Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = Akebia trifoliata

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4098 KiB  
Article
Deciphering the Genetic and Biochemical Drivers of Fruit Cracking in Akebia trifoliata
by Mian Faisal Nazir, Tianjiao Jia, Yi Zhang, Longyu Dai, Jie Xu, Yafang Zhao and Shuaiyu Zou
Int. J. Mol. Sci. 2024, 25(22), 12388; https://doi.org/10.3390/ijms252212388 - 19 Nov 2024
Cited by 1 | Viewed by 1249
Abstract
This study investigates the molecular mechanisms underlying fruit cracking in Akebia trifoliata, a phenomenon that significantly impacts fruit quality and marketability. Through comprehensive physiological, biochemical, and transcriptomic analyses, we identified key changes in cell wall components and enzymatic activities during fruit ripening. [...] Read more.
This study investigates the molecular mechanisms underlying fruit cracking in Akebia trifoliata, a phenomenon that significantly impacts fruit quality and marketability. Through comprehensive physiological, biochemical, and transcriptomic analyses, we identified key changes in cell wall components and enzymatic activities during fruit ripening. Our results revealed that ventral suture tissues exhibit significantly elevated activities of polygalacturonase (PG) and β-galactosidase compared to dorsoventral line tissues, indicating their crucial roles in cell wall degradation and structural weakening. The cellulose content in VS tissues peaked early and declined during ripening, while DL tissues maintained relatively stable cellulose levels, highlighting the importance of cellulose dynamics in fruit cracking susceptibility. Transcriptomic analysis revealed differentially expressed genes (DEGs) associated with pectin biosynthesis and catabolism, cell wall organization, and oxidoreductase activities, indicating significant transcriptional regulation. Key genes like AKT032945 (pectinesterase) and AKT045678 (polygalacturonase) were identified as crucial for cell wall loosening and pericarp dehiscence. Additionally, expansin-related genes AKT017642, AKT017643, and AKT021517 were expressed during critical stages, promoting cell wall loosening. Genes involved in auxin-activated signaling and oxidoreductase activities, such as AKT022903 (auxin response factor) and AKT054321 (peroxidase), were also differentially expressed, suggesting roles in regulating cell wall rigidity. Moreover, weighted gene co-expression network analysis (WGCNA) identified key gene modules correlated with traits like pectin lyase activity and soluble pectin content, pinpointing potential targets for genetic manipulation. Our findings offer valuable insights into the molecular basis of fruit cracking in A. trifoliata, laying a foundation for breeding programs aimed at developing crack-resistant varieties to enhance fruit quality and commercial viability. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

19 pages, 4893 KiB  
Article
Effects of Several Tea-like Plants on Liver Injury Induced by Alcohol via Their Antioxidation, Anti-Inflammation, and Regulation of Gut Microbiota
by Jin Cheng, Min Luo, Dan-Dan Zhou, Siyu Huang, Ruogu Xiong, Sixia Wu, Adila Saimaiti, Bangyan Li, Ao Shang, Guo-Yi Tang and Huabin Li
Foods 2024, 13(16), 2521; https://doi.org/10.3390/foods13162521 - 13 Aug 2024
Cited by 1 | Viewed by 1901
Abstract
Liver injury induced by alcohol is a serious global health problem. Several tea-like plants are widely used as beverages, which are drunk like tea. In this study, the hepatoprotective effects of eight tea-like plant extracts with the intake of 200 mg/kg.bw/day were investigated [...] Read more.
Liver injury induced by alcohol is a serious global health problem. Several tea-like plants are widely used as beverages, which are drunk like tea. In this study, the hepatoprotective effects of eight tea-like plant extracts with the intake of 200 mg/kg.bw/day were investigated and compared using a C57BL/6J mouse model of acute alcohol exposure, including sweet tea, vine tea, Rabdosia serra kudo, broadleaf holly leaf, mulberry leaf, bamboo leaf, Camellia nitidissima, and Akebia trifoliata peels. The results showed that the eight tea-like plants had hepatoprotective effects to different degrees against acute alcohol exposure via enhancing the activities of alcoholic metabolism enzymes, ameliorating oxidative stress and inflammation in the liver, as well as regulating gut microbiota. In particular, sweet tea, bamboo leaf, mulberry leaf, and Camellia nitidissima increased the activities of alcohol dehydrogenase or aldehyde dehydrogenase. Among these tea-like plants, sweet tea and Camellia nitidissima had the greatest hepatoprotective effects, and their bioactive compounds were determined by high-performance liquid chromatography. Chlorogenic acid, rutin, and ellagic acid were identified in sweet tea, and epicatechin, rutin, and ellagic acid were identified in Camellia nitidissima, which could contribute to their hepatoprotective action. These tea-like plants could be drunk or developed into functional food against alcoholic liver injury, especially sweet tea and Camellia nitidissima. In the future, the effects of sweet tea and Camellia nitidissima on chronic alcoholic liver diseases should be further investigated. Full article
(This article belongs to the Special Issue Plant-Based Food:From Nutritional Value to Health Benefits)
Show Figures

