Bay sampled at different stages of the invasion were calculated using stable isotope analysis. The most pronounced changes in the trophic web occurred amongst the megabenthic species, where previously most abundant deposit-feeding ophiuroids have disappeared. However, the benthic species’ trophic position and primary production source preference did not change. A sea star, Urasterias lincki, remained the highest carnivore in the bay, and the invasive crab remained at a lower trophic level, showing higher omnivory in its diet. Any changes in the consumers’ prey items were within the same trophic level. Overall, active predators became one of the most abundant feeding mode groups. The average weighted trophic position of all megabenthic species increased to the third trophic level, where mostly secondary consumers remained. Full article
(This article belongs to the Section Ecology)
Show Figures

Figure 1

36 pages, 10988 KiB  
Article
Assessment of the Hydrochemical Characteristics of the Carbon Observational Site ‘Carbon-Sakhalin’ (Aniva Bay, Sea of Okhotsk)
by Vladimir Pishchalnik, Stanislav Myslenkov, Elena Latkovskaya and Victor Arkhipkin
Sustainability 2024, 16(7), 3031; https://doi.org/10.3390/su16073031 - 5 Apr 2024
Cited by 3 | Viewed by 1567
Abstract
Following a tendency of many economies to shift towards carbon neutrality, there came the necessity for certain regions to be assessed in terms of their greenhouse gas emissions from the ocean. A carbon polygon was created in Sakhalin Oblast in order to evaluate [...] Read more.
Following a tendency of many economies to shift towards carbon neutrality, there came the necessity for certain regions to be assessed in terms of their greenhouse gas emissions from the ocean. A carbon polygon was created in Sakhalin Oblast in order to evaluate the carbon balance of this marine ecosystem in a sub-arctic region, with the possibility of deploying carbon farms for additional CO2 absorption. To obtain such an assessment, it seems crucial to analyze hydrochemical parameters that reflect the situation of the marine environment in Aniva Bay as a basis of the carbon polygon. The article presents the results of the analysis of hydrochemical parameters in Aniva Bay waters and their spatial and seasonal variability. This research was based on available published sources and measurement databases for the period of 1948–1994. Additionally, the review uses hydrochemical data for Aniva Bay in 2001–2013 weather station data for the period of 2008–2023 and weather station data for 2008–2023. Some tendencies were discovered for spatial and temporal distributions of oxygen, pH, and biogenic matter (inorganic phosphorus, inorganic nitrogen, silicon). In surface layers, the mean oxygen year maximum (9.1 mg/L) is registered with the beginning of photosynthesis, i.e., immediately after the ice melting in April. The highest pH values 8.26 are registered in the euphotic layer in May. The lowest pH values was in August (7.96) in the near-bottom layer. The maximum annual P-PO4 registered on the surface (>18 µg/L) immediately after ice melting, with a minimum (7.17 µg/L) at the end of July. Si-SiO3 concentrations have two maximums: at the end of June and at the beginning of October. N-NO2 concentration on the surface is >2 µg/L in mid-July and on the 50 m depth it is >3.5 µg/L in mid-September. Some spatial patterns of hydrochemical parameters were shown based on the analysis of maps. Full article
(This article belongs to the Section Sustainable Oceans)
Show Figures

Figure 1

14 pages, 7499 KiB  
Article
An Extreme Marine Heatwave Event in the Yellow Sea during Winter 2019/20: Causes and Consequences
by Haiqing Yu, Jie Ma, Hui Wang, Qinwang Xing and Lin Jiang
Remote Sens. 2024, 16(1), 33; https://doi.org/10.3390/rs16010033 - 21 Dec 2023
Cited by 2 | Viewed by 1851
Abstract
Increasing evidence has shown that marine heatwaves (MHWs) have destructive impacts on marine ecosystems, and understanding the causes of these events is beneficial for mitigating the associated adverse effects on the provision of ecosystem services. During the 2019/20 boreal winter, a long-lasting extreme [...] Read more.
Increasing evidence has shown that marine heatwaves (MHWs) have destructive impacts on marine ecosystems, and understanding the causes of these events is beneficial for mitigating the associated adverse effects on the provision of ecosystem services. During the 2019/20 boreal winter, a long-lasting extreme MHW event was recorded (over 90 days) in the Yellow Sea (YS). Observations and numerical experiments revealed that the unprecedented winter MHW event was initiated and sustained by a significant decrease in ocean heat loss in the YS, which may be associated with the pronounced weakening of the Siberian high system induced by an extreme positive Arctic Oscillation (AO) event. A weakened northerly wind is the essential prerequisite, while the extreme AO event is only a trigger for the winter MHW in the YS. It was also found that the extreme winter MHW event is likely to substantially affect the seasonal evolution of the vertical thermal structure, which may have a great impact on the whole ecosystem in the YS. This study provides new insights for the prediction of winter MHWs in the YS, as well as their effects on marine ecosystems in a changing climate. Full article
Show Figures

