An Extreme Marine Heatwave Event in the Yellow Sea during Winter 2019/20: Causes and Consequences
Abstract
:1. Introduction
2. Materials and Methods
2.1. Water Temperature and Meteorological Data
2.1.1. SST Data
2.1.2. Sea Bottom Temperature Data
2.1.3. Meteorological Data
2.2. Model Configuration and Validation
2.3. Definition of an MHW Event
2.4. Diagnosis Analysis
2.4.1. Temperature Change Induced by the Horizontal Advection Anomaly
2.4.2. Temperature Change Induced by Net Heat Flux Anomaly
3. Results
3.1. Characteristics of the Winter MHW Event in the YS
3.2. Dominant Factors/Processes of Extreme MHWs in the YS
3.3. Impact of the Extreme MHW Event on the Seasonal Evolution of Water Temperature
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hobday, A.J.; Alexander, L.V.; Perkins, S.E.; Smale, D.A.; Straub, S.C.; Oliver, E.C.; Benthuysen, J.A.; Burrows, M.T.; Donat, M.G.; Feng, M.; et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 2016, 141, 227–238. [Google Scholar] [CrossRef]
- Plecha, S.M.; Soares, P.M. Global marine heatwave events using the new CMIP6 multi-model ensemble: From shortcomings in present climate to future projections. Environ. Res. Lett. 2020, 15, 124058. [Google Scholar] [CrossRef]
- Schaeffer, A.; Roughan, M. Subsurface intensification of marine heatwaves off southeastern Australia: The role of stratification and local winds. Geophys. Res. Lett. 2017, 44, 5025–5033. [Google Scholar] [CrossRef]
- Frölicher, T.L.; Laufkötter, C. Emerging risks from marine heat waves. Nat. Commun. 2018, 9, 650. [Google Scholar] [CrossRef] [PubMed]
- Hayashida, H.; Matear, R.J.; Strutton, P.G. Background nutrient concentration determines phytoplankton bloom response to marine heatwaves. Glob. Chang. Biol. 2020, 26, 4800–4811. [Google Scholar] [CrossRef] [PubMed]
- Roberts, S.D.; Van Ruth, P.D.; Wilkinson, C.; Bastianello, S.S.; Bansemer, M.S. Marine heatwave, harmful algae blooms and an extensive fish kill event during 2013 in South Australia. Front. Mar. Sci. 2019, 6, 610. [Google Scholar] [CrossRef]
- Couch, C.S.; Burns, J.H.; Liu, G.; Steward, K.; Gutlay, T.N.; Kenyon, J.; Eakin, C.M.; Kosaki, R.K. Mass coral bleaching due to unprecedented marine heatwave in Papahānaumokuākea Marine National Monument (Northwestern Hawaiian Islands). PLoS ONE 2017, 12, e0185121. [Google Scholar] [CrossRef] [PubMed]
- Piatt, J.F.; Parrish, J.K.; Renner, H.M.; Schoen, S.K.; Jones, T.T.; Arimitsu, M.L.; Kuletz, K.J.; Bodenstein, B.; García-Reyes, M.; Duerr, R.S.; et al. Extreme mortality and reproductive failure of common murres resulting from the northeast Pacific marine heatwave of 2014–2016. PLoS ONE 2020, 15, e0226087. [Google Scholar] [CrossRef]
- Amaya, D.J.; Miller, A.J.; Xie, S.P.; Kosaka, Y. Physical drivers of the summer 2019 North Pacific marine heatwave. Nat. Commun. 2020, 11, 1903. [Google Scholar] [CrossRef]
