Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = Aegean flora

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
51 pages, 11577 KiB  
Article
Projected Impacts of Climate and Land Use Change on Endemic Plant Distributions in a Mediterranean Island Hotspot: The Case of Evvia (Aegean, Greece)
by Konstantinos Kougioumoutzis, Ioannis P. Kokkoris, Panayiotis Trigas, Arne Strid and Panayotis Dimopoulos
Climate 2025, 13(5), 100; https://doi.org/10.3390/cli13050100 - 13 May 2025
Viewed by 1905
Abstract
Anthropogenic climate and land use change pose major threats to island floras worldwide, yet few studies have integrated these drivers in a single vulnerability assessment. Here, we examine the endemic flora of Evvia, the second-largest Aegean island in Greece and an important biodiversity [...] Read more.
Anthropogenic climate and land use change pose major threats to island floras worldwide, yet few studies have integrated these drivers in a single vulnerability assessment. Here, we examine the endemic flora of Evvia, the second-largest Aegean island in Greece and an important biodiversity hotspot, as a model system to address how these disturbances may reshape species distributions, community composition, and phylogenetic diversity patterns. We used species distribution models under the Ensemble of Small Models and the ENphylo framework, specifically designed to overcome parameter uncertainty in rare species with inherently limited occurrence records. By integrating climate projections and dynamic land use data, we forecasted potential range shifts, habitat fragmentation, and biodiversity patterns for 114 endemic taxa through the year 2100. We addressed transferability uncertainty, a key challenge in projecting distributions under novel conditions, using the Shape framework extrapolation analysis, thus ensuring robust model projections. Our findings reveal pronounced projected range contractions and increased habitat fragmentation for all studied taxa, with more severe impacts on single-island endemics. Our models demonstrated high concordance with established IUCN Red List assessments, validating their ecological relevance despite the sample size limitations of single-island endemics. Current biodiversity hotspots, primarily located in mountainous regions, are expected to shift towards lowland areas, probably becoming extinction hotspots due to projected species losses, especially for Evvia’s single-island endemics. Emerging hotspot analysis identified new biodiversity centres in lowland zones, while high-altitude areas showed sporadic hotspot patterns. Temporal beta diversity analysis indicated higher species turnover of distantly related taxa at higher elevations, with closely related species clustering at lower altitudes. This pattern suggests a homogenisation of plant communities in lowland areas. The assessment of protected area effectiveness revealed that while 94.6% of current biodiversity hotspots are within protected zones, this coverage is projected to decline by 2100. Our analysis identified conservation gaps, highlighting areas requiring urgent protection to preserve future biodiversity. Our study reveals valuable information regarding the vulnerability of island endemic floras to global change, offering a framework applicable to other insular systems. Our findings demonstrate that adaptive conservation strategies should account for projected biodiversity shifts and serve as a warning for other insular biodiversity hotspots, urging immediate actions to maintain the unique evolutionary heritage of islands. Full article
(This article belongs to the Section Climate and Environment)
Show Figures

Figure 1

18 pages, 4777 KiB  
Article
Non-Native Flora of the Mediterranean Lesvos Island (East Aegean, Greece): Floristic Analysis, Traits, and Assessment
by Alexandros Galanidis, Ioannis Bazos and Panayiotis G. Dimitrakopoulos
Plants 2024, 13(23), 3375; https://doi.org/10.3390/plants13233375 - 30 Nov 2024
Cited by 1 | Viewed by 1480
Abstract
A checklist of Lesvos Island’s non-native vascular flora is presented. Through the literature and a roadside survey, we recorded 187 non-native plant taxa, representing 12% of the total regional flora. A total of 37 taxa were reported for the first time for Lesvos, [...] Read more.
A checklist of Lesvos Island’s non-native vascular flora is presented. Through the literature and a roadside survey, we recorded 187 non-native plant taxa, representing 12% of the total regional flora. A total of 37 taxa were reported for the first time for Lesvos, including three taxa that are also new to the Greek non-native flora. The dominant families were Fabaceae, Asteraceae, Poaceae, Amaranthaceae, and Solanaceae. Amaranthus, Oxalis, Solanum, Opuntia, and Prunus were the most species rich genera. Most taxa were neophytes, naturalized and perennial, while phanerophytes and therophytes were the predominant life forms. Animal (insect) pollination was the principal pollination mode, whereas the main dispersal mechanism was zoochory, with most taxa forming a capsule. The majority of the taxa preferred agricultural and ruderal habitats and originated from the Americas and Asia. The primary introduction pathway was escape from confinement, concerning taxa introduced for ornamental and agricultural purposes. Full article
(This article belongs to the Topic Plant Invasion)
Show Figures