Figure 1

27 pages, 5532 KiB  
Article
Sea Ice as a Factor of Primary Production in the European Arctic: Phytoplankton Size Classes and Carbon Fluxes
by Elena Kudryavtseva, Marina Kravchishina, Larisa Pautova, Igor Rusanov, Dmitry Glukhovets, Alexander Shchuka, Ivan Zamyatin, Nadezhda Torgunova, Anna Chultsova, Nadezhda Politova and Alexander Savvichev
J. Mar. Sci. Eng. 2023, 11(11), 2131; https://doi.org/10.3390/jmse11112131 - 8 Nov 2023
Cited by 5 | Viewed by 1686
Abstract
The seasonally ice-covered marine region of the European Arctic has experienced warming and sea ice loss in the last two decades. During expeditions in August 2020 and 2021, new data on size-fractioned primary production (PP), chlorophyll a concentration, phytoplankton biomass and composition and [...] Read more.
The seasonally ice-covered marine region of the European Arctic has experienced warming and sea ice loss in the last two decades. During expeditions in August 2020 and 2021, new data on size-fractioned primary production (PP), chlorophyll a concentration, phytoplankton biomass and composition and carbon fixation rates in the dark were obtained in the marginal ice zone (MIZ) of the Barents Sea, Nansen Basin and Greenland Sea to better understand the response of Arctic ecosystems to ongoing climate changes. Four different situations were observed in the study region: (i) a bloom of the large-cell diatom Podosira glacialis, whose biomass was trapped in a strong halocline at the edge of a dense ice cover; (ii) a bloom of the chain-like colonies of Thalassiosira diatoms on the shelf in mixed waters in fields of shallow ice that could be supported by “fresh” elements in the polynya condition, as well as by terrestrial run-off and drifting ices; at the late stage, this bloom was accompanied by intensive growth of Phaeocystis pouchetti; (iii) dominance of small-cell phytoplankton under weakened stratification and the significant influence of the Atlantic water, depleted of microelements and silicates; (iv) dominance of dinoflagellates of eutrophic water in the contact zone between the water masses of Arctic origin and Atlantic origin in clear water under conditions of increased light intensity. The >10 µm phytoplankton cell size group increased its relative contribution to PP as a response to stratification, light and nutrient load associated with sea ice conditions. Small phytoplankton with sizes < 2 µm formed the basis of total PP in the MIZ regardless of the state of the sea ice. Full article
(This article belongs to the Special Issue Phytoplankton Dynamics and Biogeochemistry of Marine Ecosystems)
Show Figures

Figure 1

15 pages, 3079 KiB  
Article
Picocyanobacteria in Estuaries of Three Siberian Rivers and Adjacent Shelves of Russian Arctic Seas: Genetic Diversity and Distribution
by Tatiana A. Belevich, Irina A. Milyutina and Aleksey V. Troitsky
Diversity 2023, 15(10), 1049; https://doi.org/10.3390/d15101049 - 28 Sep 2023
Cited by 2 | Viewed by 1483
Abstract
Single-cell cyanobacteria, being an integral part of picoplankton in marine ecosystems, have been suggested to be important contributors to primary production and carbon cycles in the global ocean. The spatial distribution, abundance and diversity of natural communities of picocyanobacteria (PC) in estuaries of [...] Read more.
Single-cell cyanobacteria, being an integral part of picoplankton in marine ecosystems, have been suggested to be important contributors to primary production and carbon cycles in the global ocean. The spatial distribution, abundance and diversity of natural communities of picocyanobacteria (PC) in estuaries of Khatanga, Indigirka and Kolyma rivers and adjacent shelves of the Laptev and East Siberian seas were studied in September 2017. The PC concentrations were higher in the estuaries than in the shelf stations of the seas. The abundance of PC was 1.25 × 106 cells/L, 0.42 × 106 cells/L and 1.58 × 106 cells/L in the surface layer of Khatanga, Indigirka and Kolyma estuaries, respectively. The contribution of PC to total autumn picophytoplankton abundance averaged 6% and 3% in the Khatanga and Indigirka estuaries and reached 5% in the Kolyma estuary. Phylogenetic analysis of the 16S rRNA gene and ITS region clone libraries revealed picocyanobacterial sequences related to marine Synechococcus subclusters 5.1-I, 5.2 and 5.3. Of the phylotypes from Synechococcus S5.1-I and S5.2 that were found, only several were discovered earlier, while the remaining clones were unique. Two groups of phylotypes (clades A and E) were found that were not closely similar to those previously described in both marine and freshwater habitats. It can be expected that a more detailed study of the phytoplankton of the Arctic seas will further expand our understanding of the diversity of these key components of the food chains of oceanic biocenoses. Full article
(This article belongs to the Special Issue Estuaries Ecology and Coastal Marine Waters)
Show Figures

