Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Keywords = Arctic coastal erosion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 19558 KiB  
Article
Time-Series InSAR Monitoring of Permafrost-Related Surface Deformation at Tiksi Airport: Impacts of Climate Warming and Coastal Erosion on the Northernmost Siberian Mainland
by Qingkai Yan, Ze Zhang, Xianglong Li, Aoxiang Yan, Lisha Qiu, Andrei Zhang, Andrey Melnikov and Leonid Gagarin
Remote Sens. 2025, 17(10), 1757; https://doi.org/10.3390/rs17101757 - 17 May 2025
Viewed by 648
Abstract
The Arctic is the fastest-warming region on Earth, exhibiting a pronounced “amplifying effect”, which has triggered widespread permafrost thaw and increased the risk of surface deformation. In the Arctic coastal lowlands, permafrost is also affected by shoreline retreat. The impact of these dual [...] Read more.
The Arctic is the fastest-warming region on Earth, exhibiting a pronounced “amplifying effect”, which has triggered widespread permafrost thaw and increased the risk of surface deformation. In the Arctic coastal lowlands, permafrost is also affected by shoreline retreat. The impact of these dual stressors on surface deformation processes in the Arctic coastal lowlands remains poorly understood, particularly in terms of how permafrost thaw and shoreline retreat interact to influence surface stability. To address this gap, we employed PS-InSAR technology to monitor surface deformation from 2017 to 2021 at Tiksi Airport, the northernmost airport on the Siberian mainland, situated adjacent to the Laptev Sea. The results show that Tiksi Airport experiences localized significant surface subsidence, with deformation velocity ranging from −42 to 39 mm/yr. The near-coastal area of Tiksi Airport is strongly influenced by the ocean. Specifically, for extreme subsidence deformation (around –40 mm/yr), the surface subsidence velocity increases by 0.2 mm/yr for every 100 m closer to the coastline. Analysis of these deformation characteristics suggests that the primary causes of subsidence are land surface temperature (LST) warming and erosion by the Laptev Sea, which together lead to increased permafrost thaw. By revealing the combined effects of climate warming and coastal erosion on permafrost stability, this study contributes to enhancing the understanding of infrastructure safety and quality of life for residents in Arctic coastal subsidence areas. Full article
Show Figures

Figure 1

28 pages, 14780 KiB  
Article
Longyearbyen Lagoon (Spitsbergen): Gravel Spits Movement Rate and Mechanisms
by Nataliya Marchenko and Aleksey Marchenko
Geographies 2025, 5(2), 18; https://doi.org/10.3390/geographies5020018 - 3 Apr 2025
Viewed by 754
Abstract
Understanding lagoon behavior is crucial for both scientific research and engineering decisions, especially in delicate Arctic environments. Lagoons are vital to coastal areas, often bolstering infrastructure resilience. Since spring 2019, we have monitored the Longyearbyen lagoon (Spitsbergen), vital for coastal erosion defense and [...] Read more.
Understanding lagoon behavior is crucial for both scientific research and engineering decisions, especially in delicate Arctic environments. Lagoons are vital to coastal areas, often bolstering infrastructure resilience. Since spring 2019, we have monitored the Longyearbyen lagoon (Spitsbergen), vital for coastal erosion defense and serving as a natural laboratory. The location’s well-developed infrastructure and accessible logistics make it an ideal testing site available at any time. It can be used for many natural scientific studies. The lagoon continually changes due to the primary action of waves and tides. This article focuses on gravel spit movement, accelerating in recent years to several meters monthly. Using methods of aerial and satellite images, laser scanning, and hydrodynamic measurements, we have delineated processes, rates, and mechanisms behind this movement. The measurements revealed an accelerating eastward movement of the lagoon spit, from 8 m in the first year to 86 m in the fourth year of observation. This can be explained by a combination of the reconstruction of the Longyearbyen riverbed and increased flow because of climate change. Notably, the expansion does not only occur in the summer months: from September 2022 to February 2023, the spit moved by 40 m, and then, by 19 m from February to June 2023. We found that the bed-load transport along the spit coupled with gravel slides are the primary drives of lagoon expansion and growth. We also investigated movements of groundwater in the spit and changes in gravel contents along the spit, influencing the water saturation of the gravel. Modelling these processes aids in forecasting lagoon system development, crucial for informed management and engineering decisions in Arctic coastal regions. Full article
Show Figures

