Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = Anoplophora glabripennis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 7476 KB  
Article
Comparative Analysis of Insect Resistance in Transgenic Populus × euramericana cv. Neva Expressing Dual Bt Genes from Different Sources
by Jialu Li, Jiali Zhang, Hongrui Li, Chunyu Wang, Xue Yan, Yachao Ren, Jinmao Wang and Minsheng Yang
Plants 2026, 15(1), 51; https://doi.org/10.3390/plants15010051 - 23 Dec 2025
Viewed by 283
Abstract
This study systematically evaluated insect resistance in transgenic poplar lines carrying three distinct Bacillus thuringiensis (Bt) gene vector architectures: a single-gene pb vector (Cry1Ac), a reverse-oriented double-gene n19 vector (Cry1Ac-Cry3A), and a forward-oriented double-gene n5 [...] Read more.
This study systematically evaluated insect resistance in transgenic poplar lines carrying three distinct Bacillus thuringiensis (Bt) gene vector architectures: a single-gene pb vector (Cry1Ac), a reverse-oriented double-gene n19 vector (Cry1Ac-Cry3A), and a forward-oriented double-gene n5 vector (Cry3A-Cry1Ac). The transgenic lines were accordingly designated as pb8/pb9, n19a/n19b, and DB7/DB16, respectively. Molecular analyses confirmed stable Bt gene integration, with the expression of Cry3A being consistently higher than that of Cry1Ac expression. Bioassays showed that dual-gene lines conferred broader insect resistance to pests than that of single-gene lines against both lepidopteran (Hyphantria cunea) and coleopteran (Plagiodera versicolora, Anoplophora glabripennis) pests. In contrast, the single-gene line pb9 exhibited specialized, high efficacy against H. cunea, achieving 100% mortality. Transcriptomic analysis of P. versicolora larvae fed the double-gene high-resistance n19a line and low-resistance DB16 line revealed multi-level molecular responses to Bt stress, including up-regulation of toxin-activating proteases, altered receptor expression, and suppression of growth-related genes. These changes were associated with significant developmental delay (8.33–20.83% reduction in the molting index). Our findings characterize the insect resistance and molecular profiles of the six transgenic poplar lines, as follows: multi-gene lines (n19a/n19b and DB7/DB16) confer broad-spectrum pest resistance, whereas single-gene lines (pb8/pb9) exhibit targeted efficacy. These results support the utility of these lines for pest-specific poplar breeding programs. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Graphical abstract

