Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (80)

Search Parameters:
Keywords = Al/Mn modification

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 4839 KB  
Review
Advancing Zinc–Manganese Oxide Batteries: Mechanistic Insights, Anode Engineering, and Cathode Regulation
by Chuang Zhao, Yiheng Zhou, Yudong Liu, Bo Li, Zhaoqiang Li, Yu Zhang, Deqiang Wang, Ruilin Qiu, Qilin Shuai, Yuan Xue, Haoqi Wang, Xiaojuan Shen, Wu Wen, Di Wu and Qingsong Hua
Nanomaterials 2025, 15(18), 1439; https://doi.org/10.3390/nano15181439 - 18 Sep 2025
Viewed by 363
Abstract
Rechargeable aqueous Zn-MnO2 batteries are positioned as a highly promising candidate for next-generation energy storage, owing to their compelling combination of economic viability, inherent safety, exceptional capacity (with a theoretical value of ≈308 mAh·g−1), and eco-sustainability. However, this system still [...] Read more.
Rechargeable aqueous Zn-MnO2 batteries are positioned as a highly promising candidate for next-generation energy storage, owing to their compelling combination of economic viability, inherent safety, exceptional capacity (with a theoretical value of ≈308 mAh·g−1), and eco-sustainability. However, this system still faces multiple critical challenges that hinder its practical application, primarily including the ambiguous energy storage reaction mechanism (e.g., unresolved debates on core issues such as ion transport pathways and phase transition kinetics), dendrite growth and side reactions (e.g., the hydrogen evolution reaction and corrosion reaction) on the metallic Zn anode, inadequate intrinsic electrical conductivity of MnO2 cathodes (≈10−5 S·cm−1), active material dissolution, and structural collapse. This review begins by systematically summarizing the prevailing theoretical models that describe the energy storage reactions in Zn-Mn batteries, categorizing them into the Zn2+ insertion/extraction model, the conversion reaction involving MnOx dissolution–deposition, and the hybrid mechanism of H+/Zn2+ co-intercalation. Subsequently, we present a comprehensive discussion on Zn anode protection strategies, such as surface protective layer construction, 3D structure design, and electrolyte additive regulation. Furthermore, we focus on analyzing the performance optimization strategies for MnO2 cathodes, covering key pathways including metal ion doping (e.g., introduction of heteroions such as Al3+ and Ni2+), defect engineering (oxygen vacancy/cation vacancy regulation), structural topology optimization (layered/tunnel-type structure design), and composite modification with high-conductivity substrates (e.g., carbon nanotubes and graphene). Therefore, this review aims to establish a theoretical foundation and offer practical guidance for advancing both fundamental research and practical engineering of Zn-manganese oxide secondary batteries. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Graphical abstract

