Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = Alisol B

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 7163 KiB  
Article
Exploring the Molecular Mechanism of Zhi Bai Di Huang Wan in the Treatment of Systemic Lupus Erythematosus Based on Network Pharmacology and Molecular Docking Techniques
by Yanping Zhuang, Xuan Zhang, Simin Luo, Fangzhi Wei, Yitian Song, Guiling Lin, Minghui Yao and Aimin Gong
Processes 2022, 10(10), 1914; https://doi.org/10.3390/pr10101914 - 21 Sep 2022
Cited by 3 | Viewed by 3019
Abstract
Objective: To investigate the molecular mechanism and simulated validation of Zhi Bai Di Huang Pill (ZBDHP) for the treatment of systemic lupus erythematosus (SLE) using network pharmacology and molecular docking techniques. Methods: The active ingredients of ZBDHP were obtained through the TCMSP database [...] Read more.
Objective: To investigate the molecular mechanism and simulated validation of Zhi Bai Di Huang Pill (ZBDHP) for the treatment of systemic lupus erythematosus (SLE) using network pharmacology and molecular docking techniques. Methods: The active ingredients of ZBDHP were obtained through the TCMSP database and the Canonical SMILES of the active ingredients were queried through Pubchem. The targets of the active ingredients were predicted in the SwissTarget database based on the SMILES. The SLE-related disease targets were obtained through the GeneCards, OMIM and DisGenets databases, and the intersection targets of ZBDHP and SLE were obtained using the Venny 2.1.0 online platform. Intersection targets build a visual protein interaction network (PPI) through the STRING database, and the core targets were identified by network topology analysis. GO analysis and KEGG pathway enrichment analysis of the intersecting targets were performed using the DAVID database. Finally, the molecular docking of the first four active ingredients and the first four core target genes were verified by Pubchem, the PDB database and CB-Dock online molecular docking technology. Results: ZBDHP screened 91 potential active ingredients and 816 potential targets. Among them, 141 genes were intersected by ZBDHP and SLE. The network topology analysis showed that the main active ingredients were Hydroxygenkwanin, Alisol B, asperglaucide, Cerevisterol, etc., and the key target genes were TNF, AKT1, EGFR, STAT3, etc. GO and KEGG enrichment analysis showed that common targets interfere with biological processes or molecular functions such as signal transduction protein phosphorylation, inflammatory response, transmembrane receptor protein tyrosine kinase activity, etc., through multiple signaling pathways, such as pathways in cancer, Kaposi sarcoma-associated herpesvirus infection, the PI3K-Akt signaling pathway, lipid and atherosclerosis, hepatitis B, etc. Molecular docking results showed that the active components of ZBDHP have good binding activity to the core targets of SLE. Conclusions: This study reveals that the ZBDHP treatment of SLE is a complex mechanistic process with multi-components, multi-targets and multi-pathways, and it may play a therapeutic role in SLE by inhibiting the production, proliferation and apoptosis of inflammatory factors. In conclusion, the present study provides a theoretical basis for further research on ZBDHP. Full article
(This article belongs to the Special Issue Network Pharmacology Modelling for Drug Discovery)
Show Figures

Figure 1

19 pages, 2716 KiB  
Review
Pharmacological Properties and Molecular Targets of Alisol Triterpenoids from Alismatis Rhizoma
by Christian Bailly
Biomedicines 2022, 10(8), 1945; https://doi.org/10.3390/biomedicines10081945 - 11 Aug 2022
Cited by 18 | Viewed by 4544
Abstract
More than 100 protostane triterpenoids have been isolated from the dried rhizomes of Alisma species, designated Alismatis rhizoma (AR), commonly used in Asian traditional medicine to treat inflammatory and vascular diseases. The main products are the alisols, with the lead compounds alisol-A/-B and [...] Read more.
More than 100 protostane triterpenoids have been isolated from the dried rhizomes of Alisma species, designated Alismatis rhizoma (AR), commonly used in Asian traditional medicine to treat inflammatory and vascular diseases. The main products are the alisols, with the lead compounds alisol-A/-B and their acetate derivatives being the most abundant products in the plant and the best-known bioactive products. The pharmacological effects of Ali-A, Ali-A 24-acetate, Ali-B, Ali-B 23-acetate, and derivatives have been analyzed to provide an overview of the medicinal properties, signaling pathways, and molecular targets at the origin of those activities. Diverse protein targets have been proposed for these natural products, including the farnesoid X receptor, soluble epoxide hydrolase, and other enzymes (AMPK, HCE-2) and functional proteins (YAP, LXR) at the origin of the anti-atherosclerosis, anti-inflammatory, antioxidant, anti-fibrotic, and anti-proliferative activities. Activities were classified in two groups. The lipid-lowering and anti-atherosclerosis effects benefit from robust in vitro and in vivo data (group 1). The anticancer effects of alisols have been largely reported, but, essentially, studies using tumor cell lines and solid in vivo data are lacking (group 2). The survey shed light on the pharmacological properties of alisol triterpenoids frequently found in traditional phytomedicines. Full article
(This article belongs to the Special Issue Anticancer Activity and Metabolic Pathways of Natural Products)
Show Figures