13 pages, 256 KB  
Article
Attempt to Quantify Molecules of Host Plant Volatiles Evoking an Electroantennographic Response in Anoplophora glabripennis Antennae
by Rui Zhang, Jian-Ming Shi, Yi-Bei Jiang, Hui-Quan Sun, Dan-Dan Cao, Hui-Ling Hao and Jian-Rong Wei
Insects 2025, 16(8), 781; https://doi.org/10.3390/insects16080781 - 30 Jul 2025
Viewed by 866
Abstract
Anoplophora glabripennis, is one of the most devastating wood borers of many broad leaf trees. Our previous results indicated that antennae of A. glabripennis showed electroantennogram (EAG) responses to several host plant volatiles. However, the quantities of active compounds necessary to trigger [...] Read more.
Anoplophora glabripennis, is one of the most devastating wood borers of many broad leaf trees. Our previous results indicated that antennae of A. glabripennis showed electroantennogram (EAG) responses to several host plant volatiles. However, the quantities of active compounds necessary to trigger an EAG response remains unclear. To relate EAG responses with quantities of active molecules, we quantified the level of molecular triggering in the EAG response of A. glabripennis by a series of procedures. First, we used the EAG apparatus to measure EAG responses of A. glabripennis to five concentrations of eight chemicals and obtained dose–response curves. Second, volatiles released after blowing air over filter paper loaded with volatiles for different numbers of times (purging) were collected by solid-phase microextraction (SPME) and quantified by gas chromatography (GC), so we obtained the quantity of chemical released from each purge; the minimum number of molecules in each purge in the EAG was calculated by the molar mass for different compounds. For instance, the number of molecules of (Z)-3-hexenol reaching the female antennal segment in EAG was 8.68 × 108 at 0.01 ng/μL concentration, and 1.39 × 105 at 0.01 mV potential value. Finally, by comparing sensilla numbers on tested antennal segments with the entire antennae, the minimum number of molecules, or molecular flow, of tested compounds required to elicit an electrophysiological response from two antennae of ALB could be estimated either at a minimum concentration (2.49 × 108 at 0.01 ng/μL concentration of (Z)-3-Hexenol, for female) or at a minimum potentiometric response value (3.99 × 104 at 0.01 mV potential value). Full article
(This article belongs to the Section Insect Pest and Vector Management)
15 pages, 3952 KB  
Article
Prediction of the Potentially Suitable Area for Anoplophora glabripennis (Coleoptera: Cerambycidae) in China Based on MaxEnt
by Kaiwen Tan, Mingwang Zhou, Hongjiang Hu, Ning Dong and Cheng Tang
Forests 2025, 16(8), 1239; https://doi.org/10.3390/f16081239 - 28 Jul 2025
Viewed by 864
Abstract
Anoplophora glabripennis (Asian longhorned beetle, ALB) (Motschulsky, 1854) is a local forest pest in China. Although the suitable area for this pest has some research history, it does not accurately predict the future distribution area of ALB. Accurate prediction of its suitable area [...] Read more.
Anoplophora glabripennis (Asian longhorned beetle, ALB) (Motschulsky, 1854) is a local forest pest in China. Although the suitable area for this pest has some research history, it does not accurately predict the future distribution area of ALB. Accurate prediction of its suitable area can help control the harm caused by ALB more effectively. In this study, we applied the maximum entropy model to predict the suitable area for ALB. Moreover, the prediction results revealed that ALB is distributed mainly in northern, eastern, central, southern, southwestern, and northwestern China, and its high-fit areas are located mainly in northern, northwestern, and southwestern China. The average minimum temperature in September, precipitation seasonality (coefficient of variation), the average maximum temperature in April, and average precipitation in October had the greatest influence on ALB. The greatest distribution probabilities were observed at the September average minimum temperature of 16 °C, the precipitation seasonality (coefficient of variation) of 130%, the April average maximum temperature of 14 °C, and the October average precipitation of 30 mm. Furthermore, with climate change, the non-suitability area for the ALB will show a decreasing trend in the future. The intermediate suitability area will increase, while the low and high suitability areas will first increase and then decrease. Taken together, the potentially suitable areas for ALB in China include the Beijing–Tianjin–Hebei region and the Shanghai region in North China and East China, providing a deeper understanding of ALB control. Full article
(This article belongs to the Section Forest Health)
Show Figures

Figure 1

16 pages, 7250 KB  
Article
Interspecific Mating Is Trivial and Asymmetrical Between Two Destructive Anoplophora Beetles
by Tian Xu, Wenbo Wang, Xiaoyuan Chen, Jing Ma, Ruixu Chen, Xue Sun, Yang Yang, Guohao Li, Yadi Deng and Dejun Hao
Insects 2025, 16(4), 352; https://doi.org/10.3390/insects16040352 - 27 Mar 2025
Viewed by 1292
Abstract
The Asian longhorn beetle (ALB), Anoplophora glabripennis, and citrus longhorn beetle (CLB), Anoplophora chinensis, are two destructive invasive wood-boring pests, with high similarities in morphology, geographical distribution, host range, life cycle, adult behaviors and male-produced pheromone, implying a potential existence of [...] Read more.
The Asian longhorn beetle (ALB), Anoplophora glabripennis, and citrus longhorn beetle (CLB), Anoplophora chinensis, are two destructive invasive wood-boring pests, with high similarities in morphology, geographical distribution, host range, life cycle, adult behaviors and male-produced pheromone, implying a potential existence of interspecific interactions. Matings have been found to occur across females and males of the two species when manually paired in confined spaces. However, interspecific mating and its regulating factors are unclear between sympatric populations on hosts. Herein, by observing mountings and tracking the beetles that freely coexisted on host branches in cages, we found that the majority of mountings appeared within species; however, interspecific mountings occasionally occurred between male CLBs and female ALBs. The CLB was more active than the ALB at night. It seems that males actively searched for female ALBs, while the inverse was the case with CLBs. The main release periods of shared pheromone components overlapped between the two species, while compound ratios had significant differences. Our results unveil a trivial and asymmetrical interspecific mating between ALBs and CLBs, implying a risk of co-outbreaks of the two species in either native or invaded areas. Full article
Show Figures