Figure 1

21 pages, 25326 KiB  
Article
The Geo-Cultural Heritage of Kos Revisited: Web-GIS Applications and Storytelling Promoting the Well-Known Island of Dodecanese, Greece
by Varvara Antoniou, Dimitris Panousis, Elisavet Nikoli, Anna Katsigera, Othonas Vlasopoulos and Paraskevi Nomikou
Resources 2023, 12(7), 74; https://doi.org/10.3390/resources12070074 - 25 Jun 2023
Cited by 5 | Viewed by 3973
Abstract
Kos is the third largest island of the Dodecanese, located in the southeastern Aegean Sea, Greece. The island’s remarkable location both in a prominent geodynamic space and at a crossroads of East, West and South has endowed it with a unique wealth of [...] Read more.
Kos is the third largest island of the Dodecanese, located in the southeastern Aegean Sea, Greece. The island’s remarkable location both in a prominent geodynamic space and at a crossroads of East, West and South has endowed it with a unique wealth of geological, biological, cultural, and traditional heritage. Steep mountain ranges consisting of Alpine Mesozoic rocks alternate with low-altitude plateaus featuring marine and lacustrine sediments that contain fossils of past life. In addition, the transition of barren land to lush forests where numerous species of flora and fauna thrive is unique to Greek ecosystems. This environment hosted civilizations and activities that gradually led to the present-day cultural and religious state of the island, where people and nature coexist respectfully on one of the country’s most favourite destinations. In an effort to further enhance the public’s awareness of the geo-cultural heritage of Kos, an online ESRI Hub was created, featuring several individual ESRI StoryMaps web apps regarding each specific aspect of the island’s heritage. The goal of this paper is to discuss the importance of using such means for disseminating geoscientific information to the public, to describe the methods used and to give a brief presentation of its content. Full article
(This article belongs to the Special Issue Geosites as Tools for the Promotion and Conservation of Geoheritage)
Show Figures

Graphical abstract

10 pages, 748 KiB  
Article
Assessment of Antioxidant and Antimicrobial Properties of Selected Greek Propolis Samples (North East Aegean Region Islands)
by Elisavet Pyrgioti, Konstantia Graikou, Antigoni Cheilari and Ioanna Chinou
Molecules 2022, 27(23), 8198; https://doi.org/10.3390/molecules27238198 - 24 Nov 2022
Cited by 6 | Viewed by 2156
Abstract
Propolis is a bee-produced substance rich in bioactive compounds, which has been utilized widely in folk medicine, in food supplement and cosmetology areas because of its biological properties, (antibacterial, antiviral, antioxidant, anti-inflammatory, etc.). The subject of this study is associated with the chemical [...] Read more.
Propolis is a bee-produced substance rich in bioactive compounds, which has been utilized widely in folk medicine, in food supplement and cosmetology areas because of its biological properties, (antibacterial, antiviral, antioxidant, anti-inflammatory, etc.). The subject of this study is associated with the chemical analysis and the biological evaluation of 16 propolis samples from the northeast Aegean region Greek islands, a well-recognized geographic area and the homeland of rich flora as a crossroads between Europe and Asia. Our study resulted in the detection of a significant percentage of diterpenes by gas chromatography–mass spectrometry (GC-MS), while flavonoids were identified in low percentages among studied samples. Furthermore, the DPPH assay highlighted that eight of the samples (Lesvos and Lemnos origin) demonstrated a promising antioxidant profile, further verified by their total phenolic content (TPC). Additionally, the propolis samples most rich in diterpenes showed significant antibacterial and fungicidal properties against human pathogenic microorganisms, proving them to be a very interesting and promising crude material for further applications, concluding that floral diversity is the most responsible for the bioactivity of the propolis samples. Full article
(This article belongs to the Special Issue Propolis in Human and Bee Health)
Show Figures

Figure 1

12 pages, 2682 KiB  
Article
Factors of Detection Deficits in Vascular Plant Inventories—An Island Case Study
by Michael Ristow, Maria Panitsa, Stefan Meyer and Erwin Bergmeier
Diversity 2022, 14(4), 303; https://doi.org/10.3390/d14040303 - 16 Apr 2022
Cited by 1 | Viewed by 2426
Abstract
The degree of completeness of large-scale floristic inventories is often difficult to judge. We compared prior vascular plant species inventories of the Mediterranean island of Limnos (North Aegean, Greece) with 231 recent records from 2016–2021. Together with the recent records, the known number [...] Read more.
The degree of completeness of large-scale floristic inventories is often difficult to judge. We compared prior vascular plant species inventories of the Mediterranean island of Limnos (North Aegean, Greece) with 231 recent records from 2016–2021. Together with the recent records, the known number of vascular plant species on the island is 960 native taxa, 63 established neophytes, and 27 species of as yet casual status for a total of 1050 taxa. We looked at a number of traits (plant family, size, flower color, perceptibility, habitat, reproduction period, rarity, and status) to investigate whether they were overrepresented in the dataset of the newly found taxa. Overrepresentation was found in some plant families (e.g., Poaceae and Chenopodiaceae) and for traits such as hydrophytic life form, unobtrusive flower color, coastal as well as agricultural and ruderal habitats, and late (summer/autumn) reproduction period. Apart from the well-known fact of esthetic bias, we found evidence for ecological and perceptibility biases. Plant species inventories based on prior piecemeal collated data should focus on regionally specific species groups and underrepresented and rare habitats. Full article
(This article belongs to the Special Issue Plant Diversity on Islands)
Show Figures