Graphical abstract

12 pages, 619 KiB  
Article
Simultaneous Determination of Fourteen Marker Compounds in the Traditional Herbal Prescription, Geumgwesingihwan, Using Ultra-Performance Liquid Chromatography–Tandem Mass Spectrometry
by Chang-Seob Seo and Mee-Young Lee
Molecules 2022, 27(12), 3890; https://doi.org/10.3390/molecules27123890 - 17 Jun 2022
Cited by 5 | Viewed by 2749
Abstract
Geumgwesingihwan (GSH) is a traditional herbal prescription composed of eight medicinal herbs: Rehmannia glutinosa (Gaertn.) DC., Dioscorea japonica Thunb., Cornus officinalis Siebold and Zucc., Poria cocos Wolf, Paeonia suffruticosa Andrews, Alisma plantago-aquatica subsp. orientale (Sam.) Sam., Achyranthes bidentate Blume, and Plantago asiatica L. [...] Read more.
Geumgwesingihwan (GSH) is a traditional herbal prescription composed of eight medicinal herbs: Rehmannia glutinosa (Gaertn.) DC., Dioscorea japonica Thunb., Cornus officinalis Siebold and Zucc., Poria cocos Wolf, Paeonia suffruticosa Andrews, Alisma plantago-aquatica subsp. orientale (Sam.) Sam., Achyranthes bidentate Blume, and Plantago asiatica L. This study developed and validated an ultra-performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) method in the multiple reaction monitoring (MRM) mode for simultaneous determination of 14 compounds (allantoin, gallic acid, 5-(hydroxymethyl)furfural, geniposidic acid, oxypaeoniflorin, loganin, geniposide, paeoniflorin, ecdysterone, verbascoside, cornuside, benzoylpaeoniflorin, paeonol, and alisol B acetate) in GSH. The chromatographic separation of all marker analytes was carried out on an Acquity UPLC BEH C18 column (100 mm × 2.1 mm, 1.7 µm) using gradient elution of a mobile phase of distilled water–acetonitrile containing 0.1% acetic acid. The newly established UPLC–MS/MS MRM method was validated by evaluating the linearity, the limits of detection and quantification, recovery, and precision. All markers were detected at concentrations of 6.94–4126.28 mg/kg. In addition, the recovery was 76.65–119.49% and the relative standard deviation value of the precision was 0.19–9.91%. The newly developed and validated UPLC–MS/MS assay will provide useful information for quality assessment of GSH. Full article
(This article belongs to the Special Issue Recent Advances in Bioactive Compounds from Medicinal Herbs)
Show Figures