Figure 1

18 pages, 4134 KiB  
Article
Applying Data Analysis and Machine Learning Methods to Predict Permafrost Coast Erosion
by Daria Bogatova and Stanislav Ogorodov
Geosciences 2025, 15(1), 2; https://doi.org/10.3390/geosciences15010002 - 26 Dec 2024
Viewed by 1071
Abstract
This study aims to establish a scientific and methodological basis for predicting shoreline positions using modern data analysis and machine learning techniques. The focus area is a 5 km section of the Ural coast along Baydaratskaya Bay in the Kara Sea. This region [...] Read more.
This study aims to establish a scientific and methodological basis for predicting shoreline positions using modern data analysis and machine learning techniques. The focus area is a 5 km section of the Ural coast along Baydaratskaya Bay in the Kara Sea. This region was selected due to its diverse geomorphological features, varied lithological composition, and significant presence of permafrost processes, all contributing to complex patterns of shoreline change. Applying advanced data analysis methods, including correlation and factor analysis, enables the identification of natural signs that highlight areas of active coastal retreat. These insights are valuable in arctic development planning, as they help to recognize zones at the highest risk of significant shoreline transformation. The erosion process can be conceptualized as comprising two primary components to construct a predictive model for coastal retreat. The first is a random variable that encapsulates the effects of local structural changes in the coastline alongside fluctuations due to climatic conditions. This component can be statistically characterized to define a confidence interval for natural variability. The second component represents a systematic shift, which reflects regular changes in average shoreline positions over time. This systematic component is more suited to predictive modeling. Thus, modern information processing methods allow us to move from descriptive to numerical assessments of the dynamics of coastal processes. The goal is ultimately to support responsible and sustainable development in the highly sensitive arctic region. Full article
(This article belongs to the Section Cryosphere)
Show Figures

Figure 1

9 pages, 1919 KiB  
Communication
Emergence of Arctic Extremes
by James E. Overland
Climate 2024, 12(8), 109; https://doi.org/10.3390/cli12080109 - 27 Jul 2024
Cited by 1 | Viewed by 2209
Abstract
Recent increases in extreme events, especially those near and beyond previous records, are a new index for Arctic and global climate change. They vary by type, location, and season. These record-shattering events often have no known historical analogues and suggest that other climate [...] Read more.
Recent increases in extreme events, especially those near and beyond previous records, are a new index for Arctic and global climate change. They vary by type, location, and season. These record-shattering events often have no known historical analogues and suggest that other climate surprises are in store. Twenty-six unprecedented events from 2022, 2023, and early 2024 include record summer temperatures/heatwaves, storms, major Canadian wildfires, early continental snow melt, Greenland melt, sea temperatures of 5–7 °C above normal, drought in Iceland, and low northern Alaskan salmon runs. Collectively, such diverse extremes form a consilience, the principle that evidence from independent, unrelated sources converge as a strong indicator of ongoing Arctic change. These new behaviors represent emergent phenomenon. Emergence occurs when multiple processes interact to produce new properties, such as the interaction of Arctic amplification with the normal range of major weather events. Examples are typhon Merbok that resulted in extensive coastal erosion in the Bering Sea, Greenland melt, and record temperatures and melt in Svalbard. The Arctic can now be considered to be in a different state to before fifteen years ago. Communities must adapt for such intermittent events to avoid worst-case scenarios. Full article
Show Figures