Graphical abstract

16 pages, 15268 KB  
Article
Potential Functions and Transmission Dynamics of Fungi Associated with Anoplophora glabripennis Across Different Life Stages, Between Sexes, and Between Habitats
by Qing Liu, Yuanting Jia, Yishuo Li, Shilong Geng, Yanqi Yu, Zhangyan Wang, Xinru Wang, Ningning Fu, Jianyong Zeng, Xiaoyu Su, Huiping Li and Hualing Wang
Insects 2025, 16(3), 273; https://doi.org/10.3390/insects16030273 - 5 Mar 2025
Cited by 1 | Viewed by 1357
Abstract
The fungi residing in the gut and associated habitats play a crucial role in the growth and development of Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae), a wood-boring pest. Yet, how they are acquired and maintained across generations, and their respective roles throughout the life [...] Read more.
The fungi residing in the gut and associated habitats play a crucial role in the growth and development of Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae), a wood-boring pest. Yet, how they are acquired and maintained across generations, and their respective roles throughout the life cycle, remain unknown. To this end, we used high-throughput ITS sequencing analysis to characterize the fungal composition and diversity associated with A. glabripennis across three different life stages, between sexes, and between its habitats. Overall, the fungi composition was stage specific, with adult gut communities being more diverse than those of larvae and eggs. Male fungal communities differed significantly, while frass and female communities were more similar to each other. The top 10 most abundant genera were investigated, with Fusarium consistently observed in all samples and exhibiting the highest overall abundance. Function predictions revealed the presence of potentially beneficial fungi that may support A. glabripennis invasion across all groups. Additionally, we observed complex network structures in the fungal communities associated with eggs and males, and stronger positive correlations in those of eggs and newly hatched larvae. Source tracking analysis suggested that these fungi were vertically transmitted, following a transmission pathway of ‘female gut–frass–egg–larval gut’, occurring via frass deposited in oviposition sites. Our findings provide a nuanced understanding of the intricate interactions among plants, insects, and fungi, shedding light on the acquisition, maintenance, and roles of gut-associated fungi in A. glabripennis. Full article
(This article belongs to the Section Insect Behavior and Pathology)
Show Figures

Figure 1

14 pages, 1972 KB  
Article
Methyl Jasmonate Enhances the Resistance of Populus alba var. pyramidalis Against Anoplophora glabripennis (Coleoptera: Cerambycidae)
by Pengpeng Shao, Jiayu Luo, Rui Zhang, Jianfeng Liu, Dandan Cao, Zhi Su and Jianrong Wei
Insects 2025, 16(2), 153; https://doi.org/10.3390/insects16020153 - 3 Feb 2025
Cited by 3 | Viewed by 1328
Abstract
Populus alba var. pyramidalis (PaP) is a very important and main planted tree species in northwestern China. However, it has been threatened by Asian longhorned beetle Anoplophora glabripennis (ALB) infestation. A feasible way to protect PaP is by improving its own insect resistance [...] Read more.
Populus alba var. pyramidalis (PaP) is a very important and main planted tree species in northwestern China. However, it has been threatened by Asian longhorned beetle Anoplophora glabripennis (ALB) infestation. A feasible way to protect PaP is by improving its own insect resistance ability. In order to achieve this goal, we first checked whether ALB could induce the defense system of PaP by comparing the ALB-attracted volatiles of PaP before and after ALB infestation through the collection and identification of volatiles by gas chromatography–mass spectrometry (GC-MS). We found that attractant volatiles (Z)-3-hexenol (Z3H) and (Z)-3-hexen-1-yl acetate (Z3HA) decreased by 72.99% and 74.53% after ALB infestation, respectively. Then, the contents of the plant hormones salicylic acid (SA), jasmonic acid (JA), methyl salicylate (MeSA), and methyl jasmonate (MeJA) and the defense substances hydrogen peroxide (H2O2), peroxidase (POD), and total superoxide dismutase (T-SOD) in the phloem of PaP were determined before and after ALB infestation by high-performance liquid chromatography–mass spectrometry (HPLC-MS) and a manufacturer’s kit, respectively. The results showed that the quantities of SA decreased, but JA and MeJA increased by 2.1 times and 3.02 times, respectively, and the increase in H2O2 and POD was also significant. Therefore, we hypothesized that MeJA might be closely related to the induced ALB resistance of PaP. Further exogenous spraying of MeJA on PaP showed that the feeding and oviposition of ALB adults were significantly decreased on PaP, confirming that MeJA could improve PaP’s resistance against ALB. The concentration effect showed that 10−4 mol/L of MeJA treatment induced the strongest results. Our results clearly demonstrated the response of a poplar species to a wood borer infestation and provide an alternative method to protect PaP in the future. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