Figure 1

19 pages, 4510 KiB  
Article
Optimization of Composite Enzymatic Extraction, Structural Characterization and Biological Activity of Soluble Dietary Fiber from Akebia trifoliata Peel
by Ya Song, Guoshun Sun, Dian Wang, Jin Chen, Jun Lv, Sixia Jiang, Guoqiang Zhang, Shirui Yu and Huayan Zheng
Molecules 2024, 29(9), 2085; https://doi.org/10.3390/molecules29092085 - 1 May 2024
Cited by 5 | Viewed by 1843
Abstract
In order to reduce the waste of Akebia trifoliata peel and maximize its utilization, in this study, on the basis of a single-factor experiment and the response surface method, the optimum technological conditions for the extraction of soluble dietary fiber from Akebia trifoliata [...] Read more.
In order to reduce the waste of Akebia trifoliata peel and maximize its utilization, in this study, on the basis of a single-factor experiment and the response surface method, the optimum technological conditions for the extraction of soluble dietary fiber from Akebia trifoliata peel with the compound enzyme method were obtained. The chemical composition, physical and chemical properties, structural characterization and biological activity of the purified soluble dietary fiber (AP-SDF) from the Akebia trifoliata peel were analyzed. We discovered that that the optimum yield was 20.87% under the conditions of cellulase addition 600 U/g, enzymolysis time 100 min, solid–liquid ratio 1:24 g/mL and enzymolysis temperature 51 °C. At the same time, AP-SDF was a porous network structure cellulose type I acidic polysaccharose mainly composed of arabinoxylan (36.03%), galacturonic acid (27.40%) and glucose (19.00%), which possessed the structural characteristic peaks of the infrared spectra of polysaccharides and the average molecular weight (Mw) was 95.52 kDa with good uniformity. In addition, the AP-SDF exhibited high oil-holding capacity (15.11 g/g), good water-holding capacity and swelling capacity, a certain antioxidant capacity in vitro, hypoglycemic activity in vitro for α-glucosidase inhibition and hypolipidemic activity in vitro for the binding ability of bile acids and cholesterol. These results will provide a theoretical basis for the development of functional products with antioxidant, hypoglycemic and hypolipidemic effects, which have certain application value in related industries. Full article
Show Figures

Figure 1

14 pages, 4610 KiB  
Article
Global Analysis of the WOX Transcription Factor Family in Akebia trifoliata
by Shengpeng Chen, Huai Yang, Yongle Zhang, Chen Chen, Tianheng Ren, Feiquan Tan and Peigao Luo
Curr. Issues Mol. Biol. 2024, 46(1), 11-24; https://doi.org/10.3390/cimb46010002 - 19 Dec 2023
Cited by 1 | Viewed by 1552
Abstract
Akebia trifoliata is an economically important, self-incompatible fruit tree in the Lardizabalaceae family. Asexual propagation is the main strategy used to maintain excellent agronomic traits. However, the generation of adventitious roots during asexual propagation is very difficult. To study the important role of [...] Read more.
Akebia trifoliata is an economically important, self-incompatible fruit tree in the Lardizabalaceae family. Asexual propagation is the main strategy used to maintain excellent agronomic traits. However, the generation of adventitious roots during asexual propagation is very difficult. To study the important role of the WUSCHEL-related homeobox (WOX) transcription factor in adventitious root growth and development, we characterized this transcription factor family in the whole genome of A. trifoliata. A total of 10 AktWOXs were identified, with the following characteristics: length (657~11,328 bp), exon number (2~5), isoelectric point (5.65~9.03), amino acid number (176~361 AA) and molecular weight (20.500~40.173 kDa), and their corresponding expression sequence could also be detectable in the public transcriptomic data for A. trifoliata fruit. A total of 10 AktWOXs were classified into modern (6), intermediate (2) and ancient clades (2) and all AktWOXs had undergone strong purifying selection during evolution. The expression profile of AktWOXs during A. trifoliata adventitious root formation indicated that AktWOXs play an important role in the regulation of adventitious root development. Overall, this is the first study to identify and characterize the WOX family in A. trifoliata and will be helpful for further research on A. trifoliata adventitious root formation. Full article
Show Figures