Figure 1

17 pages, 2751 KiB  
Article
Microplastics Distribution within Western Arctic Seawater and Sea Ice
by Alessandra D’Angelo, Nicole Trenholm, Brice Loose, Laura Glastra, Jacob Strock and Jongsun Kim
Toxics 2023, 11(9), 792; https://doi.org/10.3390/toxics11090792 - 20 Sep 2023
Cited by 14 | Viewed by 3877
Abstract
Microplastic pollution has emerged as a global environmental concern, exhibiting wide distribution within marine ecosystems, including the Arctic Ocean. Limited Arctic microplastic data exist from beached plastics, seabed sediments, floating plastics, and sea ice. However, no studies have examined microplastics in the sea [...] Read more.
Microplastic pollution has emerged as a global environmental concern, exhibiting wide distribution within marine ecosystems, including the Arctic Ocean. Limited Arctic microplastic data exist from beached plastics, seabed sediments, floating plastics, and sea ice. However, no studies have examined microplastics in the sea ice of the Canadian Arctic Archipelago and Tallurutiup Imanga National Marine Conservation Area, and few have explored Arctic marginal seas’ water column. The majority of the microplastic data originates from the Eurasian Arctic, with limited data available from other regions of the Arctic Ocean. This study presents data from two distinct campaigns in the Canadian Arctic Archipelago and Western Arctic marginal seas in 2019 and 2020. These campaigns involved sampling from different regions and matrices, making direct comparisons inappropriate. The study’s primary objective is to provide insights into the spatial and vertical distribution of microplastics. The results reveal elevated microplastic concentrations within the upper 50 m of the water column and significant accumulation in the sea ice, providing evidence to support the designation of sea ice as a microplastic sink. Surface seawater exhibits a gradient of microplastic counts, decreasing from the Chukchi Sea towards the Beaufort Sea. Polyvinyl chloride polymer (~60%) dominated microplastic composition in both sea ice and seawater. This study highlights the need for further investigations in this region to enhance our understanding of microplastic sources, distribution, and transport. Full article
Show Figures

Figure 1

20 pages, 2815 KiB  
Article
Contrasting Marine Microbial Communities of the Fram Strait with the First Confirmed Record of Cyanobacteria Prochlorococcus marinus in the Arctic Region
by Monika Mioduchowska, Joanna Pawłowska, Karol Mazanowski and Agata Weydmann-Zwolicka
Biology 2023, 12(9), 1246; https://doi.org/10.3390/biology12091246 - 17 Sep 2023
Cited by 6 | Viewed by 2216
Abstract
The seawater microbiome is crucial in marine ecosystems because of its role in food chains and biogeochemical cycles; thus, we studied the composition of the pelagic marine microbiome collected in the upper 50 m on the opposite sides of Fram Strait: Spitsbergen and [...] Read more.
The seawater microbiome is crucial in marine ecosystems because of its role in food chains and biogeochemical cycles; thus, we studied the composition of the pelagic marine microbiome collected in the upper 50 m on the opposite sides of Fram Strait: Spitsbergen and Greenland shelves. We found out that it differed significantly, with salinity being the main environmental variable responsible for these differences. The Spitsbergen shelf was dominated by Atlantic Waters, with a rather homogenous water column in terms of salinity and temperature down to 300 m; hence, the marine microbial community was also homogenous at all sampled depths (0, 25, 50 m). On the contrary, stations on the Greenland shelf were exposed to different water masses of both Arctic and Atlantic origin, which resulted in a more diverse microbial community there. Unexpectedly, for the very first time, we identified cyanobacterium Prochlorococcus marinus in Arctic waters (Spitsbergen shelf, 75–77° N). Till now, the distribution of this cyanobacteria in oceans has been described only between 40° N and 40° S. Considering the accelerated rate of climate warming in the Arctic, our results indicated that the seawater microbiome can be viewed as an amplifier of global change and that the Atlantification is in progress. Full article
(This article belongs to the Special Issue Climate Change and Marine Plankton)
Show Figures

Graphical abstract

6 pages, 1350 KiB  
Communication
Super Climate Events
by James E. Overland
Climate 2023, 11(8), 169; https://doi.org/10.3390/cli11080169 - 10 Aug 2023
Cited by 2 | Viewed by 2247
Abstract
New environmental extremes are currently underway and are much greater than those in previous records. These are mostly regional, singular events that are caused by global change/local weather combinations and are larger than the impact of linear temperature increases projected using climate models. [...] Read more.
New environmental extremes are currently underway and are much greater than those in previous records. These are mostly regional, singular events that are caused by global change/local weather combinations and are larger than the impact of linear temperature increases projected using climate models. These new states cannot easily be assigned probabilities because they often have no historical analogs. Thus, the term super climate extremes is used. Examples are the loss of sea ice and ecosystem reorganization in northern marine Alaska, heatwave extreme in western Canada, and the loss of snow in Greenland. New combined extreme occurrences, which are reported almost daily, lead to a new, higher level of climate change urgency. The loss of sea ice in 2018–2019 was a result of warmer Arctic temperatures and changes in the jet stream. They resulted in a chain of impacts from southerly winds, the northward movement of predatory fish, and the reduction of food security for coastal communities. Record temperatures were measured in southwestern British Columbia following previous drought conditions, a confluence of two storm tracks, and warming through atmospheric subsidence. Greenland’s losses had clear skies and jet stream events. Such new extremes are present indicators of climate change. Their impacts result from the interaction between physical and ecological processes, and they justify the creation of a new climate change category based on super climate extremes. Full article
(This article belongs to the Section Weather, Events and Impacts)
Show Figures

Figure 1

Back to TopTop