Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = Apelin (APLN)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 6943 KiB  
Article
RNA-Seq-Based Transcriptome Analysis of Chinese Cordyceps Aqueous Extracts Protective Effect against Adriamycin-Induced mpc5 Cell Injury
by Hailin Long, Mengzhen Liu, Zhongchen Rao, Shanyue Guan, Xiaotian Chen, Xiaoting Huang, Li Cao and Richou Han
Int. J. Mol. Sci. 2024, 25(19), 10352; https://doi.org/10.3390/ijms251910352 - 26 Sep 2024
Viewed by 1652
Abstract
Pharmacogenomic analysis based on drug transcriptome characteristics is widely used to identify mechanisms of action. The purpose of this study was to elucidate the molecular mechanism of protective effect against adriamycin (ADM)-induced mpc5 cell injury of Chinese cordyceps aqueous extracts (WCCs) by a [...] Read more.
Pharmacogenomic analysis based on drug transcriptome characteristics is widely used to identify mechanisms of action. The purpose of this study was to elucidate the molecular mechanism of protective effect against adriamycin (ADM)-induced mpc5 cell injury of Chinese cordyceps aqueous extracts (WCCs) by a systematic transcriptomic analysis. The phytochemicals of WCCs were analyzed via the “phenol–sulfuric acid method”, high-performance liquid chromatography (HPLC), and HPLC–mass spectrometry (MS). We analyzed the drug-reaction transcriptome profiles of mpc5 cell after treating them with WCCs. RNA-seq analysis revealed that WCCs alleviated ADM-induced mpc5 cell injury via restoring the expression of certain genes to normal level mainly in the one-carbon pool by the folate pathway, followed by the relaxin, apelin, PI3K-Akt, and nucleotide-binding, oligomerization domain (NOD)-like receptor signaling pathway, enhancing DNA synthesis and repair, cell proliferation, fibrosis reduction, and immune regulation. Otherwise, WCCs also modulated the proliferation and survival of the mpc5 cell by regulating metabolic pathways, and partially restores the expression of genes related to human disease pathways. These findings provide an innovative understanding of the molecular mechanism of the protective effect of WCCs on ADM-induced mpc5 cell injury at the molecular transcription level, and Mthfd2, Dhfr, Atf4, Creb5, Apln, and Serpine1, etc., may be potential novel targets for treating nephrotic syndrome. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

26 pages, 7621 KiB  
Article
Inflammatory Intracellular Signaling in Neurons Is Influenced by Glial Soluble Factors in iPSC-Based Cell Model of PARK2-Associated Parkinson’s Disease
by Tatiana Gerasimova, Daniil Poberezhniy, Valentina Nenasheva, Ekaterina Stepanenko, Elena Arsenyeva, Lyudmila Novosadova, Igor Grivennikov, Sergey Illarioshkin, Maria Lagarkova, Vyacheslav Tarantul and Ekaterina Novosadova
Int. J. Mol. Sci. 2024, 25(17), 9621; https://doi.org/10.3390/ijms25179621 - 5 Sep 2024
Cited by 1 | Viewed by 1618
Abstract
Neuroinflammation is considered to be one of the driving factors in Parkinson’s disease (PD). This study was conducted using neuronal and glial cell cultures differentiated from induced pluripotent stem cells (iPSC) of healthy donors (HD) and PD patients with different PARK2 mutations (PD). [...] Read more.
Neuroinflammation is considered to be one of the driving factors in Parkinson’s disease (PD). This study was conducted using neuronal and glial cell cultures differentiated from induced pluripotent stem cells (iPSC) of healthy donors (HD) and PD patients with different PARK2 mutations (PD). Based on the results of RNA sequencing, qPCR and ELISA, we revealed transcriptional and post-transcriptional changes in HD and PD neurons cultivated in HD and PD glial-conditioned medium. We demonstrated that if one or both of the components of the system, neurons or glia, is Parkin-deficient, the interaction resulted in the down-regulation of a number of key genes related to inflammatory intracellular pathways and negative regulation of apoptosis in neurons, which might be neuroprotective. In PD neurons, the stress-induced up-regulation of APLNR was significantly stronger compared to HD neurons and was diminished by glial soluble factors, both HD and PD. PD neurons in PD glial conditioned medium increased APLN expression and also up-regulated apelin synthesis and release into intracellular fluid, which represented another compensatory action. Overall, the reported results indicate that neuronal self-defense mechanisms contribute to cell survival, which might be characteristic of PD patients with Parkin-deficiency. Full article
Show Figures