Figure 1

14 pages, 5954 KiB  
Technical Note
Seasonal Coastal Erosion Rates Calculated from PlanetScope Imagery in Arctic Alaska
by Galen Cassidy, Matthew Wiseman, Kennedy Lange, Claire Eilers and Alice Bradley
Remote Sens. 2024, 16(13), 2365; https://doi.org/10.3390/rs16132365 - 28 Jun 2024
Cited by 2 | Viewed by 1574
Abstract
Erosion along the coastline of the Alaskan Arctic poses an existential threat to several communities. Rising air temperatures have been implicated in accelerating erosion rates through permafrost thaw, decreasing sea ice cover (increasing ocean fetch and wave energy), and shortening the duration of [...] Read more.
Erosion along the coastline of the Alaskan Arctic poses an existential threat to several communities. Rising air temperatures have been implicated in accelerating erosion rates through permafrost thaw, decreasing sea ice cover (increasing ocean fetch and wave energy), and shortening the duration of a shore-fast ice buffer, which all mean that erosion rates are higher in summer than they are in winter. However, the resolution of available satellite imagery has historically been too low to allow for the quantification of seasonal erosion rates across large areas of the Arctic, and so erosion rates are generally measured at annual to decadal time scales. This study uses PlanetScope high-resolution satellite imagery to calculate seasonal erosion rates in the Alaskan Arctic. Erosion rates as high as 38 cm/day (equivalent to 140 m/year) were measured using twice-annual images from 2017–2023 on two stretches of Alaska’s Beaufort Sea coast: Drew Point and Cape Halkett. The highest erosion rates are measured in the summer, with winter erosion rates consistently below 10 cm/day (usually within error margin of zero) and summer erosion rates exceeding 20 cm/day in three out of the seven years of data. Summer erosion rates are shown to correlate well with local air temperatures in July–September, July sea surface temperatures, and with Beaufort Sea sea ice area in May–August. Wind speeds and number of windy days do not correlate well with summer erosion rates. This study demonstrates the feasibility of using PlanetScope imagery to calculate erosion rates at seasonal time resolution without field measurements and shows the magnitude of difference between summer and winter season erosion rates. Full article
(This article belongs to the Special Issue Remote Sensing in Marine-Coastal Environments)
Show Figures

Figure 1

22 pages, 2490 KiB  
Review
Geoinformation Technology in Support of Arctic Coastal Properties Characterization: State of the Art, Challenges, and Future Outlook
by George P. Petropoulos, Triantafyllia Petsini and Spyridon E. Detsikas
Land 2024, 13(6), 776; https://doi.org/10.3390/land13060776 - 30 May 2024
Cited by 2 | Viewed by 1875
Abstract
Climate change is increasingly affecting components of the terrestrial cryosphere with its adverse impacts in the Arctic regions of our planet are already well documented. In this context, it is regarded today as a key scientific priority to develop methodologies and operational tools [...] Read more.
Climate change is increasingly affecting components of the terrestrial cryosphere with its adverse impacts in the Arctic regions of our planet are already well documented. In this context, it is regarded today as a key scientific priority to develop methodologies and operational tools that can assist towards advancing our monitoring capabilities and improving our decision-making competences in Arctic regions. In particular, the Arctic coasts are the focal point in this respect, due to their strong connection to the physical environment, society, and the economy in such areas. Geoinformation, namely Earth Observation (EO) and Geographical Information Systems (GISs), provide the way forward towards achieving this goal. The present review, which to our knowledge is the first of its kind, aims at delivering a critical consideration of the state-of-the-art approaches exploiting EO datasets and GIS for mapping the Arctic coasts properties. It also furnishes a reflective discussion on the scientific gaps and challenges that exist that require the attention of the scientific and wider community to allow exploitation of the full potential of EO/GIS technologies in this domain. As such, the present study also serves as a valuable contribution towards pinpointing directions for the design of effective policies and decision-making strategies that will promote environmental sustainability in the Arctic regions. Full article
Show Figures

Figure 1

18 pages, 9706 KiB  
Article
Satellite-Based Evaluation of Submarine Permafrost Erosion at Shallow Offshore Areas in the Laptev Sea
by Alexander Osadchiev, Polina Adamovskaya, Stanislav Myslenkov, Oleg Dudarev and Igor Semiletov
Remote Sens. 2023, 15(20), 5065; https://doi.org/10.3390/rs15205065 - 22 Oct 2023
Cited by 4 | Viewed by 2044
Abstract
Large areas of the seafloor in the Laptev Sea consist of submarine permafrost, which has experienced intense degradation over the last decades and centuries. Thermal abrasion of the submarine permafrost results in upward advection of suspended matter, which could reach the surface layer [...] Read more.
Large areas of the seafloor in the Laptev Sea consist of submarine permafrost, which has experienced intense degradation over the last decades and centuries. Thermal abrasion of the submarine permafrost results in upward advection of suspended matter, which could reach the surface layer in shallow areas. This process is visually manifested through increased turbidity of the sea surface layer, which is regularly detected in optical satellite imagery of the study areas. In this study, satellite data, wind and wave reanalysis, as well as in situ measurements are analyzed in order to reveal the main mechanisms of seafloor erosion in shallow areas of the Laptev Sea. We describe the synoptic variability in erosion at the Vasilyevskaya and Semenovskaya shoals in response to wind and wave conditions. Finally, using reanalysis data, daily suspended matter flux from this area was evaluated during ice-free periods in 1979–2021, and its seasonal and inter-annual variabilities were described. The obtained results contribute to our understanding of subsea permafrost degradation, the sediment budget, and carbon and nutrient cycles in the Laptev Sea. Full article
Show Figures