Figure 1

15 pages, 4390 KiB  
Article
Genome-Wide Analysis of the Polygalacturonase Gene Family Sheds Light on the Characteristics, Evolutionary History, and Putative Function of Akebia trifoliata
by Xiaoxiao Yi, Wei Chen, Ju Guan, Jun Zhu, Qiuyi Zhang, Huai Yang, Hao Yang, Shengfu Zhong, Chen Chen, Feiquan Tan, Tianheng Ren and Peigao Luo
Int. J. Mol. Sci. 2023, 24(23), 16973; https://doi.org/10.3390/ijms242316973 - 30 Nov 2023
Cited by 3 | Viewed by 1754
Abstract
Polygalacturonase (PG) is one of the largest families of hydrolytic enzymes in plants. It is involved in the breakdown of pectin in the plant cell wall and even contributes to peel cracks. Here, we characterize PGs and outline their expression profiles using the [...] Read more.
Polygalacturonase (PG) is one of the largest families of hydrolytic enzymes in plants. It is involved in the breakdown of pectin in the plant cell wall and even contributes to peel cracks. Here, we characterize PGs and outline their expression profiles using the available reference genome and transcriptome of Akebia trifoliata. The average length and exon number of the 47 identified AktPGs, unevenly assigned on 14 chromosomes and two unassembled contigs, were 5399 bp and 7, respectively. The phylogenetic tree of 191 PGs, including 47, 57, 51, and 36 from A. trifoliata, Durio zibethinus, Actinidia chinensis, and Vitis vinifera, respectively, showed that AktPGs were distributed in all groups except group G and that 10 AktPGs in group E were older, while the remaining 37 AktPGs were younger. Evolutionarily, all AktPGs generally experienced whole-genome duplication (WGD)/segmental repeats and purifying selection. Additionally, the origin of conserved domain III was possibly associated with a histidine residue (H) substitute in motif 8. The results of both the phylogenetic tree and expression profiling indicated that five AktPGs, especially AktPG25, could be associated with the cracking process. Detailed information and data on the PG family are beneficial for further study of the postharvest biology of A. trifoliata. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

15 pages, 4030 KiB  
Article
Integrative Metabolomic and Transcriptomic Landscape during Akebia trifoliata Fruit Ripening and Cracking
by Yongli Jiang, Yanlin Du, Chongyang Chen, Danfeng Wang, Yu Zhong and Yun Deng
Int. J. Mol. Sci. 2023, 24(23), 16732; https://doi.org/10.3390/ijms242316732 - 24 Nov 2023
Cited by 2 | Viewed by 1802
Abstract
Akebia trifoliata fruit is prone to crack after ripening, but little is known about the mechanism underlying the cracking process. This study integrated transcriptomic and metabolomic data, revealing significant changes in 398 metabolites and 8414 genes during ripening and cracking, mainly impacting cell-wall [...] Read more.
Akebia trifoliata fruit is prone to crack after ripening, but little is known about the mechanism underlying the cracking process. This study integrated transcriptomic and metabolomic data, revealing significant changes in 398 metabolites and 8414 genes during ripening and cracking, mainly impacting cell-wall metabolism. Multi-omics joint analysis indicated that genes related to polygalacturonase, pectate lyase, α-amylase, and glycogen phosphorylase were up-regulated after cracking, degrading cell wall and starch. Concurrently, diminished photosynthetic metabolism and heightened phenylpropanoid metabolism suggested alterations in cuticle structure, potentially impacting cell-wall robustness. Numerous auxin and abscisic acid signaling-related genes were expressed, and we assume that they contributed to the promoting peel growth. These alterations collectively might compromise peel strength and elevate expanding pressure, potentially leading to A. trifoliata cracking. Transcription factors, predominantly ethylene response factors and helix-loop-helix family members, appeared to regulate these metabolic shifts. These findings provide valuable insights into A. trifoliata cracking mechanisms; however, direct experimental validation of these assumptions is necessary to strengthen these conclusions and expedite their commercial utilization. Full article
(This article belongs to the Special Issue Omics Study to Uncover Signalling and Gene Regulation in Plants 2.0)
Show Figures