Figure 1

21 pages, 320 KiB  
Article
Blood Pressure Correlates with Serum Leptin and Body Mass Index in Overweight Male Saudi Students
by Shalan Alaamri, Abdulhalim S. Serafi, Zahir Hussain, Munira M. Alrooqi, Mohammed A. Bafail and Sumera Sohail
J. Pers. Med. 2023, 13(5), 828; https://doi.org/10.3390/jpm13050828 - 13 May 2023
Cited by 4 | Viewed by 1734
Abstract
The precise association of serum leptin (Lep) with the body mass index (BMI) and blood pressure (BP) is not well known for understanding their involvement in health and disease. Hence, the present study was conducted to investigate the association of BP, BMI and [...] Read more.
The precise association of serum leptin (Lep) with the body mass index (BMI) and blood pressure (BP) is not well known for understanding their involvement in health and disease. Hence, the present study was conducted to investigate the association of BP, BMI and serum Lep levels in young normal-weight (NW) and overweight (OW) male Saudi students. The NW (n: 198) and OW (n: 192) male subjects in the age range of 18–20 years were consulted. The BP was measured with a mercury sphygmomanometer. Leptin Human ELISA Kits were employed for the determination of the serum Lep levels. The mean ± SD values of BMI (kg/m2), Lep (ng/mL), systolic BP (SBP; mmHg), and diastolic BP (DBP; mmHg) all showed significant differences for young OW vs. NW subjects as: 27.52 ± 1.42 vs. 21.49 ± 2.03; 10.70 ± 4.67 vs. 4.68 ± 1.91; 121.37 ± 2.59 vs. 118.51 ± 1.54 and 81.44 ± 1.97 vs. 78.79 ± 1.44, respectively. All associations (among BMI, Lep, SBP and DBP) showed a positive linear and significant correlation, except the nonsignificant correlation of BMI and SBP for the NW group. Other variables showing significant variation for NW vs. OW subjects were: interleukin-6, high sensitivity C-reactive protein, apelin (APLN) and resistin. Serum APLN correlated significantly with Lep, BMI, SBP and DBP in lower and higher levels of BMI, with considerable progressive patterns in both the NW and OW groups and subgroups. The present study in young Saudi male students presents significant variations for BP and serum leptin levels, and a significant positive linear association among serum leptin, BMI and BP. Full article
12 pages, 2355 KiB  
Article
The Role of Superoxide Dismutase 1 in Amyotrophic Lateral Sclerosis: Identification of Signaling Pathways, Regulators, Molecular Interaction Networks, and Biological Functions through Bioinformatics
by Sharad Kumar Suthar and Sang-Yoon Lee
Brain Sci. 2023, 13(1), 151; https://doi.org/10.3390/brainsci13010151 - 15 Jan 2023
Cited by 10 | Viewed by 4145
Abstract
Mutations in superoxide dismutase 1 (SOD1) result in misfolding and aggregation of the protein, causing neurodegenerative amyotrophic lateral sclerosis (ALS). In recent years, several new SOD1 variants that trigger ALS have been identified, making it increasingly crucial to understand the SOD1 toxicity pathway [...] Read more.
Mutations in superoxide dismutase 1 (SOD1) result in misfolding and aggregation of the protein, causing neurodegenerative amyotrophic lateral sclerosis (ALS). In recent years, several new SOD1 variants that trigger ALS have been identified, making it increasingly crucial to understand the SOD1 toxicity pathway in ALS. Here we used an integrated bioinformatics approach, including the Ingenuity Pathway Analysis (IPA) tool to analyze signaling pathways, regulators, functions, and network molecules of SOD1 with an emphasis on ALS. IPA toxicity analysis of SOD1 identified superoxide radicals’ degradation, apelin adipocyte, ALS, NRF2-mediated oxidative stress response, and sirtuin signaling as the key signaling pathways, while the toxicity of SOD1 is exerted via mitochondrial swelling and oxidative stress. IPA listed CNR1, APLN, BTG2, MAPK, DRAP1, NFE2L2, SNCA, and CG as the upstream regulators of SOD1. IPA further revealed that mutation in SOD1 results in hereditary disorders, including ALS. The exploration of the relationship between SOD1 and ALS using IPA unveiled SOD1-ALS pathway molecules. The gene ontology (GO) analysis of SOD1-ALS pathway molecules with ShinyGO reaffirmed that SOD1 toxicity results in ALS and neurodegeneration. The GO analysis further identified enriched biological processes, molecular functions, and cellular components for SOD1-ALS pathway molecules. The construction of a protein–protein interaction network of SOD1-ALS pathway molecules using STRING and further analysis of that network with Cytoscape identified ACTB followed by TP53, IL6, CASP3, SOD1, IL1B, APP, APOE, and VEGFA as the major network hubs. Taken together, our study provides insight into the molecular underpinning of SOD1’s toxicity in ALS. Full article
(This article belongs to the Special Issue Neurobiology Research on Neurodegenerative Disorders)
Show Figures