23 pages, 10645 KB  
Article
Analysis of Inclusions in the Entire Smelting Process of High-Grade Rare Earth Non-Oriented Silicon Steel
by Liqiang Xue, Xiangyu Li, Tao Wang, Qi Zhao, Haozheng Wang, Jia Wang, Wanming Lin, Xiaofeng Niu, Wangzhong Mu and Chao Chen
Crystals 2025, 15(9), 779; https://doi.org/10.3390/cryst15090779 - 30 Aug 2025
Viewed by 579
Abstract
Rare earth can modify inclusions in non-oriented silicon steel which is harmful to magnetic properties. This study focused on the 3.1% Si non-oriented silicon steel under industrial production conditions. Samples were taken during the stages before and after addition of rare earth ferrosilicon [...] Read more.
Rare earth can modify inclusions in non-oriented silicon steel which is harmful to magnetic properties. This study focused on the 3.1% Si non-oriented silicon steel under industrial production conditions. Samples were taken during the stages before and after addition of rare earth ferrosilicon alloy in Ruhrstahl-Heraeus (RH) unit, different pouring time in tundish, and continuous casting slab. This study systematically examined the morphology, composition, and size distribution of inclusions throughout the smelting process of non-oriented silicon steel by scanning electron microscopy with energy-dispersive spectroscopy (SEM/EDS), and thermodynamic analysis at liquid steel temperature and thermodynamic analysis of equilibrium solidification. The research results demonstrated that the rare earth treatment ultimately modifies the original Al2O3 inclusions in the non-oriented silicon steel into REAlO3 and RE2O2S inclusions, while also aggregating AlN inclusions to form composite inclusions. After rare earth modification, the average size of the inclusions decreases. In the RH treatment process, the inclusions before the addition of rare earth ferrosilicon alloy are mainly AlN and Al2O3. After the addition of rare earth ferrosilicon alloy, the inclusions are mainly RES and REAlO3. In the tundish and continuous casting, the rare earth content decreased, and the rare earth inclusions transform into RE2O2S and REAlO3. For the size of inclusions, after adding rare earth ferrosilicon alloy, the average size of inclusions rapidly decreased from 16.15 μm to 2.65 μm and reach its minimum size 2.16 μm at the end of RH treatment. When the molten steel entered the tundish, the average size of inclusions increased slightly and gradually decreased with the progress of pouring. The average size of inclusions in the slab is 5.79 μm. Phase stability diagram calculation indicates the most stable rare earth inclusion is Ce2O2S in molten steel. Thermodynamic calculations indicated that Al2O3, Ce2O2S, Ce2S3, AlN, and MnS precipitate sequentially during the equilibrium solidification process of molten steel. Full article
(This article belongs to the Special Issue Crystallization of High Performance Metallic Materials (2nd Edition))
Show Figures

Figure 1

16 pages, 8448 KB  
Article
Effect of Zr Additions on the Microstructure and Elevated-Temperature Mechanical Properties of Al–Cu–Mg–Ag–Zn–Mn–Zr Alloys
by Haoyang Fu, Hongda Yan, Bin Wei, Bin Sun, Zihang Liu and Weihong Gao
Materials 2025, 18(17), 4062; https://doi.org/10.3390/ma18174062 - 29 Aug 2025
Viewed by 522
Abstract
This study systematically investigates the influence of Zr additions (0–0.24 wt.%) on the microstructure evolution and mechanical properties of Al–4.0Cu–0.5Mg–0.5Zn–0.5Mn–0.4Ag alloys under peak-aged conditions. Alloys were subjected to homogenization (420 °C/8 h + 510 °C/16 h), solution treatment (510 °C/1.5 h), and aging [...] Read more.
This study systematically investigates the influence of Zr additions (0–0.24 wt.%) on the microstructure evolution and mechanical properties of Al–4.0Cu–0.5Mg–0.5Zn–0.5Mn–0.4Ag alloys under peak-aged conditions. Alloys were subjected to homogenization (420 °C/8 h + 510 °C/16 h), solution treatment (510 °C/1.5 h), and aging (190 °C/3 h). Microstructural characterization via OM, SEM, EBSD, and TEM revealed that Zr refines grains and enhances recrystallization resistance through coherent Al3Zr precipitates, which pin grain boundaries and dislocations. However, excessive Zr (0.24 wt.%) induces heterogeneous grain size distribution and significant Schmid factor variations, promoting stress concentration and premature intergranular cracking. Crucially, Al3Zr particles act as heterogeneous nucleation sites for Ω-phase precipitates, accelerating their nucleation near grain boundaries, refining precipitates, and narrowing precipitate-free zones (PFZs). Mechanical testing demonstrated that the Al–4.0Cu–0.5Mg–0.5Zn–0.5Mn–0.4Ag alloy exhibits optimal properties: peak tensile strength of 368.8 MPa and 79.8% tensile strength retention at 200 °C. These improvements are attributed to synergistic microstructural modifications driven by controlled Zr addition, establishing Al–4.0Cu–0.5Mg–0.5Zn–0.5Mn–0.4Ag–0.16Zr as a promising candidate for high-temperature aerospace applications. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Graphical abstract