Figure 1

22 pages, 3085 KiB  
Article
Improved Antioxidant Capacity of Akebia trifoliata Fruit Inoculated Fermentation by Plantilactobacillus plantarum, Mechanism of Anti-Oxidative Stress through Network Pharmacology, Molecular Docking and Experiment Validation by HepG2 Cells
by Yuhao Sun, Zhenzhen Wang, Jing Dai, Ruyi Sha, Jianwei Mao, Yangchen Mao and Yanli Cui
Fermentation 2023, 9(5), 432; https://doi.org/10.3390/fermentation9050432 - 29 Apr 2023
Cited by 2 | Viewed by 2079
Abstract
In this work, spontaneously fermented and inoculation-fermented Akebia trifoliata fruit Jiaosu (SFAJ/IFAJ) were compared. The key metabolites and antioxidant activities of SFAJ and IFAJ were tracked and tested during fermentation. The antioxidant effect of fermented Akebia trifoliata fruit and the underlying mechanisms were [...] Read more.
In this work, spontaneously fermented and inoculation-fermented Akebia trifoliata fruit Jiaosu (SFAJ/IFAJ) were compared. The key metabolites and antioxidant activities of SFAJ and IFAJ were tracked and tested during fermentation. The antioxidant effect of fermented Akebia trifoliata fruit and the underlying mechanisms were explored using network pharmacology for the prediction and verification of the molecular targets and pathways of the Akebia trifoliata fruit’s action against oxidative stress. Furthermore, the results were verified by molecular docking and then investigated, based on a HepG2 cell model. The results of correlation analysis and principal component analysis (PCA) showed that there were significant positive correlations between the phenols, flavonoids, and terpenoids in SFAJ and IFAJ and their antioxidant activities. Network pharmacology and molecular docking analysis disclosed the antioxidation mechanism at the molecular level. In addition, both SFAJ and IFAJ were effective at alleviating oxidative stress in HepG2 cells. In particular, IFAJ performed better than SFAJ in protecting cells with an intracellular reactive oxygen species (ROS) level of 99.96 ± 4.07 U/mg prot, superoxide dismutase (SOD) activity of 41.56 ± 0.06 U/mg prot, catalase (CAT) activity of 91.78 ± 3.85 U/mg prot, and glutathione peroxidase (GSH-Px) activity of 39.32 ± 2.75 mU/mg prot in the IFAJ group. Collectively, this study revealed the changes in bioactive metabolite contents and the in vitro antioxidant activity during fermentation and investigated the protectiveness of SFAJ and IFAJ against oxidative stress within HepG2 cells, promoting the study of the antioxidant efficacy of IFAJ, thereby providing valuable reference data for the optimization of its preparation and the development of relevant products with health benefits. Full article
(This article belongs to the Section Fermentation for Food and Beverages)
Show Figures

Figure 1

12 pages, 7034 KiB  
Article
Molecular Cloning and Characterization of WRKY12, A Pathogen Induced WRKY Transcription Factor from Akebia trifoliata
by Feng Wen, Xiaozhu Wu, Lishen Zhang, Jiantao Xiao, Tongjian Li and Mingliang Jia
Genes 2023, 14(5), 1015; https://doi.org/10.3390/genes14051015 - 29 Apr 2023
Cited by 7 | Viewed by 2235
Abstract
WRKY transcription factors (TFs), which are plant-specific TFs, play significant roles in plant defense. Here, a pathogen-induced WRKY gene, named AktWRKY12, which was the homologous gene of AtWRKY12, was isolated from Akebia trifoliata. The AktWRKY12 gene has a total length [...] Read more.
WRKY transcription factors (TFs), which are plant-specific TFs, play significant roles in plant defense. Here, a pathogen-induced WRKY gene, named AktWRKY12, which was the homologous gene of AtWRKY12, was isolated from Akebia trifoliata. The AktWRKY12 gene has a total length of 645 nucleotides and an open reading frame (ORF) encoding 214 amino acid polypeptides. The characterizations of AktWRKY12 were subsequently performed with the ExPASy online tool Compute pI/Mw, PSIPRED and SWISS-MODEL softwares. The AktWRKY12 could be classified as a member of WRKY group II-c TFs based on sequence alignment and phylogenetic analysis. The results of tissue-specific expression analysis revealed that the AktWRKY12 gene was expressed in all the tested tissues, and the highest expression level was detected in A. trifoliata leaves. Subcellular localization analysis showed that AktWRKY12 was a nuclear protein. Results showed that the expression level of AktWRKY12 significantly increased in A. trifoliata leaves with pathogen infection. Furthermore, heterologous over-expression of AktWRKY12 in tobacco resulted in suppressed expression of lignin synthesis key enzyme genes. Based on our results, we speculate that AktWRKY12 might play a negative role in A. trifoliata responding to biotic stress by regulating the expression of lignin synthesis key enzyme genes during pathogen infection. Full article
(This article belongs to the Special Issue Genetic Regulation of Biotic Stress Responses)
Show Figures