Figure 1

14 pages, 2130 KiB  
Article
MicroRNA-631 Resensitizes Doxorubicin-Resistant Chondrosarcoma Cells by Targeting Apelin
by Jui-Chieh Chen, Hsun-Chang Shih, Chih-Yang Lin, Jeng-Hung Guo, Cheng Huang, Hsiu-Chen Huang, Zhi-Yong Chong and Chih-Hsin Tang
Int. J. Mol. Sci. 2023, 24(1), 839; https://doi.org/10.3390/ijms24010839 - 3 Jan 2023
Cited by 12 | Viewed by 2590
Abstract
Chondrosarcoma is the second most common type of bone cancer. Surgical resection is the best choice for clinical treatment. High-grade chondrosarcoma is destructive and is more possible to metastasis, which is difficult to remove using surgery. Doxorubicin (Dox) is the most commonly used [...] Read more.
Chondrosarcoma is the second most common type of bone cancer. Surgical resection is the best choice for clinical treatment. High-grade chondrosarcoma is destructive and is more possible to metastasis, which is difficult to remove using surgery. Doxorubicin (Dox) is the most commonly used chemotherapy drug in the clinical setting; however, drug resistance is a major obstacle to effective treatment. In the present study, we compared Dox-resistant SW1353 cells to their parental cells using RNA sequencing (RNA-Seq). We found that the apelin (APLN) pathway was highly activated in resistant cells. In addition, tissue array analysis also showed that APLN was higher in high-grade tissues compared to low-grade tissues. APLN is a member of the adipokine family, which is a novel secreted peptide with multifunctional and biological activities. Previously, studies have shown that inhibition of the APLN axis may have a therapeutic benefit in cancers. However, the role of APLN in chondrosarcoma is completely unclear, and no related studies have been reported. During in vitro experiments, APLN was also observed to be highly expressed and secreted in Dox-resistant cells. Once APLN was knocked down, it could effectively improve its sensitivity to Dox. We also explored possible upstream regulatory microRNAs (miRNAs) of APLN through bioinformatics tools and the results disclosed that miR-631 was the most likely regulator of APLN. Furthermore, the expression of miR-631 was lower in the resistant cells, but overexpression of miR-631 in the Dox-resistant cell lines significantly increased the Dox sensitivity. These results were also observed in another chondrosarcoma cell line, JJ012 cells. Taken together, these findings will provide rationale for the development of drug resistance biomarkers and therapeutic strategies for APLN pathway inhibitors to improve the survival of patients with chondrosarcoma. Full article
(This article belongs to the Special Issue Molecular Biology in Bone Tumors)
Show Figures

Figure 1

22 pages, 5260 KiB  
Article
(-)-Epicatechin Is a Biased Ligand of Apelin Receptor
by Andrés Portilla-Martínez, Miguel Ángel Ortiz-Flores, Eduardo Meaney, Francisco Villarreal, Nayelli Nájera and Guillermo Ceballos
Int. J. Mol. Sci. 2022, 23(16), 8962; https://doi.org/10.3390/ijms23168962 - 11 Aug 2022
Cited by 9 | Viewed by 2735
Abstract
(-)-Epicatechin (EC) is part of a large family of biomolecules called flavonoids and is widely distributed in the plant kingdom. Several studies have shown the beneficial effects of EC consumption. Many of these reported effects are exerted by activating the signaling pathways associated [...] Read more.
(-)-Epicatechin (EC) is part of a large family of biomolecules called flavonoids and is widely distributed in the plant kingdom. Several studies have shown the beneficial effects of EC consumption. Many of these reported effects are exerted by activating the signaling pathways associated with the activation of two specific receptors: the G protein-coupled estrogen receptor (GPER), a transmembrane receptor, and the pregnane X receptor (PXR), which is a nuclear receptor. However, the effects of EC are so diverse that these two receptors cannot describe the complete phenomenon. The apelin receptor or APLNR is classified within the G protein-coupled receptor (GPCR) family, and is capable of activating the G protein canonical pathways and the β-arrestin transducer, which participates in the phenomenon of receptor desensitization and internalization. β-arrestin gained interest in selective pharmacology and mediators of the so-called “biased agonism”. With molecular dynamics (MD) and in vitro assays, we demonstrate how EC can recruit the β-arrestin in the active conformation of the APLN receptor acting as a biased agonist. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