- Gao, G.; Marin, M.; Feng, M.; Yin, B.; Yang, D.; Feng, X.; Ding, Y.; Song, D. Drivers of marine heatwaves in the East China Sea and the South Yellow Sea in three consecutive summers during 2016–2018. J. Geophys. Res. Ocean. 2020, 125, e2020JC016518. [Google Scholar] [CrossRef]
- Kuroda, H.; Setou, T. Extensive marine heatwaves at the sea surface in the northwestern Pacific Ocean in summer 2021. Remote Sens. 2021, 13, 3989. [Google Scholar] [CrossRef]
- Lawrence, Z.D.; Perlwitz, J.; Butler, A.H.; Manney, G.L.; Newman, P.A.; Lee, S.H.; Nash, E.R. The remarkably strong Arctic stratospheric polar vortex of winter 2020: Links to record-breaking Arctic oscillation and ozone loss. J. Geophys. Res. Atmos. 2020, 125, e2020JD033271. [Google Scholar] [CrossRef]
- Overland, J.E.; Wang, M. The 2020 Siberian heat wave. Int. J. Climatol. 2021, 41, E2341–E2346. [Google Scholar] [CrossRef]
- Descals, A.; Gaveau, D.L.; Verger, A.; Sheil, D.; Naito, D.; Peñuelas, J. Unprecedented fire activity above the Arctic Circle linked to rising temperatures. Science 2022, 378, 532–537. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Kryjov, V.N.; Ahn, J.B. The roles of global warming and Arctic Oscillation in the winter 2020 extremes in East Asia. Environ. Res. Lett. 2022, 17, 065010. [Google Scholar] [CrossRef]
- Ma, J.; Qiao, F.; Xia, C.; Kim, C.S. Effects of the Yellow Sea Warm Current on the winter temperature distribution in a numerical model. J. Geophys. Res. Ocean. 2006, 111. [Google Scholar] [CrossRef]
- Wan, X.; Liu, S.; Ma, W. Numerical simulation of double warm tongues related to the bifurcation of the Yellow Sea warm current. Cont. Shelf Res. 2022, 236, 104680. [Google Scholar] [CrossRef]
- Yeh, S.W.; Kim, C.H. Recent warming in the Yellow/East China Sea during winter and the associated atmospheric circulation. Cont. Shelf Res. 2010, 30, 1428–1434. [Google Scholar] [CrossRef]
- Good, S.; Fiedler, E.; Mao, C.; Martin, M.J.; Maycock, A.; Reid, R.; Roberts-Jones, J.; Searle, T.; Waters, J.; While, J.; et al. The current configuration of the OSTIA system for operational production of foundation sea surface temperature and ice concentration analyses. Remote Sens. 2020, 12, 720. [Google Scholar] [CrossRef]
- Kwon, K.; Choi, B.J.; Kim, S.D.; Lee, S.H.; Park, K.A. Assessment and improvement of global gridded sea surface temperature datasets in the yellow sea using in situ ocean buoy and research vessel observations. Remote Sens. 2020, 12, 759. [Google Scholar] [CrossRef]
- Yu, H.; Yu, H.; Ito, S.I.; Tian, Y.; Wang, H.; Liu, Y.; Xing, Q.; Bakun, A.; Kelly, R.M. Potential environmental drivers of Japanese anchovy (Engraulis japonicus) recruitment in the Yellow Sea. J. Mar. Syst. 2020, 212, 103431. [Google Scholar] [CrossRef]
- Padman, L.; Erofeeva, S. Tide Model Driver (TMD) Manual; Earth and Space Research: Seattle, WA, USA, 2005. [Google Scholar]
- Lin, X.; Yang, J.; Guo, J.; Zhang, Z.; Yin, Y.; Song, X.; Zhang, X. An asymmetric upwind flow, Yellow Sea warm current: 1. New observations in the western Yellow Sea. J. Geophys. Res. Ocean. 2011, 116, C04026. [Google Scholar] [CrossRef]