Figure 1

28 pages, 5468 KiB  
Article
Investigating High-Resolution Spatial Wave Patterns on the Canadian Beaufort Shelf Using Synthetic Aperture Radar Imagery at Herschel Island, Qikiqtaruk, Yukon, Canada
by Kerstin Brembach, Andrey Pleskachevsky and Hugues Lantuit
Remote Sens. 2023, 15(19), 4753; https://doi.org/10.3390/rs15194753 - 28 Sep 2023
Cited by 2 | Viewed by 1706
Abstract
The Arctic is experiencing the greatest increase in air temperature on Earth. This significant climatic change is leading to a significant positive trend of increasing wave heights and greater coastal erosion. This in turn effects local economies and ecosystems. Increasing wave energy is [...] Read more.
The Arctic is experiencing the greatest increase in air temperature on Earth. This significant climatic change is leading to a significant positive trend of increasing wave heights and greater coastal erosion. This in turn effects local economies and ecosystems. Increasing wave energy is one of the main drivers of this alarming trend. However, the data on spatial and temporal patterns of wave heights in the Arctic are either coarse, interpolated or limited to point measurements. The aim of this study is to overcome this shortcoming by using remote sensing data. In this study, the Synthetic Aperture Radar (SAR) satellite TerraSAR-X (TS-X) and TanDEM-X (TD-X) imagery are used to obtain sea state information with a high spatial resolution in Arctic nearshore waters in the Canadian Beaufort Sea. From the entire archive of the TS-X/TD-X StripMap mode with coverage around 30 km × 50 km acquired between 2009 and 2020 around Herschel Island, Qikiqtaruk (HIQ), all the ice-free scenes were processed. The resulting dataset of 175 collocated scenes was used to map the significant wave height (Hs) and to link spatial and temporal patterns to local coastal processes. Sea state parameters are estimated in raster format with a 600 m step using the empirical algorithm CWAVE_EX. The statistics of the Hs were aggregated according to spatial variability, seasonality and wind conditions. The results show that the spatial wave climate is clearly related to the dominant wind regime and seasonality. For instance, the aggregation of all the scenes recorded in July between 2009 and 2020 results in an average of 0.82 m Hs, while in October the average Hs is almost 0.40 m higher. The analysis by wind direction shows that fetch length and wind speed are likely the most important variables influencing the spatial variability. A larger fetch under NW conditions results in a mean wave height of 0.92 m, while waves generated under ESE conditions are lower at 0.81 m on average. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Graphical abstract

28 pages, 29670 KiB  
Article
Coastal Dynamics at Kharasavey Key Site, Kara Sea, Based on Remote Sensing Data
by Georgii Kazhukalo, Anna Novikova, Natalya Shabanova, Mikhail Drugov, Stanislav Myslenkov, Pavel Shabanov, Nataliya Belova and Stanislav Ogorodov
Remote Sens. 2023, 15(17), 4199; https://doi.org/10.3390/rs15174199 - 26 Aug 2023
Cited by 4 | Viewed by 2028
Abstract
In recent decades, acceleration of coastal erosion has been observed at many key sites of the Arctic region. Coastal dynamics of both erosional and accretional stretches at Kharasavey, Kara Sea, was studied using multi-temporal remote sensing data covering the period from 1964 to [...] Read more.
In recent decades, acceleration of coastal erosion has been observed at many key sites of the Arctic region. Coastal dynamics of both erosional and accretional stretches at Kharasavey, Kara Sea, was studied using multi-temporal remote sensing data covering the period from 1964 to 2022. Cross-proxy analyses of the interplay between coastal dynamics and regional (wave and thermal action) and local (geomorphic and lithological features; technogenic impact) drivers were supported by cluster analysis and wind–wave modelling via the Popov–Sovershaev method and WaveWatch III. Ice-rich permafrost bluffs and accretional sandy beaches exhibited a tendency towards persistent erosion (−1.03 m/yr and −0.42 m/yr, respectively). Shoreline progradation occurred locally near Cape Burunniy (6% of the accretional stretch) and may be due to sediment flux reversals responding to sea-ice decline. Although the mean rates of erosion were decreasing at a decadal scale, cluster analysis captured a slight increase in the retreat for 71% of the erosional stretch, which is apparently related to the forcing of wind–wave and thermal energy. Erosional hotspots (up to −7.9 m/yr) occurred mainly in the alignment of Cape Kharasavey and were predominantly caused by direct human impact. The presented study highlights the non-linear interaction of the Arctic coastal change and environmental drivers that require further upscaling of the applied models and remote sensing data. Full article
(This article belongs to the Special Issue Earth Observation of Study on Coastal Geomorphic Evolution)
Show Figures