Figure 1

22 pages, 8736 KiB  
Article
Identification of the NAC Transcription Factor Family during Early Seed Development in Akebia trifoliata (Thunb.) Koidz
by Huijuan Liu, Songshu Chen, Xiaomao Wu, Jinling Li, Cunbin Xu, Mingjin Huang, Hualei Wang, Hongchang Liu and Zhi Zhao
Plants 2023, 12(7), 1518; https://doi.org/10.3390/plants12071518 - 31 Mar 2023
Cited by 8 | Viewed by 2882
Abstract
This study aimed to gain an understanding of the possible function of NACs by examining their physicochemical properties, structure, chromosomal location, and expression. Being a family of plant-specific transcription factors, NAC (petunia no apical meristem and Arabidopsis thaliana ATAF1, ATAF2, and CUC2) is involved [...] Read more.
This study aimed to gain an understanding of the possible function of NACs by examining their physicochemical properties, structure, chromosomal location, and expression. Being a family of plant-specific transcription factors, NAC (petunia no apical meristem and Arabidopsis thaliana ATAF1, ATAF2, and CUC2) is involved in plant growth and development. None of the NAC genes has been reported in Akebia trifoliata (Thunb.) Koidz (A. trifoliata). In this study, we identified 101 NAC proteins (AktNACs) in the A. trifoliata genome by bioinformatic analysis. One hundred one AktNACs were classified into the following twelve categories based on the phylogenetic analysis of NAC protein: NAC-a, NAC-b, NAC-c, NAC-d, NAC-e, NAC-f, NAC-g, NAC-h, NAC-i, NAC-j, NAC-k, and NAC-l. The accuracy of the clustering results was demonstrated based on the gene structure and conserved motif analysis of AktNACs. In addition, we identified 44 pairs of duplication genes, confirming the importance of purifying selection in the evolution of AktNACs. The morphology and microstructure of early A. trifoliata seed development showed that it mainly underwent rapid cell division, seed enlargement, embryo formation and endosperm development. We constructed AktNACs co-expression network and metabolite correlation network based on transcriptomic and metabolomic data of A. trifoliata seeds. The results of the co-expression network showed that 25 AtNAC genes were co-expressed with 233 transcription factors. Metabolite correlation analysis showed that 23 AktNACs were highly correlated with 28 upregulated metabolites. Additionally, 25 AktNACs and 235 transcription factors formed co-expression networks with 141 metabolites, based on correlation analysis involving AktNACs, transcription factors, and metabolites. Notably, AktNAC095 participates in the synthesis of 35 distinct metabolites. Eight of these metabolites, strongly correlated with AktNAC095, were upregulated during early seed development. These studies may provide insight into the evolution, possible function, and expression of AktNACs genes. Full article
Show Figures