- Kim, G.U.; Lee, K.; Lee, J.; Jeong, J.Y.; Lee, M.; Jang, C.J.; Ha, K.J.; Nam, S.; Noh, J.H.; Kim, Y.S. Record-breaking slow temperature evolution of spring water during 2020 and its impacts on spring bloom in the Yellow Sea. Front. Mar. Sci. 2022, 9, 824361. [Google Scholar] [CrossRef]
- Wang, B.; Wu, L. Sea surface temperature (SST) anomalies of the Yellow and East China Seas in July of 2020. In E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2021; Volume 228, p. 02006. [Google Scholar]
- Yoon, J.E.; Son, S.; Kim, I.N. Capture of decline in spring phytoplankton biomass derived from COVID-19 lockdown effect in the Yellow Sea offshore waters. Mar. Pollut. Bull. 2022, 174, 113175. [Google Scholar] [CrossRef]
Time | Duration (Days) | Maximum Intensity (°C) | Cumulative Intensity (°C Days) |
---|---|---|---|
1994.12.06–1994.12.12 | 7 | 1.30 | 8.37 |
1998.12.28–1999.01.08 | 12 | 1.43 | 13.78 |
1999.02.01–1999.02.24 | 24 | 1.20 | 24.45 |
1999.03.12–1999.03.17 | 6 | 1.31 | 7.07 |
2004.12.09–2004.12.23 | 15 | 1.66 | 20.71 |
2007.02.09–2007.03.11 | 31 | 1.96 | 39.96 |
2016.01.17–2016.01.21 | 5 | 0.91 | 4.42 |
2017.01.05–2017.01.10 | 6 | 1.29 | 7.22 |
2018.11.27–2018.12.09 | 13 | 1.84 | 19.84 |
2019.02.07–2019.02.13 | 7 | 1.20 | 7.35 |
2019.03.16–2019.03.20 | 5 | 1.15 | 5.56 |
2019.12.24–2020.04.08 | 107 | 2.36 | 172.37 |
2021.03.09–2021.03.15 | 7 | 1.23 | 7.97 |
2021.12.20–2021.12.24 | 5 | 1.16 | 5.57 |
Time | Duration (Days) | Maximum Intensity (°C) | Cumulative Intensity (°C Days) |
---|---|---|---|
1990.12.06–1990.12.12 | 7 | 1.28 | 8.06 |
1994.12.22–1995.01.05 | 15 | 1.13 | 15.24 |
1998.12.28–1999.01.11 | 15 | 1.33 | 16.91 |
1999.01.20–1999.02.10 | 22 | 1.18 | 21.72 |
2004.12.14–2004.12.18 | 5 | 1.32 | 6.24 |
2007.01.22–2007.03.12 | 50 | 2.07 | 65.01 |
2019.03.03–2019.03.11 | 9 | 1.18 | 9.24 |
2020.01.21–2020.04.19 | 90 | 2.35 | 136.70 |
(°C) | Feb | Apr | Jun | Aug | Oct | Dec |
---|---|---|---|---|---|---|
KODC | 1.67 | 1.56 | 1.27 | 1.77 | 1.05 | 1.16 |
FVCOM-EAMS | 1.38 | 1.30 | 0.79 | 1.84 | 1.37 | 1.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, H.; Ma, J.; Wang, H.; Xing, Q.; Jiang, L. An Extreme Marine Heatwave Event in the Yellow Sea during Winter 2019/20: Causes and Consequences. Remote Sens. 2024, 16, 33. https://doi.org/10.3390/rs16010033
Yu H, Ma J, Wang H, Xing Q, Jiang L. An Extreme Marine Heatwave Event in the Yellow Sea during Winter 2019/20: Causes and Consequences. Remote Sensing. 2024; 16(1):33. https://doi.org/10.3390/rs16010033
Chicago/Turabian StyleYu, Haiqing, Jie Ma, Hui Wang, Qinwang Xing, and Lin Jiang. 2024. "An Extreme Marine Heatwave Event in the Yellow Sea during Winter 2019/20: Causes and Consequences" Remote Sensing 16, no. 1: 33. https://doi.org/10.3390/rs16010033
APA StyleYu, H., Ma, J., Wang, H., Xing, Q., & Jiang, L. (2024). An Extreme Marine Heatwave Event in the Yellow Sea during Winter 2019/20: Causes and Consequences. Remote Sensing, 16(1), 33. https://doi.org/10.3390/rs16010033