Figure 1

20 pages, 6452 KiB  
Article
Alisol B Alleviates Hepatocyte Lipid Accumulation and Lipotoxicity via Regulating RARα-PPARγ-CD36 Cascade and Attenuates Non-Alcoholic Steatohepatitis in Mice
by Zhuohui Zhao, Zhen-Tao Deng, Suling Huang, Mengmeng Ning, Ying Feng, Yu Shen, Qin-Shi Zhao and Ying Leng
Nutrients 2022, 14(12), 2411; https://doi.org/10.3390/nu14122411 - 10 Jun 2022
Cited by 33 | Viewed by 4053
Abstract
Non-alcoholic steatohepatitis (NASH) is a common chronic liver disease worldwide, with no effective therapies available. Discovering lead compounds from herb medicine might be a valuable strategy for the treatment of NASH. Here, we discovered Alisol B, a natural compound isolated from Alisma orientalis [...] Read more.
Non-alcoholic steatohepatitis (NASH) is a common chronic liver disease worldwide, with no effective therapies available. Discovering lead compounds from herb medicine might be a valuable strategy for the treatment of NASH. Here, we discovered Alisol B, a natural compound isolated from Alisma orientalis (Sam.), that attenuated hepatic steatosis, inflammation, and fibrosis in high-fat diet plus carbon tetrachloride (DIO+CCl4)-induced and choline-deficient and amino acid-defined (CDA)-diet-induced NASH mice. RNA-seq showed Alisol B significantly suppressed CD36 expression and regulated retinol metabolism in NASH mice. In mouse primary hepatocytes, Alisol B decreased palmitate-induced lipid accumulation and lipotoxicity, which were dependent on CD36 suppression. Further study revealed that Alisol B enhanced the gene expression of RARα with no direct RARα agonistic activity. The upregulation of RARα by Alisol B reduced HNF4α and PPARγ expression and further decreased CD36 expression. This effect was fully abrogated after RARα knockdown, suggesting Alisol B suppressed CD36 via regulating RARα-HNF4α-PPARγ cascade. Moreover, the hepatic gene expression of RARα was obviously decreased in murine NASH models, whereas Alisol B significantly increased RARα expression and decreased CD36 expression, along with the downregulation of HNF4α and PPARγ. Therefore, this study showed the unrecognized therapeutic effects of Alisol B against NASH with a novel mechanism by regulating RARα-PPARγ-CD36 cascade and highlighted Alisol B as a promising lead compound for the treatment of NASH. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Graphical abstract

18 pages, 1162 KiB  
Review
Promising Anticancer Activities of Alismatis rhizome and Its Triterpenes via p38 and PI3K/Akt/mTOR Signaling Pathways
by Eungyeong Jang and Jang-Hoon Lee
Nutrients 2021, 13(7), 2455; https://doi.org/10.3390/nu13072455 - 18 Jul 2021
Cited by 21 | Viewed by 3934
Abstract
The flowering plant genus Alisma, which belongs to the family Alismataceae, comprises 11 species, including Alisma orientale, Alisma canaliculatum, and Alisma plantago-aquatica. Alismatis rhizome (Ze xie in Chinese, Takusha in Japanese, and Taeksa in Korean, AR), [...] Read more.
The flowering plant genus Alisma, which belongs to the family Alismataceae, comprises 11 species, including Alisma orientale, Alisma canaliculatum, and Alisma plantago-aquatica. Alismatis rhizome (Ze xie in Chinese, Takusha in Japanese, and Taeksa in Korean, AR), the tubers of medicinal plants from Alisma species, have long been used to treat inflammatory diseases, hyperlipidemia, diabetes, bacterial infection, edema, oliguria, diarrhea, and dizziness. Recent evidence has demonstrated that its extract showed pharmacological activities to effectively reverse cancer-related molecular targets. In particular, triterpenes naturally isolated from AR have been found to exhibit antitumor activity. This study aimed to describe the biological activities and plausible signaling cascades of AR and its main compounds in experimental models representing cancer-related physiology and pathology. Available in vitro and in vivo studies revealed that AR extract possesses anticancer activity against various cancer cells, and the efficacy might be attributed to the cytotoxic and antimetastatic effects of its alisol compounds, such as alisol A, alisol B, and alisol B 23-acetate. Several beneficial functions of triterpenoids found in AR might be due to p38 activation and inhibition of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathways. Moreover, AR and its triterpenes inhibit the proliferation of cancer cells that are resistant to chemotherapy. Thus, AR and its triterpenes may play potential roles in tumor attack, as well as a therapeutic remedy alone and in combination with other chemotherapeutic drugs. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Graphical abstract