19 pages, 8293 KB  
Article
Influence of Mn in Balancing the Tensile and Electrical Conductivity Properties of Al-Mg-Si Alloy
by Jiaxing He, Jiangbo Wang, Jian Ding, Yao Wang and Wenshu Qi
Metals 2025, 15(8), 923; https://doi.org/10.3390/met15080923 - 21 Aug 2025
Viewed by 563
Abstract
This study investigated the influence of manganese (Mn) on microstructure evolution and property optimization in Al-0.6Mg-0.58Si-0.24Fe-xMn alloys under both as-cast and hot-extruded conditions. The balance mechanisms of Mn in tensile properties and electrical conductivity of Al-Mg-Si alloy were elucidated, achieving synergistic optimization of [...] Read more.
This study investigated the influence of manganese (Mn) on microstructure evolution and property optimization in Al-0.6Mg-0.58Si-0.24Fe-xMn alloys under both as-cast and hot-extruded conditions. The balance mechanisms of Mn in tensile properties and electrical conductivity of Al-Mg-Si alloy were elucidated, achieving synergistic optimization of strength-elongation-conductivity. For non-equilibrium solidified as-cast alloys, JMatPro simulations coupled with Fe-rich phase size statistics reveal an inhibitory effect of Mn on β-Al5FeSi phase formation. Matthiessen’s rule analysis quantitatively clarifies Mn-induced resistivity variations through solid solution and phase morphology modifications. In hot-extruded alloys, TEM characterization was used to analyze the structure of Al-Fe-Mn-Si quaternary compounds and clarify their combined effects with typical Mg2Si phases on dislocation and subgrain configurations. The as-cast Al-0.6Mg-0.58Si-0.24Fe-0.18Mn alloy demonstrate comprehensive properties with ultimate tensile strength, elongation and electrical conductivity. The contributions of dislocations, grain boundaries and precipitates to resistivity are relatively minor, so the main source of resistivity in hot-extruded alloys is still Mn. The hot-extruded alloy containing 0.18 wt.% Mn still has better properties, with a tensile strength of 176 MPa, elongation of 24% and conductivity of 48.07 %IACS. Full article
Show Figures

Figure 1

10 pages, 3334 KB  
Proceeding Paper
A Study of the Microstructure of Non-Standardised Alternative Piston Aluminium–Silicon Alloys Subjected to Various Modifications: The Influence of Modification Treatments on the Microstructure and Properties of These Alloys
by Desislava Dimova, Valyo Nikolov, Bozhana Chuchulska, Veselin Tsonev and Nadezhda Geshanova
Eng. Proc. 2025, 100(1), 46; https://doi.org/10.3390/engproc2025100046 - 16 Jul 2025
Viewed by 384
Abstract
The present study examines the structure, properties and use of complex-alloyed hypereutectic aluminium-silicon alloys, emphasising the control of the morphology of primary silicon via treatment with various modifiers as well as their effects on its shape and distribution. Furthermore, this study reviews the [...] Read more.
The present study examines the structure, properties and use of complex-alloyed hypereutectic aluminium-silicon alloys, emphasising the control of the morphology of primary silicon via treatment with various modifiers as well as their effects on its shape and distribution. Furthermore, this study reviews the experimental work related to the simultaneous modification of primary and eutectic silicon, which leads to the conclusion that favourable results can be obtained by complex modification treatment involving first- and second-type modifiers. After being cast, the AlSi18Cu3CrMn and AlSi18Cu5Mg non-standardised piston alloys are subjected to T6 heat treatment intended to enhance their mechanical performance, harnessing the full potential of the alloying elements. A microstructural analysis of the shape and distribution of both primary and eutectic silicon crystals following heat treatment was employed to determine their microhardness. Full article
Show Figures