10 pages, 1724 KiB  
Article
The Apelinergic System Immuno-Detection in the Abomasum and Duodenum of Sheep Grazing on Semi-Natural Pasture
by Elisa Palmioli, Cecilia Dall’Aglio, Michele Bellesi, Federico Maria Tardella, Sara Moscatelli, Paola Scocco and Francesca Mercati
Animals 2021, 11(11), 3173; https://doi.org/10.3390/ani11113173 - 6 Nov 2021
Cited by 10 | Viewed by 2648
Abstract
Apelin (APLN) is an adipokine mainly produced by adipose tissue and related to an individual’s nutritional status as well as digestive apparatus functions. In this work, APLN and its receptor (APLNR) were investigated, by immunohistochemistry, in the abomasum and duodenum of 15 Comisana [...] Read more.
Apelin (APLN) is an adipokine mainly produced by adipose tissue and related to an individual’s nutritional status as well as digestive apparatus functions. In this work, APLN and its receptor (APLNR) were investigated, by immunohistochemistry, in the abomasum and duodenum of 15 Comisana × Appenninica adult sheep reared in a semi-natural pasture. Organ samples were collected after maximum pasture flowering (M × F group) and after maximum pasture dryness (M × D group); the experimental group (E × p group) received a feed supplementation of 600 grams/day/head of barley and corn in addition to M × D group feeding. APLN and APLNR were identified in the lining epithelium and the fundic gland chief cells of the abomasum. APLNR was observed in the lining epithelium, in the crypts and the serotonin secreting cells of the duodenum. Similar reactivity was observed between the M × F and E × p groups, while the M × D group showed a lower intensity of immunostaining for both APLN and APLNR in all positive structures but the duodenal serotonin neuroendocrine cells. Hence, our findings show that the E × p group presents a picture quite overlapped with M × F and suggest that food supplementation has a maintaining effect on the apelinergic system expression in the investigated digestive tracts of the sheep. Full article
Show Figures

Figure 1

15 pages, 1185 KiB  
Review
APLN/APLNR Signaling Controls Key Pathological Parameters of Glioblastoma
by Roland E. Kälin and Rainer Glass
Cancers 2021, 13(15), 3899; https://doi.org/10.3390/cancers13153899 - 2 Aug 2021
Cited by 9 | Viewed by 4301
Abstract
Glioblastoma (GBM) is the most common and aggressive primary brain tumor in adults. GBM-expansion depends on a dense vascular network and, coherently, GBMs are highly angiogenic. However, new intratumoral blood vessels are often aberrant with consequences for blood-flow and vascular barrier function. Hence, [...] Read more.
Glioblastoma (GBM) is the most common and aggressive primary brain tumor in adults. GBM-expansion depends on a dense vascular network and, coherently, GBMs are highly angiogenic. However, new intratumoral blood vessels are often aberrant with consequences for blood-flow and vascular barrier function. Hence, the delivery of chemotherapeutics into GBM can be compromised. Furthermore, leaky vessels support edema-formation, which can result in severe neurological deficits. The secreted signaling peptide Apelin (APLN) plays an important role in the formation of GBM blood vessels. Both APLN and the Apelin receptor (APLNR) are upregulated in GBM cells and control tumor cell invasiveness. Here we summarize the current evidence on the role of APLN/APLNR signaling during brain tumor pathology. We show that targeting APLN/APLNR can induce anti-angiogenic effects in GBM and simultaneously blunt GBM cell infiltration. In addition, we discuss how manipulation of APLN/APLNR signaling in GBM leads to the normalization of tumor vessels and thereby supports chemotherapy, reduces edema, and improves anti-tumorigenic immune reactions. Hence, therapeutic targeting of APLN/APLNR signaling offers an interesting option to address different pathological hallmarks of GBM. Full article
(This article belongs to the Special Issue Targeted Therapies for the Treatment of Glioblastoma)
Show Figures