Figure 1

16 pages, 3776 KiB  
Article
Sea Coast of the Western Part of the Russian Arctic under Climate Change: Dynamics, Technogenic Influence and Potential Economic Damage
by Stanislav Ogorodov, Svetlana Badina and Daria Bogatova
Climate 2023, 11(7), 143; https://doi.org/10.3390/cli11070143 - 10 Jul 2023
Cited by 7 | Viewed by 2177
Abstract
The Arctic coast dynamics has been an urgent problem over the last years, from both a practical and a fundamental point of view. In this research, for the first time for the Russian Arctic coast, we assessed the damage from the loss of [...] Read more.
The Arctic coast dynamics has been an urgent problem over the last years, from both a practical and a fundamental point of view. In this research, for the first time for the Russian Arctic coast, we assessed the damage from the loss of territories in the western part of the Russian Arctic, where the active production and transportation of hydrocarbon material are carried out. Most of the studied coastline is composed of frozen unlithified soils with inclusions of underground ice. In this regard, the coastal zone is highly sensitive to climate change and its economic consequences. According to our investigation and literature data, the erosion rates could rich up to 2–3 m/year in some part of the coastline. Having estimated the cadastral cost of land and the area of the possible loss of territory, as well as the cost of transport infrastructure in the risk zone, we tried to predict the damage from changes in the total structure of the area under consideration. In particular, the economic damages from coastal permafrost processes were estimated. The assessment was conducted for the middle of the 21st century, taking into account the current climatic trend, erosion rate and probable maximum warming in this region. Full article
(This article belongs to the Section Climate and Economics)
Show Figures

Figure 1

20 pages, 31845 KiB  
Article
Applying UAV-Based Remote Sensing Observation Products in High Arctic Catchments in SW Spitsbergen
by Abhishek Bamby Alphonse, Tomasz Wawrzyniak, Marzena Osuch and Nicole Hanselmann
Remote Sens. 2023, 15(4), 934; https://doi.org/10.3390/rs15040934 - 8 Feb 2023
Cited by 5 | Viewed by 4445
Abstract
In the age of remote sensing, particularly with new generation Uncrewed Aerial Vehicles (UAVs), there is a broad spectrum of applications, especially in remote and rapidly changing areas such as the Arctic. Due to challenging conditions in this region, there is a scarcity [...] Read more.
In the age of remote sensing, particularly with new generation Uncrewed Aerial Vehicles (UAVs), there is a broad spectrum of applications, especially in remote and rapidly changing areas such as the Arctic. Due to challenging conditions in this region, there is a scarcity of detailed spatial studies with data that may be used to estimate changes in glacier volume and geomorphological changes caused by permafrost freeze–thaw cycles. Drone-based Digital Elevation Models (DEM) offer a finer spatial resolution with higher accuracy than airborne and satellite-based products that can be used for acquiring, interpreting, and precisely representing spatial data in broad studies. In this study, we evaluate a UAV-based DEM of two High Arctic catchments, Fuglebekken and Ariebekken, located on Spitsbergen Island. The surveys were carried out in July 2022 using a DJI Matrice 300 RTK drone equipped with a photogrammetric Zenmuse P1 camera. A total of 371 images were taken, covering an area of 7.81 km2. The DEM was created by the Structure-from-Motion technique and achieved a centimetre-level accuracy by overlapping very high-resolution images. The final resolution of the DEM was found to be 0.06 m in Fuglebekken and 0.07 m in Ariebekken, with a horizontal and vertical RMSE of 0.09 m and 0.20 m, respectively. The DJI Matrice 300 RTK drone-based DEM is compared and correlated with the aerial mission of the Svalbard Integrated Arctic Earth Observing System (SIOS) conducted in July 2020 and the satellite-based ArcticDEM acquired in July 2018. This allowed the detection of elevation changes and identification of landscape evolution, such as moraine breaches and coastal erosion. We also highlight the usage of DEM in providing detailed morphometric characteristics and hydrological parameters, such as the delineation of catchments and stream channels. The final products are available at the IG PAS Data Portal. Full article
(This article belongs to the Special Issue UAV-Based Monitoring and Modelling in Cryosphere and Glacial Research)
Show Figures