Figure 1

21 pages, 9512 KB  
Article
Improved Microstructure and Enhanced Tensile Properties of Hypoeutectic AlMg5Si2Mn Alloy Modified by Yttrium
by Feng Jiang, Hongding Wang, Fanxu Meng, Qingchun Xiang, Yinglei Ren, Wei Zhang and Keqiang Qiu
Crystals 2025, 15(6), 535; https://doi.org/10.3390/cryst15060535 - 3 Jun 2025
Viewed by 484
Abstract
AlMg5Si2Mn alloys are widely used in the field of automotive castings. Since the morphology, size, and distribution of the primary Al dendrite and eutectic Mg2Si have a decisive influence on the mechanical properties of the alloy, a comprehensive analysis of AlMg5Si2Mn [...] Read more.
AlMg5Si2Mn alloys are widely used in the field of automotive castings. Since the morphology, size, and distribution of the primary Al dendrite and eutectic Mg2Si have a decisive influence on the mechanical properties of the alloy, a comprehensive analysis of AlMg5Si2Mn alloys with varying Y contents was conducted using optical microscopy (OM), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The influence of Y on the microstructural evolution and mechanical behavior of the cast hypoeutectic AlMg5Si2Mn alloy was studied. Experimental findings indicate that the addition of Y significantly refines and alters the morphology of both primary Al and eutectic Mg2Si in AlMg5Si2Mn alloys. Specifically, in the alloy containing 0.45 wt.% Y, the primary Al undergoes a structural transformation from a coarse dendritic morphology to finer ellipsoidal grains, with a minimum secondary dendritic arm spacing (SDAS) of 18.6 ± 1.6 μm. Simultaneously, the eutectic Mg2Si morphology transitions from a coarse lamellar structure to finer worm-like, coral-like, and fibrous forms, exhibiting a reduced average length and aspect ratio (AR) of 3.1 ± 0.4. Furthermore, the AlMg5Si2Mn alloy leads to significant improvements in mechanical performance, particularly in tensile strength. The measured average ultimate tensile strength, yield strength, and elongation are 243.3 MPa, 199.0 MPa, and 8.5%, respectively, representing increases of 19.16%, 24.6%, and 203.6% compared to the Y-free alloy. The fracture mode of the alloy fracture transitioned from brittle fracture in its unmodified condition to ductile fracture characteristics. Full article
Show Figures

Figure 1

21 pages, 15873 KB  
Article
Structured Mesh-Type Pt/Mn/γ-Al2O3/Al Catalyst Enhanced the CO Oxidation at Room Temperature by In Situ Generation of Hydroxyl: Behavior and Mechanism
by Meijia Cao, Qingli Shu, Ran Zhang and Qi Zhang
Catalysts 2025, 15(5), 430; https://doi.org/10.3390/catal15050430 - 28 Apr 2025
Cited by 1 | Viewed by 896
Abstract
Nowadays, Pt-based catalysts are widely applied in carbon monoxide (CO) removal at room temperature. However, the effects of abundant hydroxyl groups (OH*) on the decomposition of intermediate products and catalyst durability have rarely been studied. In this work, a novel hydroxyl-rich structured mesh-type [...] Read more.
Nowadays, Pt-based catalysts are widely applied in carbon monoxide (CO) removal at room temperature. However, the effects of abundant hydroxyl groups (OH*) on the decomposition of intermediate products and catalyst durability have rarely been studied. In this work, a novel hydroxyl-rich structured mesh-type Pt/Mn/γ-Al2O3/Al catalyst using a water vapor treatment (WVT) strategy to generate OH* in situ was developed. Firstly, density functional theory (DFT) calculations indicated that Mn-modification enhanced the adsorption capacity of CO and reduced the work function and the energy barrier of the catalytic reaction. Meanwhile, the water molecule dissociation ability of the Pt catalyst was improved. Secondly, the effects of WVT on the selected catalysts were investigated, and a possible reaction mechanism was proposed. XPS, FTIR, and TG results showed that WVT increased the content of OH*. Moreover, in situ FTIR further indicated that the increase of OH* content could alter the reaction path (from carbonate to formate pathway), thus enhancing the activity and durability of the catalyst. The selected catalyst exhibited excellent durability with 100% conversion within 200 h for 1000 ppm CO at room temperature. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Graphical abstract