16 pages, 3442 KiB  
Article
Alisol A Suppresses Proliferation, Migration, and Invasion in Human Breast Cancer MDA-MB-231 Cells
by Chenghua Lou, Xintong Xu, Yan Chen and Huajun Zhao
Molecules 2019, 24(20), 3651; https://doi.org/10.3390/molecules24203651 - 10 Oct 2019
Cited by 25 | Viewed by 3395
Abstract
Natural products are a precious source of promising leads for the development of novel cancer therapeutics. Recently, triterpenoids in Alismatis rhizoma has been widely demonstrated for their anti-cancer activities in cancer cells. In this study, we examined the inhibitory effects of alisol A [...] Read more.
Natural products are a precious source of promising leads for the development of novel cancer therapeutics. Recently, triterpenoids in Alismatis rhizoma has been widely demonstrated for their anti-cancer activities in cancer cells. In this study, we examined the inhibitory effects of alisol A in human breast cancer cells. We demonstrated that alisol A exhibited significant anti-proliferative effects in MDA-MB-231 cells and this response was related to autophagy induction. Alisol A-induced autophagy was supported by the triggered autophagosome formation and increased LC3-II levels. Interestingly, autophagy inhibitor 3-MA significantly reversed the cytotoxic effects induced by alisol A. Meanwhile, alisol A-induced autophagy was significantly inhibited by 3-MA in MDA-MB-231 cells. Cell cycle analysis revealed that alisol A arrested the cell cycle at G0/G1 phase. The expression level of cell cycle regulatory proteins cyclin D1 was significantly down regulated. In addition, the suppression of NF-κB and PI3K/Akt/mTOR pathways in MDA-MB-231 cells was observed. Furthermore, alisol A significantly suppressed the migration and invasion of MDA-MB-231 cells by inhibiting the expression levels of MMP-2 and MMP-9. Taken together, our results demonstrated that alisol A could inhibit the proliferation and metastasis of MDA-MB-231 cells. It could be a promising agent for breast cancer therapy. Full article
Show Figures

Figure 1

15 pages, 3273 KiB  
Article
Alisol B 23-Acetate Inhibits IgE/Ag-Mediated Mast Cell Activation and Allergic Reaction
by Chen Shao, Bingjie Fu, Ning Ji, Shunli Pan, Xiaoxia Zhao, Zhe Zhang, Yuling Qiu, Ran Wang, Meihua Jin, Ke Wen and Dexin Kong
Int. J. Mol. Sci. 2018, 19(12), 4092; https://doi.org/10.3390/ijms19124092 - 18 Dec 2018
Cited by 17 | Viewed by 5717
Abstract
Alisol B 23-acetate (AB23A), a natural triterpenoid, has been reported to exert hepatoprotective and antitumor activities. Aiming to investigate the anti-inflammatory activity, this study examined the effect of AB23A on mast cells and allergic reaction. AB23A inhibited the degranulation of mast cells stimulated [...] Read more.
Alisol B 23-acetate (AB23A), a natural triterpenoid, has been reported to exert hepatoprotective and antitumor activities. Aiming to investigate the anti-inflammatory activity, this study examined the effect of AB23A on mast cells and allergic reaction. AB23A inhibited the degranulation of mast cells stimulated by immunoglobulin E/antigen (IgE/Ag), and also decreased the synthesis of leukotriene C4 (LTC4), production of interlukin-6 (IL-6), and expression of cyclooxygenase-2 (COX-2) in a concentration-dependent manner with no significant cytotoxicity in bone marrow-derived mast cells (BMMCs). AB23A inhibited spleen tyrosine kinase (Syk) and the downstream signaling molecules including phospholipase Cγ (PLCγ), serine-threonine protein kinase/inhibitor of nuclear factor kappa-B kinase/nuclear factor kappa-B (Akt/IKK/NF-κB), and mitogen-activated protein kinases/cytosolic phospholipase A2 (MAPK/cPLA2). Furthermore, AB23A blocked mobilization of Ca2+. Similar results were obtained in other mast cell lines Rat basophilic leukemia (RBL)-2H3 cells and a human mast cell line (HMC-1). In addition, AB23A attenuated allergic responses in an acute allergy animal model, passive cutaneous anaphylaxis (PCA). Taken together, this study suggests that AB23A inhibits the activation of mast cells and ameliorates allergic reaction, and may become a lead compound for the treatment of mast cell-mediated allergic diseases. Full article
(This article belongs to the Special Issue Natural Anti-Inflammatory Agents 2018)
Show Figures