Figure 1

15 pages, 3859 KiB  
Article
Genome-Wide Identification of Superoxide Dismutase and Expression in Response to Fruit Development and Biological Stress in Akebia trifoliata: A Bioinformatics Study
by Huai Yang, Qiuyi Zhang, Shengfu Zhong, Hao Yang, Tianheng Ren, Chen Chen, Feiquan Tan, Guoxing Cao, Jun Liu and Peigao Luo
Antioxidants 2023, 12(3), 726; https://doi.org/10.3390/antiox12030726 - 15 Mar 2023
Cited by 13 | Viewed by 2872
Abstract
Akebia trifoliata is a newly domesticated perennial fruit tree, and the lack of molecular research on stress resistance seriously affects its genetic improvement and commercial value development. Superoxide dismutase (SOD) can effectively eliminate the accumulation of reactive oxygen species (ROS) during [...] Read more.
Akebia trifoliata is a newly domesticated perennial fruit tree, and the lack of molecular research on stress resistance seriously affects its genetic improvement and commercial value development. Superoxide dismutase (SOD) can effectively eliminate the accumulation of reactive oxygen species (ROS) during the rapid growth of plant organs under biotic and abiotic stresses, maintaining a steady state of physiological metabolism. In this study, 13 SODs consisting of two FeSODs (FSDs), four MnSODs (MSDs) and seven Cu/ZnSODs (CSDs) were identified in the A. trifoliata genome. Structurally, the phylogeny, intron–exon pattern and motif sequences within these three subfamilies show high conservation. Evolutionarily, segmental/wide genome duplication (WGD) and dispersed duplication form the current SOD profile of A. trifoliata. Weighted gene coexpression network analysis (WGCNA) revealed the metabolic pathways of nine (69.2%) SODs involved in fruit development, among which AktMSD4 regulates fruit development and AktCSD4 participates in the stress response. In addition, under the stress of multiple pathogens, six (46.6%) SODs were continuously upregulated in the rinds of resistant lines; of these, three SODs (AktMSD1, AktMSD2 and AktMSD3) were weakly or not expressed in susceptible lines. The results pave the way for theoretical research on SODs and afford the opportunity for genetic improvement of A. trifoliata. Full article
(This article belongs to the Special Issue Reactive Oxygen and Nitrogen Species in Plants)
Show Figures

Figure 1

16 pages, 3342 KiB  
Article
Identification of Photoperiod- and Phytohormone-Responsive DNA-Binding One Zinc Finger (Dof) Transcription Factors in Akebia trifoliata via Genome-Wide Expression Analysis
by Qiuyi Zhang, Shengfu Zhong, Qing Dong, Hao Yang, Huai Yang, Feiquan Tan, Chen Chen, Tianheng Ren, Jinliang Shen, Guoxing Cao and Peigao Luo
Int. J. Mol. Sci. 2023, 24(5), 4973; https://doi.org/10.3390/ijms24054973 - 4 Mar 2023
Cited by 6 | Viewed by 2464
Abstract
As a kind of plant-specific transcription factor (TF), DNA-Binding One Zinc Finger (Dof) is widely involved in the response to environmental change, and as an evolutionarily important perennial plant species, Akebia trifoliata is ideal for studying environmental adaptation. In this study, a total [...] Read more.
As a kind of plant-specific transcription factor (TF), DNA-Binding One Zinc Finger (Dof) is widely involved in the response to environmental change, and as an evolutionarily important perennial plant species, Akebia trifoliata is ideal for studying environmental adaptation. In this study, a total of 41 AktDofs were identified in the A. trifoliata genome. First, the characteristics, including the length, exon number, and chromosomal distribution of the AktDofs and the isoelectric point (PI), amino acid number, molecular weight (MW), and conserved motifs of their putative proteins, were reported. Second, we found that all AktDofs evolutionarily underwent strong purifying selection, and many (33, 80.5%) of them were generated by whole-genome duplication (WGD). Third, we outlined their expression profiles by the use of available transcriptomic data and RT-qPCR analysis. Finally, we identified four candidate genes (AktDof21, AktDof20, AktDof36, and AktDof17) and three other candidate genes (AktDof26, AktDof16, and AktDof12) that respond to long day (LD) and darkness, respectively, and that are closely associated with phytohormone-regulating pathways. Overall, this research is the first to identify and characterize the AktDofs family and is very helpful for further research on A. trifoliata adaptation to environmental factors, especially photoperiod changes. Full article
(This article belongs to the Special Issue Light as a Growth and Development Regulator to Control Plant Biology)
Show Figures