16 pages, 5955 KB  
Article
High-Temperature Layered Modification of Mn2In2Se5
by Ivan V. Chernoukhov, Anton D. Pyreu, Andrey N. Azarevich, Alexander N. Samarin, Alexey V. Bogach, Konstantin O. Znamenkov, Andrei V. Shevelkov and Valeriy Yu. Verchenko
Molecules 2025, 30(9), 1904; https://doi.org/10.3390/molecules30091904 - 24 Apr 2025
Viewed by 510
Abstract
Layered chalcogenides are interesting from the point of view of the formation of two-dimensional magnetic systems for relevant applications in spintronics. High-spin Mn2+ or Fe3+ cations with five unpaired electrons are promising in the search for compounds with interesting magnetic properties. [...] Read more.
Layered chalcogenides are interesting from the point of view of the formation of two-dimensional magnetic systems for relevant applications in spintronics. High-spin Mn2+ or Fe3+ cations with five unpaired electrons are promising in the search for compounds with interesting magnetic properties. In this study, a new layered modification of the Mn2In2Se5 compound from the A2B2X5 family (“225”) was synthesized and investigated. A phase transition to the polymorph with primitive trigonal lattice was recorded at a temperature of 711 °C, which was confirmed by simultaneous thermal analysis, X-ray powder diffraction at elevated temperatures, and sample annealing and quenching. The stability of Mn2In2Se5 in air at high temperatures was investigated by thermal gravimetric analysis and powder X-ray diffraction. The new polymorph of Mn2In2Se5 crystallizes in the Mg2Al2Se5 structure type, as revealed by the Rietveld refinement against powder X-ray diffraction data. The crystal structure can be viewed as a close-packing of Se anions, in which indium and manganese cations are enclosed inside tetrahedral and octahedral voids, respectively, according to the AMnBInCBInCMnA… sequence. Magnetization measurements reveal an antiferromagnetic-like transition at a temperature of 6.3 K. The same magnetic properties are reported in the literature for the low-temperature R-centered trigonal polymorph. An approximation by the modified Curie–Weiss law yields a significant ratio of |θ|/TN = 28, which indicates strong magnetic frustration. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Graphical abstract

9 pages, 2511 KB  
Proceeding Paper
Surface, Microstructure, and Wear Characterization of Annealed Cold-Sprayed HEA Coatings
by Nazanin Sheibanian, Raffaella Sesana, Mohsen Dehghanpour Abyaneh, Sedat Özbilen and Rocco Lupoi
Eng. Proc. 2025, 85(1), 35; https://doi.org/10.3390/engproc2025085035 - 6 Mar 2025
Viewed by 514
Abstract
Surface coatings are essential for enhancing the mechanical and functional properties of materials. Among these, annealed high-entropy alloy (HEA) coatings have gained attention for improving wear resistance and durability. This study comprehensively analyzes HEA-annealed coatings, focusing on their surface roughness and wear behavior. [...] Read more.
Surface coatings are essential for enhancing the mechanical and functional properties of materials. Among these, annealed high-entropy alloy (HEA) coatings have gained attention for improving wear resistance and durability. This study comprehensively analyzes HEA-annealed coatings, focusing on their surface roughness and wear behavior. A systematic and thorough approach is employed to examine the impact of annealing on coating characteristics. The research involves depositing Al 0.1–0.5 CoCrCuFeNi and MnCoCrCuFeNi coatings using the cold spray (CS) method, followed by a controlled annealing process. Surface roughness is evaluated through profilometry and microscopy techniques to assess modifications due to annealing. Tribological tests are conducted to investigate the wear performance of the coatings, and the findings are correlated with roughness measurements, offering insights into the relationship between surface texture and wear resistance. Full article
Show Figures