Figure 1

13 pages, 1751 KiB  
Article
Coregulation Analysis of Mechanistic Biomarkers in Autosomal Dominant Polycystic Kidney Disease
by Johannes Leierer, Paul Perco, Benedikt Hofer, Susanne Eder, Alexander Dzien, Julia Kerschbaum, Michael Rudnicki and Gert Mayer
Int. J. Mol. Sci. 2021, 22(13), 6885; https://doi.org/10.3390/ijms22136885 - 26 Jun 2021
Cited by 13 | Viewed by 3145
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary kidney disorder leading to deterioration of kidney function and end stage kidney disease (ESKD). A number of molecular processes are dysregulated in ADPKD but the exact mechanism of disease progression is not [...] Read more.
Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary kidney disorder leading to deterioration of kidney function and end stage kidney disease (ESKD). A number of molecular processes are dysregulated in ADPKD but the exact mechanism of disease progression is not fully understood. We measured protein biomarkers being linked to ADPKD-associated molecular processes via ELISA in urine and serum in a cohort of ADPKD patients as well as age, gender and eGFR matched CKD patients and healthy controls. ANOVA and t-tests were used to determine differences between cohorts. Spearman correlation coefficient analysis was performed to assess coregulation patterns of individual biomarkers and renal function. Urinary epidermal growth factor (EGF) and serum apelin (APLN) levels were significantly downregulated in ADPKD patients. Serum vascular endothelial growth factor alpha (VEGFA) and urinary angiotensinogen (AGT) were significantly upregulated in ADPKD patients as compared with healthy controls. Arginine vasopressin (AVP) was significantly upregulated in ADPKD patients as compared with CKD patients. Serum VEGFA and VIM concentrations were positively correlated and urinary EGF levels were negatively correlated with urinary AGT levels. Urinary EGF and AGT levels were furthermore significantly associated with estimated glomerular filtration rate (eGFR) in ADPKD patients. In summary, altered protein concentrations in body fluids of ADPKD patients were found for the mechanistic markers EGF, APLN, VEGFA, AGT, AVP, and VIM. In particular, the connection between EGF and AGT during progression of ADPKD warrants further investigation. Full article
(This article belongs to the Special Issue Molecular Pathology, Diagnostics, and Therapeutics of Nephropathy)
Show Figures

Figure 1

14 pages, 1699 KiB  
Article
Uremic Apelin and Leucocytic Angiotensin-Converting Enzyme 2 in CKD Patients
by Bogusz Trojanowicz, Christof Ulrich and Matthias Girndt
Toxins 2020, 12(12), 742; https://doi.org/10.3390/toxins12120742 - 26 Nov 2020
Cited by 3 | Viewed by 2351
Abstract
Apelin peptides (APLN) serve as second substrates for angiotensin-converting enzyme 2 (ACE2) and, in contrast to angiotensin II (AngII), exert blood-pressure lowering and vasodilatation effects through binding to G-coupled APLN receptor (APLNR). ACE2-mediated cleavage of the APLN may reduce its vasodilatory effects, but [...] Read more.
Apelin peptides (APLN) serve as second substrates for angiotensin-converting enzyme 2 (ACE2) and, in contrast to angiotensin II (AngII), exert blood-pressure lowering and vasodilatation effects through binding to G-coupled APLN receptor (APLNR). ACE2-mediated cleavage of the APLN may reduce its vasodilatory effects, but decreased ACE2 may potentiate the hypotensive properties of APLN. The role of APLN in uremia is unclear. We investigated the correlations between serum-APLN, leucocytic APLNR, and ACE2 in 32 healthy controls (NP), 66 HD, and 24 CKD3–5 patients, and the impact of APLN peptides on monocytic behavior and ACE2 expression under uremic conditions in vitro. We observed that serum APLN and leucocytic APLNR or SLCO2B1 were significantly elevated in uremic patients and correlated with decreased ACE2 on uremic leucocytes. APLN-treated THP-1 monocytes revealed significantly increased APLNR and ACE2, and reduced TNFa, IL-6, and MCSF. Uremic toxins induced a dramatic increase of miR-421 followed by significant reduction of ACE2 transcripts, partially counteracted with APLN-13 and -36. APLN-36 triggered the most potent transmigration and reduction of endothelial adhesion. These results suggest that although APLN peptides may partly protect against the decay of monocytic ACE2 transcripts, uremic milieu is the most dominant modulator of local ACE2, and likely to contribute to the progression of atherosclerosis. Full article
(This article belongs to the Special Issue Uremic Toxin-Mediated Mechanisms in Cardiovascular and Renal Disease)
Show Figures