Figure 1

17 pages, 9815 KiB  
Article
Evidence of Coastal Changes in the West Coast of Naxos Island, Cyclades, Greece
by Niki Evelpidou, Alexandros Petropoulos, Anna Karkani and Giannis Saitis
J. Mar. Sci. Eng. 2021, 9(12), 1427; https://doi.org/10.3390/jmse9121427 - 14 Dec 2021
Cited by 12 | Viewed by 4311
Abstract
Coastal lagoons and dunes are of great ecological importance, not only for providing habitats for rare flora and fauna, but also for protecting coastal areas from rising sea levels and storms, etc. Even though these features are unique for sustainable development and are [...] Read more.
Coastal lagoons and dunes are of great ecological importance, not only for providing habitats for rare flora and fauna, but also for protecting coastal areas from rising sea levels and storms, etc. Even though these features are unique for sustainable development and are extremely important to the natural environment and economy, they are one of the most vulnerable and threatened ecosystems due to their small size. The western coasts of Naxos (central Aegean Sea) represent an example of such phenomena, with various wetlands bordered by low-lying sand dunes. The aim of our study is to assess the vulnerability and pressures of the western coasts of Naxos Isl. by taking into consideration both natural and anthropogenic factors. We used a variety of approaches for the environmental and geomorphological study of the coastal zone to achieve this goal, including: (a) study of aerial photography from 1960 until today, (b) systematic seasonal aerial monitoring by drone, since 2015, (c) use of DGPS for the mapping of the coastal zone and for obtaining detailed topographic sections, and (d) dune mapping. Our findings reveal the vulnerability of the western coasts of Naxos due to sea level rise, tectonic subsidence, and a variety of anthropogenic pressures, such as uncontrolled parking, vegetation uprooting, sand extractions, and heavy touristic traffic. Therefore, the protection of the sand dunes, their restoration where they have been eroded, the definition of a zone of control, and restriction of human activities must be a key priority. Full article
(This article belongs to the Special Issue Coastal Systems: Monitoring, Protection and Adaptation Approaches)
Show Figures

Figure 1

141 pages, 15210 KiB  
Article
Contribution to the Orophilous Cushion-Like Vegetation of Central-Southern and Insular Greece
by Carmelo Maria Musarella, Salvatore Brullo and Gianpietro Giusso del Galdo
Plants 2020, 9(12), 1678; https://doi.org/10.3390/plants9121678 - 30 Nov 2020
Cited by 20 | Viewed by 5430
Abstract
The results of a phytosociological investigation regarding the orophilous cushion-like vegetation occurring in the top of the high mountains of central-southern Greece and in some Ionian (Lefkas, Cephalonia) and Aegean Islands (Euboea, Samos, Lesvos, Chios and Thassos) are provided. Based on 680 phytosociological [...] Read more.
The results of a phytosociological investigation regarding the orophilous cushion-like vegetation occurring in the top of the high mountains of central-southern Greece and in some Ionian (Lefkas, Cephalonia) and Aegean Islands (Euboea, Samos, Lesvos, Chios and Thassos) are provided. Based on 680 phytosociological relevès (460 unpublished and 220 from literature), a new syntaxonomical arrangement is proposed with the description of a new class, including two new orders, eight new alliances, and several associations (many of them new). Compared to the previous hierarchical framework usually followed in the literature, this study provides a more realistic and clear phytosociological characterization of this peculiar and archaic vegetation type, which is exclusive to the high mountains of the north-eastern Mediterranean. The new arrangement is mainly based on the phytogeographical role of the orophytes featuring this very specialized vegetation, which is essentially represented by endemics or rare species belonging to the ancient Mediterranean Tertiary flora. In addition, taxonomic research on the orophilous flora occurring in these plant communities allowed to identify six species new to science (i.e., Astragalus corinthiacus, Allium cremnophilum, A. cylleneum, A. orosamium, A. karvounis, and A. lefkadensis) and a new subspecies (i.e., Allium hirtovaginatum subsp. samium), and two new combinations (i.e., Astragalus rumelicus subsp. euboicus and subsp. taygeticus) are proposed. Full article
(This article belongs to the Special Issue Threatened Vegetation and Environmental Management)
Show Figures