Figure 1

21 pages, 4112 KB  
Article
Enhanced Interleukin 6 Trans-Signaling Modulates Disease Process in Amyotrophic Lateral Sclerosis Mouse Models
by Carol Milligan, Dale O. Cowley, William Stewart, Alyson M. Curry, Elizabeth Forbes, Brian Rector, Annette Hastie, Liang Liu and Gregory A. Hawkins
Brain Sci. 2025, 15(1), 84; https://doi.org/10.3390/brainsci15010084 - 17 Jan 2025
Cited by 1 | Viewed by 1764
Abstract
Background/Objectives: Charcot first described ALS in 1869, but the specific mechanisms that mediate the disease pathology are still not clear. Intense research efforts have provided insight into unique neuroanatomical regions, specific neuronal populations and genetic associations for ALS and other neurodegenerative diseases; however, [...] Read more.
Background/Objectives: Charcot first described ALS in 1869, but the specific mechanisms that mediate the disease pathology are still not clear. Intense research efforts have provided insight into unique neuroanatomical regions, specific neuronal populations and genetic associations for ALS and other neurodegenerative diseases; however, the experimental results also suggest a convergence of these events to common toxic pathways. We propose that common toxic pathways can be therapeutically targeted, and this intervention will be effective in slowing progression and improving patient quality of life. Here, we focus on understanding the role of IL6 trans-signaling in ALS disease processes. Methods: We leveraged unique mouse models of IL6 trans-signaling that we developed that recapitulate the production of active sIL6R in a genotypic and quantitative fashion observed in humans. Given that the SOD1 transgenic mouse is one of the most highly studied and characterized models of ALS, we bred SOD1G93A mice with IL6R trans-signaling mice to determine how enhanced trans-signaling influenced symptom onset and pathological processes, including neuromuscular junction (NMJ) denervation, glial activation and motoneuron (MN) survival. Results: The results indicate that in animals with enhanced trans-signaling, symptom onset and pathological processes were accelerated, suggesting a role in disease modification. Administration of an IL6R functional blocking antibody failed to alter accelerated symptom onset and disease progression. Conclusions: Future work to investigate the site-specific influence of enhanced IL6 trans-signaling and the tissue-specific bioavailability of potential therapeutics will be necessary to identify targets for precise therapeutic interventions that may limit disease progression in the 60% of ALS patients who inherit the common Il6R Asp358Ala variant. Full article
(This article belongs to the Special Issue New Advances in Neuroimmunology and Neuroinflammation)
Show Figures

Figure 1

14 pages, 7049 KB  
Article
The Enhanced Electrochemical Properties of Lithium-Rich Manganese-Based Cathode Materials via Mg-Al Co-Doping
by Wanting Lu, Wenhui Deng, Xiyan Zheng, Kunling Lin, Mengyuan Liu, Guozhang Zhu, Jingyi Lin, Yi Wei, Feng Wang and Jiageng Liu
Coatings 2025, 15(1), 3; https://doi.org/10.3390/coatings15010003 - 24 Dec 2024
Cited by 1 | Viewed by 2090
Abstract
Due to the advantages of high capacity, low working voltage, and low cost, lithium-rich manganese-based material (LMR) is the most promising cathode material for lithium-ion batteries; however, the poor cycling life, poor rate performance, and low initial Coulombic efficiency severely restrict its practical [...] Read more.
Due to the advantages of high capacity, low working voltage, and low cost, lithium-rich manganese-based material (LMR) is the most promising cathode material for lithium-ion batteries; however, the poor cycling life, poor rate performance, and low initial Coulombic efficiency severely restrict its practical utility. In this work, the precursor Mn2/3Ni1/6Co1/6CO3 was obtained by the continuous co-precipitation method, and on this basis, different doping levels of aluminum–magnesium were applied to modify the electrode materials by high-temperature sintering. The first discharge capacity can reach 295.3 mAh·g−1 for the LMR material of Li1.40(Mn0.666Ni0.162Co0.162Mg0.005Al0.005)O2. The Coulombic efficiency is 83.8%, and the capacity retention rate remains at 84.4% after 300 cycles at a current density of 1 C for the Mg-Al co-doped LMR material, superior to the unmodified sample. The improved electrochemical performance is attributed to the increased oxygen vacancy and enlarged lithium layer spacing after trace magnesium–aluminum co-doping, enhancing the lithium-ion diffusion and effectively mitigating voltage degradation during cycling. Thus, magnesium–aluminum doping modification emerges as a promising method to improve the electrochemical performance of lithium-rich manganese-based cathode materials. Full article
Show Figures