Graphical abstract

19 pages, 2972 KiB  
Article
Apelin Controls Angiogenesis-Dependent Glioblastoma Growth
by Anne Frisch, Stefanie Kälin, Raymond Monk, Josefine Radke, Frank L. Heppner and Roland E. Kälin
Int. J. Mol. Sci. 2020, 21(11), 4179; https://doi.org/10.3390/ijms21114179 - 11 Jun 2020
Cited by 34 | Viewed by 4880
Abstract
Glioblastoma (GBM) present with an abundant and aberrant tumor neo-vasculature. While rapid growth of solid tumors depends on the initiation of tumor angiogenesis, GBM also progress by infiltrative growth and vascular co-option. The angiogenic factor apelin (APLN) and its receptor ( [...] Read more.
Glioblastoma (GBM) present with an abundant and aberrant tumor neo-vasculature. While rapid growth of solid tumors depends on the initiation of tumor angiogenesis, GBM also progress by infiltrative growth and vascular co-option. The angiogenic factor apelin (APLN) and its receptor (APLNR) are upregulated in GBM patient samples as compared to normal brain tissue. Here, we studied the role of apelin/APLNR signaling in GBM angiogenesis and growth. By functional analysis of apelin in orthotopic GBM mouse models, we found that apelin/APLNR signaling is required for in vivo tumor angiogenesis. Knockdown of tumor cell-derived APLN massively reduced the tumor vasculature. Additional loss of the apelin signal in endothelial tip cells using the APLN-knockout (KO) mouse led to a further reduction of GBM angiogenesis. Direct infusion of the bioactive peptide apelin-13 rescued the vascular loss-of-function phenotype specifically. In addition, APLN depletion massively reduced angiogenesis-dependent tumor growth. Consequently, survival of GBM-bearing mice was significantly increased when APLN expression was missing in the brain tumor microenvironment. Thus, we suggest that targeting vascular apelin may serve as an alternative strategy for anti-angiogenesis in GBM. Full article
(This article belongs to the Special Issue Advances of Molecular Biology and Translational Aspects in CNS Tumors)
Show Figures

Figure 1

16 pages, 5807 KiB  
Article
Apelin Affects the Progression of Osteoarthritis by Regulating VEGF-Dependent Angiogenesis and miR-150-5p Expression in Human Synovial Fibroblasts
by Yu-Han Wang, Shu-Jui Kuo, Shan-Chi Liu, Shih-Wei Wang, Chun-Hao Tsai, Yi-Chin Fong and Chih-Hsin Tang
Cells 2020, 9(3), 594; https://doi.org/10.3390/cells9030594 - 2 Mar 2020
Cited by 40 | Viewed by 4624
Abstract
Synovium-induced angiogenesis is central to osteoarthritis (OA) pathogenesis and thus a promising therapeutic target. The adipokine apelin (APLN) is involved in both OA pathogenesis and angiogenesis. We examined the role of APLN in synovium-induced angiogenesis by investigating the crosstalk between APLN and vascular [...] Read more.
Synovium-induced angiogenesis is central to osteoarthritis (OA) pathogenesis and thus a promising therapeutic target. The adipokine apelin (APLN) is involved in both OA pathogenesis and angiogenesis. We examined the role of APLN in synovium-induced angiogenesis by investigating the crosstalk between APLN and vascular endothelial growth factor (VEGF) expression in human OA synovial fibroblasts (OASFs). We found higher levels of APLN and VEGF expression in OA samples compared with normal samples. APLN-induced stimulation of VEGF expression and VEGF-dependent angiogenesis in OASFs was mitigated by FAK/Src/Akt signaling. APLN also inhibited levels of microRNA-150-5p (miR-150-5p), which represses VEGF production and angiogenesis. Analyses of an OA animal model showed that shAPLN transfection of OASFs rescued pathologic changes in OA cartilage and histology. Here, we found APLN enhances VEGF expression and angiogenesis via FAK/Src/Akt cascade and via downstream suppression of miR-150-5p expression. These findings help to clarify the pathogenesis of adipokine-induced angiogenesis in OA synovium. Full article
Show Figures

Figure 1

Back to TopTop