16 pages, 2946 KB  
Article
Comparative Metabolic Defense Responses of Three Tree Species to the Supplemental Feeding Behavior of Anoplophora glabripennis
by Ruohan Qi, Jiahe Pei, Quan Zhou, Keyu Hao, Yi Tian, Lili Ren and Youqing Luo
Int. J. Mol. Sci. 2024, 25(23), 12716; https://doi.org/10.3390/ijms252312716 - 26 Nov 2024
Viewed by 1375
Abstract
Elaeagnus angustifolia L. can attract adult Asian longhorned beetle (ALB), Anoplophora glabripennis (Motschulsky), and kill their offspring by gum secretion in oviposition scars. This plant has the potential to be used as a dead-end trap tree for ALB management. However, there is a [...] Read more.
Elaeagnus angustifolia L. can attract adult Asian longhorned beetle (ALB), Anoplophora glabripennis (Motschulsky), and kill their offspring by gum secretion in oviposition scars. This plant has the potential to be used as a dead-end trap tree for ALB management. However, there is a limited understanding of the attraction ability and biochemical defense response of E. angustifolia to ALB. In this study, we conducted host selection experiments with ALB and then performed physiological and biochemical assays on twigs from different tree species before and after ALB feeding. We analyzed the differential metabolites using the liquid chromatograph–mass spectrometer method. The results showed that ALB’s feeding preference was E. angustifolia > P.× xiaohei var. gansuensis > P. alba var. pyramidalis. After ALB feeding, the content of soluble sugars, soluble proteins, flavonoids, and tannins decreased significantly in all species. In three comparison groups, a total of 492 differential metabolites were identified (E. angustifolia:195, P.× xiaohei var. gansuensis:255, P. alba var. pyramidalis:244). Differential metabolites were divided into overlapping and specific metabolites for analysis. The overlapping differential metabolites 7-isojasmonic acid, zerumbone, and salicin in the twigs of three tree species showed upregulation after ALB feeding. The specific metabolites silibinin, catechin, and geniposide, in E. angustifolia, significantly increased after being damaged. Differential metabolites enriched in KEGG pathways indicated that ALB feeding activated tyrosine metabolism and the biosynthesis of phenylpropanoids in three tree species, with a particularly high enrichment of differential metabolites in the flavonoid biosynthesis pathway in E. angustifolia. This study provides the metabolic defense strategies of different tree species against ALB feeding and proposes candidate metabolites that can serve as metabolic biomarkers, potentially offering valuable insights into using E. angustifolia as a control measure against ALB. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