Graphical abstract

28 pages, 8242 KiB  
Article
A Circum-Arctic Monitoring Framework for Quantifying Annual Erosion Rates of Permafrost Coasts
by Marius Philipp, Andreas Dietz, Tobias Ullmann and Claudia Kuenzer
Remote Sens. 2023, 15(3), 818; https://doi.org/10.3390/rs15030818 - 31 Jan 2023
Cited by 2 | Viewed by 3229
Abstract
This study demonstrates a circum-Arctic monitoring framework for quantifying annual change of permafrost-affected coasts at a spatial resolution of 10 m. Frequent cloud coverage and challenging lighting conditions, including polar night, limit the usability of optical data in Arctic regions. For this reason, [...] Read more.
This study demonstrates a circum-Arctic monitoring framework for quantifying annual change of permafrost-affected coasts at a spatial resolution of 10 m. Frequent cloud coverage and challenging lighting conditions, including polar night, limit the usability of optical data in Arctic regions. For this reason, Synthetic Aperture RADAR (SAR) data in the form of annual median and standard deviation (sd) Sentinel-1 (S1) backscatter images covering the months June–September for the years 2017–2021 were computed. Annual composites for the year 2020 were hereby utilized as input for the generation of a high-quality coastline product via a Deep Learning (DL) workflow, covering 161,600 km of the Arctic coastline. The previously computed annual S1 composites for the years 2017 and 2021 were employed as input data for the Change Vector Analysis (CVA)-based coastal change investigation. The generated DL coastline product served hereby as a reference. Maximum erosion rates of up to 67 m per year could be observed based on 400 m coastline segments. Overall highest average annual erosion can be reported for the United States (Alaska) with 0.75 m per year, followed by Russia with 0.62 m per year. Out of all seas covered in this study, the Beaufort Sea featured the overall strongest average annual coastal erosion of 1.12 m. Several quality layers are provided for both the DL coastline product and the CVA-based coastal change analysis to assess the applicability and accuracy of the output products. The predicted coastal change rates show good agreement with findings published in previous literature. The proposed methods and data may act as a valuable tool for future analysis of permafrost loss and carbon emissions in Arctic coastal environments. Full article
(This article belongs to the Special Issue Remote Sensing of Polar Regions)
Show Figures

Figure 1

19 pages, 9299 KiB  
Article
Dynamics of Low-Lying Sandy Coast of the Gydan Peninsula, Kara Sea, Russia, Based on Multi-Temporal Remote Sensing Data
by Nataliya Belova, Alexander Ermolov, Anna Novikova, Stanislav Ogorodov and Yulia Stanilovskaya
Remote Sens. 2023, 15(1), 48; https://doi.org/10.3390/rs15010048 - 22 Dec 2022
Cited by 5 | Viewed by 2424
Abstract
The retreat rates of Arctic coasts have increased in recent decades at many sites, and an essential part of coasts considered accumulative before have turned erosional due to global climate changes and construction in the coastal zone. In this paper, we study a [...] Read more.
The retreat rates of Arctic coasts have increased in recent decades at many sites, and an essential part of coasts considered accumulative before have turned erosional due to global climate changes and construction in the coastal zone. In this paper, we study a 7 km long coastal section of the western Gydan Peninsula in a new construction area. Based on the interpretation of multi-temporal satellite imagery, we assessed coastal dynamics in distinct periods from 1972 to 2020. We analyzed the geological structure of the coast as well as changes in hydrometeorological parameters with time, and considering the human impact, we proposed the main drivers of spatial and temporal variations of coastal dynamics. The studied low-lying sandy accumulative marine terrace was more or less stable in the period before construction (1972–2014). However, with the area’s development, the coast dynamics changed drastically: in 2014–2017, three-quarters of the studied area experienced retreat, and the average retreat rate amounted to 5.8 m/yr, up to 28.5 m/yr near the construction sites. We relate this coastal erosion intensification to human impact combined with the growth of hydrometeorological forcing. Although coastal erosion slowed down after 2017, the retreat trend remained. In the coming years, with Arctic climate warming, erosion of the studied coast will continue. Full article
(This article belongs to the Special Issue Earth Observation of Study on Coastal Geomorphic Evolution)
Show Figures