Figure 1

16 pages, 4756 KB  
Article
Influence of Thermomechanical Treatments and Chemical Composition on the Phase Transformation of Cu-Al-Mn Shape Memory Alloy Thin Sheets
by Dusan Milosavljevic, Nora Lecis and Simone Cinquemani
Appl. Sci. 2024, 14(22), 10406; https://doi.org/10.3390/app142210406 - 12 Nov 2024
Cited by 1 | Viewed by 1140
Abstract
This paper investigates the interrelated effects of thermomechanical treatments and chemical composition on the phase transformation capabilities of thin sheets made from Cu-Al-Mn shape memory alloys. The transformation capacity and transition temperatures were determined using DSC and DMA testing, while composition measurements were [...] Read more.
This paper investigates the interrelated effects of thermomechanical treatments and chemical composition on the phase transformation capabilities of thin sheets made from Cu-Al-Mn shape memory alloys. The transformation capacity and transition temperatures were determined using DSC and DMA testing, while composition measurements were performed using SEM/EDX analysis. The results demonstrate that applying hot-rolling treatments to alloys of reduced thickness leads to manganese oxidation and modifications in chemical composition, adversely impacting the phase transformation performance. This effect can be mitigated by the use of cold rolling. Additionally, the presence of phosphorus impurities can create inclusions that bind manganese, preventing it from remaining in the solid solution and further affecting phase transformation capabilities. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

15 pages, 9600 KB  
Article
The Influence of the Combined Addition of La–Ce Mixed Rare Earths and Sr on the Microstructure and Mechanical Properties of AlSi10MnMg Alloy
by Yu Liu, Zhichao Yu, Man Zhang, Qisheng Feng, Dong Zhang, Pengyue Gao and Chonghe Li
Metals 2024, 14(9), 1050; https://doi.org/10.3390/met14091050 - 14 Sep 2024
Cited by 3 | Viewed by 1647
Abstract
This study investigated the effect of adding La–Ce mixed rare earths and Sr on the microstructure and mechanical properties of AlSi10MnMg alloy. The experiment utilized different combinations of modifiers, including single La–Ce rare earths, single Sr, and the combined addition of La–Ce mixed [...] Read more.
This study investigated the effect of adding La–Ce mixed rare earths and Sr on the microstructure and mechanical properties of AlSi10MnMg alloy. The experiment utilized different combinations of modifiers, including single La–Ce rare earths, single Sr, and the combined addition of La–Ce mixed rare earths and Sr. This study compared their effects on grain refinement, the modification of the α-Al phase and eutectic silicon phase, and tensile properties and hardness. The results showed that the combined modification of Sr and mixed rare earth elements significantly refined the grains, optimized the morphology of the α-Al phase and eutectic silicon phase, and improved the overall mechanical properties of the aluminum alloy. Under the combined modification, the addition of 0.02 wt.% Sr and 0.1 wt.% RE (La–Ce mixed rare earths) exhibited the most pronounced refining effect. The secondary dendrite arm spacing (SDAS) was reduced by 59.18%. The eutectic silicon phase transformed from coarse needle-like shapes to fine fibrous or granular forms, with an aspect ratio reduction of 69.39%. Meanwhile, the alloy’s tensile strength and hardness were significantly improved. The tensile strength increased to 240 MPa, achieving an increase of 23.08%; the yield strength increased to 111 MPa, achieving an increase of 18.09%; and the elongation reached 7.3%, achieving an increase of 73.81%. This indicates that the proper addition of Sr and mixed rare earths can significantly optimize the microstructure and enhance the mechanical properties of AlSi10MnMg alloy, providing an effective method for the preparation of high-performance heat-treatment-free aluminum alloys. Full article
(This article belongs to the Special Issue Light Alloy and Its Application (2nd Edition))
Show Figures