18 pages, 2193 KB  
Article
Further Evidence That Female Anoplophora glabripennis (Coleoptera: Cerambycidae) Utilizes Photo-Degradation to Produce Volatiles That Are Attractive to Adult Males
by Damon Crook, Jacob Wickham, Lili Ren, Zhichun Xu, Tappey H. Jones, Melissa Warden and Allard Cossé
Insects 2024, 15(12), 923; https://doi.org/10.3390/insects15120923 - 26 Nov 2024
Cited by 1 | Viewed by 2096
Abstract
The Asian longhorned beetle, Anoplophora glabripennis (Coleoptera: Cerambycidae: Lamiinae), is a serious pest of over 43 species of hardwood trees in North America, China and Europe. The development of an effective lure and trap for monitoring A. glabripennis has been hindered by the [...] Read more.
The Asian longhorned beetle, Anoplophora glabripennis (Coleoptera: Cerambycidae: Lamiinae), is a serious pest of over 43 species of hardwood trees in North America, China and Europe. The development of an effective lure and trap for monitoring A. glabripennis has been hindered by the fact that mate finding involves a rather complex series of behaviors and responses to several chemical (and visual), cues. Adults (female-biased) locate a tree via host kairomones. Research has demonstrated that female contact pheromone components are precursors that undergo abiotic oxidation to yield attractive volatile components. Males also produce a pheromone to attract other adults nearby before the final step of recognition by males to the female-produced trail and contact pheromones. Our research aimed to identify new female-produced components from ozone and UV-treated A. glabripennis body washes and test them for behavioral activity using laboratory and field assays. The ozone and UV treatment of virgin female extract yielded sixteen aldehydes, nine of which were found in trace amounts. All sixteen aldehydes elicited antennal responses (GC-EAD) in both males and females, although responses were clearer and more distinct with standards of hexanal, heptanal, octanal, nonanal, decanal, undecanal and dodecanal. Olfactometer assays showed that males were highly attracted to a blend of these seven aldehydes. Females did not show any attraction to the blend in olfactometer assays. Despite low population levels during field tests in 2018 in China, traps containing the aldehyde blend detected A. glabripennis on a weekly basis over 6 weeks and caught significantly more adults (mainly males) than control ‘flight intercept panel’ traps. Field tests in China in 2019 that used the aldehyde blend along with a three-component host blend lure also caught significantly more males (nearly 5×) than blank control traps. Full article
(This article belongs to the Section Insect Behavior and Pathology)
Show Figures

Figure 1

19 pages, 8529 KB  
Article
Interactions at the Oviposition Scar: Molecular and Metabolic Insights into Elaeagnus angustifolia’s Resistance Response to Anoplophora glabripennis
by Chengcheng Li, Jiahe Pei, Lixiang Wang, Yi Tian, Lili Ren and Youqing Luo
Int. J. Mol. Sci. 2024, 25(17), 9504; https://doi.org/10.3390/ijms25179504 - 31 Aug 2024
Cited by 2 | Viewed by 1888
Abstract
The Russian olive (Elaeagnus angustifolia), which functions as a “dead-end trap tree” for the Asian long-horned beetle (Anoplophora glabripennis) in mixed plantations, can successfully attract Asian long-horned beetles for oviposition and subsequently kill the eggs by gum. This study [...] Read more.
The Russian olive (Elaeagnus angustifolia), which functions as a “dead-end trap tree” for the Asian long-horned beetle (Anoplophora glabripennis) in mixed plantations, can successfully attract Asian long-horned beetles for oviposition and subsequently kill the eggs by gum. This study aimed to investigate gum secretion differences by comparing molecular and metabolic features across three conditions—an oviposition scar, a mechanical scar, and a healthy branch—using high-performance liquid chromatography and high-throughput RNA sequencing methods. Our findings indicated that the gum mass secreted by an oviposition scar was 1.65 times greater than that secreted by a mechanical scar. Significant differences in gene expression and metabolism were observed among the three comparison groups. A Kyoto Encyclopedia of Genes and Genomes annotation and enrichment analysis showed that an oviposition scar significantly affected starch and sucrose metabolism, leading to the discovery of 52 differentially expressed genes and 7 differentially accumulated metabolites. A network interaction analysis of differentially expressed metabolites and genes showed that EaSUS1, EaYfcE1, and EaPGM1 regulate sucrose, uridine diphosphate glucose, α-D-glucose-1P, and D-glucose-6P. Although the polysaccharide content in the OSs was 2.22 times higher than that in the MSs, the sucrose content was lower. The results indicated that the Asian long-horned beetle causes Russian olive sucrose degradation and D-glucose-6P formation. Therefore, we hypothesized that damage caused by the Asian long-horned beetle could enhance tree gum secretions through hydrolyzed sucrose and stimulate the Russian olive’s specific immune response. Our study focused on the first pair of a dead-end trap tree and an invasive borer pest in forestry, potentially offering valuable insights into the ecological self-regulation of Asian long-horned beetle outbreaks. Full article
(This article belongs to the Special Issue New Insights into Plants and Insects Interactions)
Show Figures