Figure 1

13 pages, 1368 KiB  
Article
Diuretic Activity of Compatible Triterpene Components of Alismatis rhizoma
by Xue Zhang, Xiao-Yan Li, Na Lin, Wan-Li Zhao, Xiao-Qiang Huang, Ying Chen, Ming-Qing Huang, Wen Xu and Shui-Sheng Wu
Molecules 2017, 22(9), 1459; https://doi.org/10.3390/molecules22091459 - 6 Sep 2017
Cited by 58 | Viewed by 8243
Abstract
Alismatis rhizoma (AR), the dried rhizoma of Alisma orientale Juzepzuk (Alismataceae), is a traditional Chinese medicine. AR is an important part of many prescriptions and is commonly used as a diuretic agent in Asia. This study aimed to evaluate the diuretic effects of [...] Read more.
Alismatis rhizoma (AR), the dried rhizoma of Alisma orientale Juzepzuk (Alismataceae), is a traditional Chinese medicine. AR is an important part of many prescriptions and is commonly used as a diuretic agent in Asia. This study aimed to evaluate the diuretic effects of total triterpene extract (TTE) and triterpene component compatibility (TCC, the mixture of alisol B 23-acetate, alisol B, alisol A 24-acetate, alisol A, and alisol C 23-acetate) of AR in saline-loaded rats. The optimal diuretic TCC of AR was optimized using a uniform design. Different doses (5, 20, and 40 mg/kg) of TTE and TCC groups (N1–N8) were orally administered to rats. Urinary excretion rate, pH, and electrolyte excretion were measured in the urine of saline-loaded rats. Results showed that TTE doses increased urine volume and electrolyte excretion compared with the control group. All uniformly designed groups of TCC also increased urine excretion. In addition, optimal diuretic TCC was calculated (alisol B 23-acetate: alisol B: alisol A 24-acetate: alisol A: alisol C 23-acetate 7.2:0.6:2.8:3.0:6.4) and further validated by saline-loaded rats. This study demonstrated that TTE presented a notable diuretic effect by increasing Na+, K+, and Cl displacements. The most suitable TTC compatible proportion of alisol B 23-acetate: alisol B: alisol A 24-acetate: alisol A: alisol C 23-acetate for diuretic activity was validated, and triterpenes were the material basis for the diuretic activity of AR. Full article
(This article belongs to the Collection Herbal Medicine Research)
Show Figures

Graphical abstract

13 pages, 7865 KiB  
Article
Anti-Inflammatory Activities and Liver Protection of Alisol F and 25-Anhydroalisol F through the Inhibition of MAPK, STAT3, and NF-κB Activation In Vitro and In Vivo
by Xiaoxu Bi, Pu Wang, Qingjuan Ma, Li Han, Xingbo Wang, Yu Mu, Peipei Guan, Xiaodan Qu, Zhanyou Wang and Xueshi Huang
Molecules 2017, 22(6), 951; https://doi.org/10.3390/molecules22060951 - 8 Jun 2017
Cited by 31 | Viewed by 5424
Abstract
Alisol F and 25-anhydroalisol F isolated from Alisma orientale, were proved to exhibit anti-inflammatory potential in our previous work. In the current study, the anti-inflammatory effects and action mechanisms of alisol F and 25-anhydroalisol F were investigated in vitro. Moreover, the pharmacological [...] Read more.
Alisol F and 25-anhydroalisol F isolated from Alisma orientale, were proved to exhibit anti-inflammatory potential in our previous work. In the current study, the anti-inflammatory effects and action mechanisms of alisol F and 25-anhydroalisol F were investigated in vitro. Moreover, the pharmacological effects of alisol F in lipopolysaccharide (LPS)/d-galactosamine (d-gal)-induced acute liver-injured mice were evaluated. The results demonstrated that alisol F and 25-anhydroalisol F could suppress LPS-induced production of nitric oxide (NO), interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), and interleukin-1β (IL-1β), as well as inhibit the mRNA and protein levels of inducible nitric oxide (iNOS) and cyclooxygenase-2 (COX-2). In addition, we investigated the role of alisol F and 25-anhydroalisol F in mediating mitogen-activated protein kinases (MAPKs), signal transducers, and activators of transcription 3 (STAT3) and nuclear factor κB (NF-κB) pathways involved in the inflammation process of LPS-stimulated RAW 264.7 cells. The phosphorylation of ERK, JNK, p38, and STAT3, and the NF-κB signaling pathway, were obviously suppressed in alisol F and 25-anhydroalisol F treated cells. Results obtained from in vitro experiments suggested alisol F obviously improved liver pathological injury by inhibiting the production of TNF-α, IL-1β, and IL-6, and significantly decreasing the serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in LPS/d-gal-induced mice. Furthermore, the reduction of phosphorylation of ERK and JNK, as well as suppression of the NF-κB signaling pathway, were also observed in liver tissues of the alisol F-treated mice model. Alisol F and 25-anhydroalisol F may serve as potential leads for development of anti-inflammatory agents for acute liver failure treatment. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

Back to TopTop