Figure 1

18 pages, 28510 KB  
Article
Microstructure Evolution and Mechanical Properties of Extruded AlSiCuFeMnYb Alloy
by Xiaohu Ji, Junjie Xiong and Lihua Zhou
Metals 2024, 14(7), 774; https://doi.org/10.3390/met14070774 - 30 Jun 2024
Viewed by 1415
Abstract
This study investigates the impact of varying extrusion ratios on the microstructure and mechanical properties of AlSiCuFeMnYb alloy. Following hot extrusion, significant enhancements are observed in the microstructure of the cast rare earth aluminium alloy. Within the cross-sectional microstructure, the α-Al phase is [...] Read more.
This study investigates the impact of varying extrusion ratios on the microstructure and mechanical properties of AlSiCuFeMnYb alloy. Following hot extrusion, significant enhancements are observed in the microstructure of the cast rare earth aluminium alloy. Within the cross-sectional microstructure, the α-Al phase is reduced in size, and its dendritic morphology is eliminated. The morphology of the eutectic Si phase transitions from long strips to short rods, fine fibres, or granular forms. Similarly, the Fe-rich phase changes from a coarse skeletal and flat noodle shape to small strips and short skeletal forms resembling Chinese characters. The CuAl2 phase evolves from large blocks to smaller blocks and granular forms, while the Yb (Ytterbium)-rich rare earth phase shifts from large blocks to smaller, more uniformly distributed blocks. In the longitudinal section, the structure aligns into strips along the extrusion direction, with the spacing between these strips decreasing as the extrusion ratio increases. At an extrusion ratio of 22.56, the alloy demonstrates superior mechanical properties with a tensile strength of 325.50 MPa, a yield strength of 254.44 MPa, a hardness of 143.90 HV, and an elongation of 15.47%. These represent improvements of 27.8%, 36.5%, 38.9%, and 236.4%, respectively, compared with the as-cast rare earth alloy. In addition, the fracture surface of the extruded rare earth alloy exhibits obvious ductile fracture characteristics. Additionally, the alloy undergoes dynamic recrystallisation and dislocation entanglement during hot extrusion. The emergence of a twinned Si phase and a dynamically precipitated nanoscale CuAl2 phase are critical for enhancing deformation strengthening, modification strengthening, and dynamic precipitation strengthening of the extruded alloys. Full article
Show Figures

Figure 1

13 pages, 6719 KB  
Article
Microstructure and Microhardness of High-Strength Aluminium Alloy Prepared Using High-Speed Laser Fabrication
by Yu Wu, Bingqing Chen, Peixin Xu, Pengjun Tang, Borui Du and Chen Huang
Metals 2024, 14(5), 525; https://doi.org/10.3390/met14050525 - 30 Apr 2024
Cited by 1 | Viewed by 1814
Abstract
As a recently developed high-strength aluminium alloy used specifically for laser additive manufacturing, AlMgMnSc alloy possesses superior mechanical properties and excellent processability. Extreme high-speed laser deposition (EHLD) is a novel surface-modification technique, which is characterised by high depositing speed, rapid cooling, rate and [...] Read more.
As a recently developed high-strength aluminium alloy used specifically for laser additive manufacturing, AlMgMnSc alloy possesses superior mechanical properties and excellent processability. Extreme high-speed laser deposition (EHLD) is a novel surface-modification technique, which is characterised by high depositing speed, rapid cooling, rate and minimal dilution rate. To offer a new method for surface repairing high-strength aluminium alloys, an AlMgMnSc alloy coating, containing two deposition layers, is prepared on a 6061 aluminium-alloy axle using the EHLD technique. Meanwhile, the microstructure, composition distribution, and microhardness variation of the fabricated coating are studied. The results reveal that the coating is dense and crack-free, which is well-bonded with the substrate. Additionally, layer 1 is mainly composed of large columnar and equiaxed grains, while layer 2 consists of a fully equiaxed grain structure with an average grain size of about 4.5 μm. Moreover, the microhardness of the coating (about 104~118 HV) is similar to the substrate (about 105 HV), proving the feasibility of repairing high-strength aluminium alloys using AlMgMnSc alloy powders through the EHLD technique. Full article
(This article belongs to the Special Issue Advances in Laser Metal Deposition Processes)
Show Figures

Figure 1

Back to TopTop