Figure 1

13 pages, 12826 KB  
Article
Virulence and Pathological Characteristics of a New Metarhizium anisopliae Strain against Asian Long-Horn Beetle Anoplophora glabripennis Larvae
by Ji-Yang Zheng, Chun-Cheng Jian and Dun Wang
Forests 2024, 15(6), 1045; https://doi.org/10.3390/f15061045 - 17 Jun 2024
Cited by 2 | Viewed by 1862
Abstract
The Asian long-horn beetle (ALB) is a serious wood-boring insect. Continuous isolation of different fungal strains is vital for using fungi for the control of ALB. The virulence and pathological characteristics of a new Metarhizium anisopliae strain DES3 isolated from the desert afforestation [...] Read more.
The Asian long-horn beetle (ALB) is a serious wood-boring insect. Continuous isolation of different fungal strains is vital for using fungi for the control of ALB. The virulence and pathological characteristics of a new Metarhizium anisopliae strain DES3 isolated from the desert afforestation stands against the larvae of ALB were assessed in this study. The corrected mortality reached 100% at the conidial concentration of 109 and 108 conidia/mL, and 91.11 ± 4.44% at 107 conidia/mL. Similarly, the LC/LT showed high virulence as well. Meanwhile, the virulence of a commercial M. anisopliae strain against the ALB larvae was evaluated. The corrected mortality was only 33.33% at 109 conidia/mL, and less than 10% at 108 conidia/mL. The pathological characteristics after infection by the M. anisopliae strain DES3 were evident, mainly embodied in the rupture of the adipose tissue, muscle tissue, and midgut. But there was no obvious change after infection by the commercial M. anisopliae strain. In conclusion, these results establish that the M. anisopliae strain DES3 has high virulence in a dosage-dependent manner against ALB larvae, indicating the potential of fungal strain DES3 to be developed as biopesticide for biocontrol of A. glabripennis. Full article
(This article belongs to the Section Forest Health)
Show Figures

Figure 1

23 pages, 19881 KB  
Article
Identification of Damaged Canopies in Farmland Artificial Shelterbelts Based on Fusion of Unmanned Aerial Vehicle LiDAR and Multispectral Features
by Zequn Xiang, Tianlan Li, Yu Lv, Rong Wang, Ting Sun, Yuekun Gao and Hongqi Wu
Forests 2024, 15(5), 891; https://doi.org/10.3390/f15050891 - 20 May 2024
Cited by 6 | Viewed by 2177
Abstract
With the decline in the protective function for agricultural ecosystems of farmland shelterbelts due to tree withering and dying caused by pest and disease, quickly and accurately identifying the distribution of canopy damage is of great significance for forestry management departments to implement [...] Read more.
With the decline in the protective function for agricultural ecosystems of farmland shelterbelts due to tree withering and dying caused by pest and disease, quickly and accurately identifying the distribution of canopy damage is of great significance for forestry management departments to implement dynamic monitoring. This study focused on Populus bolleana and utilized an unmanned aerial vehicle (UAV) multispectral camera to acquire red–green–blue (RGB) images and multispectral images (MSIs), which were fused with a digital surface model (DSM) generated by UAV LiDAR for feature fusion to obtain DSM + RGB and DSM + MSI images, and random forest (RF), support vector machine (SVM), maximum likelihood classification (MLC), and a deep learning U-Net model were employed to build classification models for forest stand canopy recognition for the four image types. The model results indicate that the recognition performance of RF is superior to that of U-Net, and U-Net performs better overall than SVM and MLC. The classification accuracy of different feature fusion images shows a trend of DSM + MSI images (Kappa = 0.8656, OA = 91.55%) > MSI images > DSM + RGB images > RGB images. DSM + MSI images exhibit the highest producer’s accuracy for identifying healthy and withered canopies, with values of 95.91% and 91.15%, respectively, while RGB images show the lowest accuracy, with producer’s accuracy values of 79.3% and 78.91% for healthy and withered canopies, respectively. This study presents a method for identifying the distribution of Populus bolleana canopies damaged by Anoplophora glabripennis and healthy canopies using the feature fusion of multi-source remote sensing data, providing a valuable data reference for the precise monitoring and management of farmland shelterbelts. Full article
(This article belongs to the Special Issue UAV Application in Forestry)
Show Figures