Figure 1

17 pages, 5043 KiB  
Article
Somatic Embryogenesis Induction and Genetic Stability Assessment of Plants Regenerated from Immature Seeds of Akebia trifoliate (Thunb.) Koidz
by Yiming Zhang, Yunmei Cao, Yida Wang and Xiaodong Cai
Forests 2023, 14(3), 473; https://doi.org/10.3390/f14030473 - 26 Feb 2023
Cited by 8 | Viewed by 2781
Abstract
Akebia trifoliata is a perennial woody plant with considerable potential in nutrition, food, and health, and the production of seedlings with high quality is critical for its economic utilization. Plant regeneration through somatic embryogenesis is a powerful alternative for propagating many plant species. [...] Read more.
Akebia trifoliata is a perennial woody plant with considerable potential in nutrition, food, and health, and the production of seedlings with high quality is critical for its economic utilization. Plant regeneration through somatic embryogenesis is a powerful alternative for propagating many plant species. In this study, a simple and practicable protocol was developed for plant regeneration from immature seeds of A. trifoliata via somatic embryogenesis, and the genetic stability of regenerated plants was also assessed. In the somatic embryo (SE) induction stage, the highest frequency of somatic embryogenesis (35.2%) was observed on the WPM medium containing 1.0 mg L−1 of thidiazuron (TDZ) and 1.0 mg L−1 of 6-benzyladenine (6-BA). The concentration of 6-BA was optimized at 1.0 mg L−1 for the proliferation and maturation of the induced SEs, and the combination of 2.0 mg L−1 of indole-3-butyric acid (IBA) and 0.5 mg L−1 of TDZ was the most responsive for root development and plant growth. The leaf morphological characteristics greatly varied among the established plants, and they could be grouped into three plant types, namely the normal type, Type Ι, and Type ΙΙ. Remarkable differences in the number, size, shape, and color of the leaflets were observed among the three types, while their ploidy level was the same via flow cytometry analysis. The Type ΙΙ and the Type Ι plants had the highest and the lowest net photosynthesis rate, transpiration rate, and stomatal conductance among the three groups, respectively, and both had a smaller size of stomatal guard cells than the normal type. Simple sequence repeat (SSR) analysis detected that 41 bands (43.62%) were different from those observed in the wild, indicating a high degree of polymorphism between the regenerants and their donor parent. The obtained plants might hold potential for future genetic improvement and breeding in A. trifoliata, and the established regeneration protocol might serve as a foundation for in vitro propagation and germplasm preservation of this crop. Full article
(This article belongs to the Special Issue Somatic Embryogenesis and Organogenesis on Tree Species)
Show Figures

Figure 1

17 pages, 2577 KiB  
Article
Evaluation of Radio Frequency-Assisted Enzymatic Extraction of Non-Anthocyanin Polyphenols from Akebia trifoliata Flowers and Their Biological Activities Using UPLC-PDA-TOF-ESI-MS and Chemometrics
by Xiaoyong Song, Yongli Jiang, Yu Zhong, Danfeng Wang and Yun Deng
Foods 2022, 11(21), 3410; https://doi.org/10.3390/foods11213410 - 28 Oct 2022
Cited by 7 | Viewed by 1783
Abstract
A new radio frequency heating-assisted enzymatic extraction (RF-E) method is applied for the determination of phenolic compounds in Akebia trifoliata flowers, compared with hot water, acidified ethanol (EtOH), and enzymatic-assisted (EA) extractions. Non-anthocyanin polyphenol profiles, antibacterial, angiotensin-converting enzyme (ACE) inhibitory, anti-inflammatory activities, and [...] Read more.
A new radio frequency heating-assisted enzymatic extraction (RF-E) method is applied for the determination of phenolic compounds in Akebia trifoliata flowers, compared with hot water, acidified ethanol (EtOH), and enzymatic-assisted (EA) extractions. Non-anthocyanin polyphenol profiles, antibacterial, angiotensin-converting enzyme (ACE) inhibitory, anti-inflammatory activities, and structures of extracts are evaluated. Results show no significant differences in the extraction of total flavonoid content (15.85–16.63 mg QEs/g) and ACE inhibitory activity (51.30–52.86%) between RF-E and EA extracts. RF-E extract shows the highest anti-inflammatory activities. FTIR and UV spectra reveal that acidified EtOH treatment has a significant effect on the structure of the extract due to its highest flavonoid content (20.33 mg QEs/g), thus it has the highest antibacterial activity against Staphylococcus aureus and Escherichia coli. Sixteen non-anthocyanin polyphenols are identified by UPLC-PDA-TOF-ESI-MS and RF pre-treatment did not cause significant compound degradation. The chemometric analysis shows that enzymatic hydrolysis significantly increased biological activities, and the presence of non-anthocyanin polyphenols correlates well with ACE inhibitory and anti-inflammatory activities. Accordingly, A trifoliata flowers have potential as reagents for the food and pharmaceutical industries due to their abundant polyphenols that could be extracted efficiently using RF-E. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Graphical abstract