Figure 1

22 pages, 2650 KiB  
Article
Spatial Phylogenetics, Biogeographical Patterns and Conservation Implications of the Endemic Flora of Crete (Aegean, Greece) under Climate Change Scenarios
by Konstantinos Kougioumoutzis, Ioannis P. Kokkoris, Maria Panitsa, Panayiotis Trigas, Arne Strid and Panayotis Dimopoulos
Biology 2020, 9(8), 199; https://doi.org/10.3390/biology9080199 - 31 Jul 2020
Cited by 27 | Viewed by 6042
Abstract
Human-induced biodiversity loss has been accelerating since the industrial revolution. The climate change impacts will severely alter the biodiversity and biogeographical patterns at all scales, leading to biotic homogenization. Due to underfunding, a climate smart, conservation-prioritization scheme is needed to optimize species protection. [...] Read more.
Human-induced biodiversity loss has been accelerating since the industrial revolution. The climate change impacts will severely alter the biodiversity and biogeographical patterns at all scales, leading to biotic homogenization. Due to underfunding, a climate smart, conservation-prioritization scheme is needed to optimize species protection. Spatial phylogenetics enable the identification of endemism centers and provide valuable insights regarding the eco-evolutionary and conservation value, as well as the biogeographical origin of a given area. Many studies exist regarding the conservation prioritization of mainland areas, yet none has assessed how climate change might alter the biodiversity and biogeographical patterns of an island biodiversity hotspot. Thus, we conducted a phylogenetically informed, conservation prioritization study dealing with the effects of climate change on Crete’s plant diversity and biogeographical patterns. Using several macroecological analyses, we identified the current and future endemism centers and assessed the impact of climate change on the biogeographical patterns in Crete. The highlands of Cretan mountains have served as both diversity cradles and museums, due to their stable climate and high topographical heterogeneity, providing important ecosystem services. Historical processes seem to have driven diversification and endemic species distribution in Crete. Due to the changing climate and the subsequent biotic homogenization, Crete’s unique bioregionalization, which strongly reminiscent the spatial configuration of the Pliocene/Pleistocene Cretan paleo-islands, will drastically change. The emergence of the ‘Anthropocene’ era calls for the prioritization of biodiversity-rich areas, serving as mixed-endemism centers, with high overlaps among protected areas and climatic refugia. Full article
(This article belongs to the Section Conservation Biology and Biodiversity)
Show Figures

Figure 1

22 pages, 4502 KiB  
Article
Plant Diversity Patterns and Conservation Implications under Climate-Change Scenarios in the Mediterranean: The Case of Crete (Aegean, Greece)
by Konstantinos Kougioumoutzis, Ioannis P. Kokkoris, Maria Panitsa, Panayiotis Trigas, Arne Strid and Panayotis Dimopoulos
Diversity 2020, 12(7), 270; https://doi.org/10.3390/d12070270 - 7 Jul 2020
Cited by 55 | Viewed by 10194
Abstract
Climate change poses a great challenge for biodiversity conservation. Several studies exist regarding climate change’s impacts on European plants, yet none has investigated how climate change will affect the extinction risk of the entire endemic flora of an island biodiversity hotspot, with intense [...] Read more.
Climate change poses a great challenge for biodiversity conservation. Several studies exist regarding climate change’s impacts on European plants, yet none has investigated how climate change will affect the extinction risk of the entire endemic flora of an island biodiversity hotspot, with intense human disturbance. Our aim is to assess climate change’s impacts on the biodiversity patterns of the endemic plants of Crete (S Aegean) and provide a case-study upon which a climate-smart conservation planning strategy might be set. We employed a variety of macroecological analyses and estimated the current and future biodiversity, conservation and extinction hotspots in Crete. We evaluated the effectiveness of climatic refugia and the Natura 2000 network of protected areas (PAs) for protecting the most vulnerable species and identified the taxa of conservation priority based on the Evolutionary Distinct and Globally Endangered (EDGE) index. The results revealed that high altitude areas of Cretan mountains constitute biodiversity hotspots and areas of high conservation and evolutionary value. Due to the “escalator to extinction” phenomenon, these areas are projected to become diversity “death-zones” and should thus be prioritised. Conservation efforts should be targeted at areas with overlaps among PAs and climatic refugia, characterised by high diversity and EDGE scores. This conservation-prioritisation planning will allow the preservation of evolutionary heritage, trait diversity and future ecosystem services for human well-being and acts as a pilot for similar regions worldwide. Full article
(This article belongs to the Special Issue Conservation and Management of Island Ecosystems)
Show Figures

Graphical abstract

Back to TopTop