Figure 1

18 pages, 2566 KB  
Article
Future Climate Change and Anthropogenic Disturbance Promote the Invasions of the World’s Worst Invasive Insect Pests
by Runyao Cao and Jianmeng Feng
Insects 2024, 15(4), 280; https://doi.org/10.3390/insects15040280 - 16 Apr 2024
Cited by 9 | Viewed by 5359
Abstract
Invasive insect pests adversely impact human welfare and global ecosystems. However, no studies have used a unified scheme to compare the range dynamics of the world’s worst invasive insect pests. We investigated the future range shifts of 15 of the world’s worst invasive [...] Read more.
Invasive insect pests adversely impact human welfare and global ecosystems. However, no studies have used a unified scheme to compare the range dynamics of the world’s worst invasive insect pests. We investigated the future range shifts of 15 of the world’s worst invasive insect pests. Although future range dynamics varied substantially among the 15 worst invasive insect pests, most exhibited large range expansions. Increases in the total habitat suitability occurred in more than ca. 85% of global terrestrial regions. The relative impacts of anthropogenic disturbance and climate variables on the range dynamics depended on the species and spatial scale. Aedes albopictus, Cinara cupressi, and Trogoderma granarium occurred four times in the top five largest potential ranges under four future climate scenarios. Anoplophora glabripennis, Aedes albopictus, and Co. formosanus were predicted to have the largest range expansions. An. glabripennis, Pl. manokwari, Co. formosanus, and So. invicta showed the largest range centroid shifts. More effective strategies will be required to prevent their range expansions. Although the strategies should be species-specific, mitigating anthropogenic disturbances and climate change will be essential to preventing future invasions. This study provides critical and novel insights for developing global strategies to combat the invasions of invasive insect pests in the future. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

15 pages, 6131 KB  
Article
Identification and Expression Analysis of the FAD Gene Family in Anoplophora glabripennis (Coleoptera: Cerambycidae) Based on Genome-Wide Data
by Xue Song, Yabei Xu, Sainan Zhang, Meng Li, Yu Xing, Jing Tao and Fengying Han
Forests 2024, 15(4), 690; https://doi.org/10.3390/f15040690 - 11 Apr 2024
Cited by 1 | Viewed by 1729
Abstract
Pheromones play an important role in mate choice in insects, and pheromone synthesis pathways are potential targets for the control of harmful insects, among which desaturation is of great significance in pheromone structural diversity. However, little is known about the desaturase genes regulating [...] Read more.
Pheromones play an important role in mate choice in insects, and pheromone synthesis pathways are potential targets for the control of harmful insects, among which desaturation is of great significance in pheromone structural diversity. However, little is known about the desaturase genes regulating pheromone synthesis in Coleoptera. In this study, taking the internationally significant pest Anoplophora glabripennis as a research object, we identified 6 AglaFAD genes, all of which were mapped to the endoplasmic reticulum and shared a highly similar distribution of conserved domains. A phylogenetic analysis showed that AglaFAD1–2 and AglaFAD3–6 exerted desaturation at different positions of the acyl chain, respectively. In regard to the expression levels of these six AglaFADs in both sexes, six tissues and three developmental stages were analyzed by qPCR. Combined with the chemical composition of the female pheromones that have been identified, two candidate genes, AglaFAD2 and AglaFAD5, which are specifically expressed in females, were screened, showing higher expression levels before mating and significantly decreasing after mating. It is speculated that they may be involved in the biosynthesis of contact pheromones in females. These results provide a basis for detailed functional studies of candidate genes in insect pheromone synthesis. Full article
(This article belongs to the Section Forest Health)
Show Figures