Graphical abstract

45 pages, 6648 KiB  
Article
A Process-Based Model for Arctic Coastal Erosion Driven by Thermodenudation and Thermoabrasion Combined and including Nearshore Morphodynamics
by Mohammad Akhsanul Islam and Raed Lubbad
J. Mar. Sci. Eng. 2022, 10(11), 1602; https://doi.org/10.3390/jmse10111602 - 31 Oct 2022
Cited by 2 | Viewed by 2363
Abstract
Various models have recently been developed to describe Arctic coastal erosion. Current process-based models simulate multiple physical processes and combine them interactively to resemble the unique mechanism of Arctic coastal erosion. One limitation of such models is the difficulty of including hydrodynamic forces. [...] Read more.
Various models have recently been developed to describe Arctic coastal erosion. Current process-based models simulate multiple physical processes and combine them interactively to resemble the unique mechanism of Arctic coastal erosion. One limitation of such models is the difficulty of including hydrodynamic forces. The available coastal erosion models developed for warmer climates cannot be applied to Arctic coastal erosion, where permafrost is a significant environmental parameter. This paper explains a methodology that allows us to use the models designed for warmer climates to simulate Arctic coastal erosion. The open-source software XBeach is employed to simulate the waves, sediment transport and morphological changes. We developed different submodules for the processes unique to Arctic coasts, such as thawing–freezing, slumping, wave-cut niche, bluff failure, etc. The submodules are coupled with XBeach to enable concurrent simulation of the two mechanisms of Arctic coastal erosion, namely thermodenudation and thermoabrasion. Some of the model’s input parameters are calibrated using field measurements from the Arctic coast of Kara Sea, Russia. The model is then validated by another set of mutually exclusive field measurements under different morphological conditions from the study area. The sensitivity analysis of the model indicates that nearshore waves are an important driver of erosion, and the inclusion of nearshore hydrodynamics and sediment transport are essential for accurately modelling the erosion mechanism. Full article
(This article belongs to the Special Issue Interdisciplinary Approaches to Arctic Hazards and Risks)
Show Figures

Figure 1

18 pages, 2597 KiB  
Article
Arctic Nearshore Sediment Dynamics—An Example from Herschel Island—Qikiqtaruk, Canada
by Boris Radosavljevic, Hugues Lantuit, Christian Knoblauch, Nicole Couture, Ulrike Herzschuh and Michael Fritz
J. Mar. Sci. Eng. 2022, 10(11), 1589; https://doi.org/10.3390/jmse10111589 - 27 Oct 2022
Cited by 2 | Viewed by 3030
Abstract
Increasing arctic coastal erosion rates imply a greater release of sediments and organic matter into the coastal zone. With 213 sediment samples taken around Herschel Island—Qikiqtaruk, Canadian Beaufort Sea, we aimed to gain new insights on sediment dynamics and geochemical properties of a [...] Read more.
Increasing arctic coastal erosion rates imply a greater release of sediments and organic matter into the coastal zone. With 213 sediment samples taken around Herschel Island—Qikiqtaruk, Canadian Beaufort Sea, we aimed to gain new insights on sediment dynamics and geochemical properties of a shallow arctic nearshore zone. Spatial characteristics of nearshore sediment texture (moderately to poorly sorted silt) are dictated by hydrodynamic processes, but ice-related processes also play a role. We determined organic matter (OM) distribution and inferred the origin and quality of organic carbon by C/N ratios and stable carbon isotopes δ13C. The carbon content was higher offshore and in sheltered areas (mean: 1.0 wt.%., S.D.: 0.9) and the C/N ratios also showed a similar spatial pattern (mean: 11.1, S.D.: 3.1), while the δ13C (mean: −26.4‰ VPDB, S.D.: 0.4) distribution was more complex. We compared the geochemical parameters of our study with terrestrial and marine samples from other studies using a bootstrap approach. Sediments of the current study contained 6.5 times and 1.8 times less total organic carbon than undisturbed and disturbed terrestrial sediments, respectively. Therefore, degradation of OM and separation of carbon pools take place on land and continue in the nearshore zone, where OM is leached, mineralized, or transported beyond the study area. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

Back to TopTop