17 pages, 2490 KiB  
Article
Characterization of the MADS-Box Gene Family in Akebia trifoliata and Their Evolutionary Events in Angiosperms
by Shengfu Zhong, Huai Yang, Ju Guan, Jinliang Shen, Tianheng Ren, Zhi Li, Feiquan Tan, Qing Li and Peigao Luo
Genes 2022, 13(10), 1777; https://doi.org/10.3390/genes13101777 - 1 Oct 2022
Cited by 6 | Viewed by 2721
Abstract
As the largest clade of modern plants, flower plants have evolved a wide variety of flowers and fruits. MADS-box genes play key roles in regulating plant morphogenesis, while basal eudicots have an evolutionarily important position of acting as an evolutionary bridge between basal [...] Read more.
As the largest clade of modern plants, flower plants have evolved a wide variety of flowers and fruits. MADS-box genes play key roles in regulating plant morphogenesis, while basal eudicots have an evolutionarily important position of acting as an evolutionary bridge between basal angiosperms and core eudicots. Akebia trifoliata is an important member of the basal eudicot group. To study the early evolution of angiosperms, we identified and characterized the MADS-Box gene family on the whole-genome level of A. trifoliata. There were 47 MADS-box genes (13 type I and 34 type II genes) in the A. trifoliata genome; type I genes had a greater gene length and coefficient of variation and a smaller exon number than type II genes. A total of 27 (57.4%) experienced whole or segmental genome duplication and purifying selection. A transcriptome analysis suggested that three and eight genes were involved in whole fruit and seed development, respectively. The diversification and phylogenetic analysis of 1479 type II MADS-box genes of 22 angiosperm species provided some clues indicating that a γ whole genome triplication event of eudicots possibility experienced a two-step process. These results are valuable for improving A. trifoliata fruit traits and theoretically elucidating evolutionary processes of angiosperms, especially eudicots. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

15 pages, 6119 KiB  
Article
Genome-Wide Identification and Expression Analysis of WRKY Transcription Factors in Akebiatrifoliata: A Bioinformatics Study
by Jun Zhu, Shengfu Zhong, Ju Guan, Wei Chen, Hao Yang, Huai Yang, Chen Chen, Feiquan Tan, Tianheng Ren, Zhi Li, Qing Li and Peigao Luo
Genes 2022, 13(9), 1540; https://doi.org/10.3390/genes13091540 - 26 Aug 2022
Cited by 9 | Viewed by 2521
Abstract
WRKY transcription factors have been found in most plants and play an important role in regulating organ growth and disease response. Outlining the profile of WRKY genes is a very useful project for studying morphogenesis and resistance formation. In the present study, a [...] Read more.
WRKY transcription factors have been found in most plants and play an important role in regulating organ growth and disease response. Outlining the profile of WRKY genes is a very useful project for studying morphogenesis and resistance formation. In the present study, a total of 63 WRKY genes consisting of 13 class I, 41 class II, and 9 class III genes were identified from the newly published A. trifoliata genome, of which 62 were physically distributed on all 16 chromosomes. Structurally, two AkWRKY genes (AkWRKY6 and AkWRKY52) contained four domains, and AkWRKY17 lacked the typical heptapeptide structure. Evolutionarily, 42, 16, and 5 AkWRKY genes experienced whole genome duplication (WGD) or fragmentation, dispersed duplication, and tandem duplication, respectively; 28 Ka/Ks values of 30 pairs of homologous genes were far lower than 1, while those of orthologous gene pairs between AkWRKY41 and AkWRKY52 reached up to 2.07. Transcriptome analysis showed that many of the genes were generally expressed at a low level in 12 fruit samples consisting of three tissues, including rind, flesh, and seeds, at four developmental stages, and interaction analysis between AkWRKY and AkNBS genes containing W-boxes suggested that AkWRKY24 could play a role in plant disease resistance by positively regulating AkNBS18. In summary, the WRKY gene family of A. trifoliata was systemically characterized for the first time, and the data and information obtained regarding AkWRKY could be very useful in further theoretically elucidating the molecular mechanisms of plant development and response to pathogens and practically improving favorable traits such as disease resistance. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

Back to TopTop