Figure 1

15 pages, 1483 KB  
Article
Mechanical Egg Activation and Rearing of First Instar Larvae of Sirex noctilio (Hymenoptera: Siricidae)
by Elmarie van der Merwe, Bernard Slippers and Gudrun Dittrich-Schröder
Insects 2023, 14(12), 931; https://doi.org/10.3390/insects14120931 - 7 Dec 2023
Cited by 4 | Viewed by 3360
Abstract
Egg activation is a cellular transition of an arrested mature oocyte into a developing embryo through a coordinated series of events. Previous studies in Hymenoptera have indicated that mechanical pressure can induce egg activation. In this study, we developed the first egg activation [...] Read more.
Egg activation is a cellular transition of an arrested mature oocyte into a developing embryo through a coordinated series of events. Previous studies in Hymenoptera have indicated that mechanical pressure can induce egg activation. In this study, we developed the first egg activation protocol for the haplodiploid insect pest, Sirex noctilio (Hymenoptera: Siricidae), from two climatically different regions in South Africa to demonstrate the broad applicability of the method. In addition, activated eggs were exposed to three treatments involving water, pine sawdust, and the fungal symbiont of S. noctilio, Amylostereum areolatum (Russulales: Amylostereaceae), to determine if the symbiotic fungus is a requirement for egg development in an artificial laboratory environment, as the symbiotic fungus has been hypothesised to be necessary for egg and early larval development in a natural environment. A rearing protocol was developed for the first instar larvae using a modified Anoplophora glabripennis (Coleoptera: Cerambycidae) artificial diet. A significant difference between the mean survival rates of activated eggs from the two different regions was observed. Amylostereum areolatum was shown to be unnecessary for egg survival and adversely affected egg eclosion in an artificial laboratory environment. The maximum larval survival duration on the artificial diet was 92 days. The egg activation and rearing protocol developed in this study enables opportunities for research on the physiology, ecology, symbioses, and genetics of S. noctilio, which can be exploited for new genetic pest management strategies. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

17 pages, 5493 KB  
Article
Functional Role of Intestinal Symbiotic Microorganisms in Improving the Adaptability of Anoplophora glabripennis to Resistant Host Plants
by Qi Gu, Ruofeng Jia, Shuai Guo, Han Li, Enhua Hao, Xi Yang, Pengfei Lu and Haili Qiao
Forests 2023, 14(8), 1573; https://doi.org/10.3390/f14081573 - 1 Aug 2023
Cited by 1 | Viewed by 1805
Abstract
To investigate the adaptation mechanism of Anoplophora glabripennis to traditional resistant Fraxinus, we used metabolomics, enzyme activity detection, and 16SrRNA sequencing technology to analyze the correlation among plants, insects, and symbiotic microorganisms. The results show that a total of 19 classes and [...] Read more.
To investigate the adaptation mechanism of Anoplophora glabripennis to traditional resistant Fraxinus, we used metabolomics, enzyme activity detection, and 16SrRNA sequencing technology to analyze the correlation among plants, insects, and symbiotic microorganisms. The results show that a total of 19 classes and 108 different resistant metabolites were screened from xylem of Fraxinus pennsylvanica and Fraxinus chinensis. Except iridoids, lignin, alkaloids, and derivatives; amines, cinnamic acids, and derivatives; and amino acids and derivatives, the rest of them were abundant in F. chinensis. The activity of digestive enzymes and detoxifying enzymes in the intestinal of F. pennsylvanica feeder was significantly higher than that of F. chinensis feeder. After feeding on two hosts, there were significant differences in the intestinal bacterial community of A. glabripennis. At the phylum level, the dominant phyla of intestinal bacteria after feeding on F. pennsylvanica and F. chinensis were Proteobacteria and Firmicutes, respectively. At the genus level, Raoultella (55.79%) and Lactococcus (57.52%) were the most dominant bacteria, respectively. The correlation analysis shows that β-glucosidase, exo-β-1,4-glucanase, lipase, carboxylesterase, and cytochrome P450 had a significant negative correlation with sesquiterpenoids, amino acids, and derivatives, and a significant positive correlation with lignin and amines. Raoultella, unclassified Enterobactriaceae, and Enterobacter in the gut community were negatively correlated with sesquiterpenes and amino acid derivatives and significantly positively correlated with lignin and amines. The correlations with defensive substances for Lactococcus, Enterococcus, and Gibbsiella were the exact opposite of those for these gut communities. This can provide a new idea for the prevention and control of A. glabripennis by studying the interaction among plants, insects and intestinal symbiotic microorganisms. Full article
(This article belongs to the Special Issue Applied Chemical Ecology of Forest Insects)
Show Figures

Figure 1

Back to TopTop