Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (53)

Search Parameters:
Keywords = ATT&CK

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3906 KiB  
Article
Model Retraining upon Concept Drift Detection in Network Traffic Big Data
by Sikha S. Bagui, Mohammad Pale Khan, Chedlyne Valmyr, Subhash C. Bagui and Dustin Mink
Future Internet 2025, 17(8), 328; https://doi.org/10.3390/fi17080328 - 24 Jul 2025
Viewed by 349
Abstract
This paper presents a comprehensive model for detecting and addressing concept drift in network security data using the Isolation Forest algorithm. The approach leverages Isolation Forest’s inherent ability to efficiently isolate anomalies in high-dimensional data, making it suitable for adapting to shifting data [...] Read more.
This paper presents a comprehensive model for detecting and addressing concept drift in network security data using the Isolation Forest algorithm. The approach leverages Isolation Forest’s inherent ability to efficiently isolate anomalies in high-dimensional data, making it suitable for adapting to shifting data distributions in dynamic environments.Anomalies in network attack data may not occur in large numbers, so it is important to be able to detect anomalies even with small batch sizes. The novelty of this work lies in successfully detecting anomalies even with small batch sizes and identifying the point at which incremental retraining needs to be started. Triggering retraining early also keeps the model in sync with the latest data, reducing the chance for attacks to be successfully conducted. Our methodology implements an end-to-end workflow that continuously monitors incoming data and detects distribution changes using Isolation Forest, then manages model retraining using Random Forest to maintain optimal performance. We evaluate our approach using UWF-ZeekDataFall22, a newly created dataset that analyzes Zeek’s Connection Logs collected through Security Onion 2 network security monitor and labeled using the MITRE ATT&CK framework. Incremental as well as full retraining are analyzed using Random Forest. There was a steady increase in the model’s performance with incremental retraining and a positive impact on the model’s performance with full model retraining. Full article
(This article belongs to the Special Issue DDoS Attack Detection for Cyber–Physical Systems)
Show Figures

Figure 1

30 pages, 2096 KiB  
Article
A Hybrid Approach Using Graph Neural Networks and LSTM for Attack Vector Reconstruction
by Yelizaveta Vitulyova, Tetiana Babenko, Kateryna Kolesnikova, Nikolay Kiktev and Olga Abramkina
Computers 2025, 14(8), 301; https://doi.org/10.3390/computers14080301 - 24 Jul 2025
Viewed by 303
Abstract
The escalating complexity of cyberattacks necessitates advanced strategies for their detection and mitigation. This study presents a hybrid model that integrates Graph Neural Networks (GNNs) with Long Short-Term Memory (LSTM) networks to reconstruct and predict attack vectors in cybersecurity. GNNs are employed to [...] Read more.
The escalating complexity of cyberattacks necessitates advanced strategies for their detection and mitigation. This study presents a hybrid model that integrates Graph Neural Networks (GNNs) with Long Short-Term Memory (LSTM) networks to reconstruct and predict attack vectors in cybersecurity. GNNs are employed to analyze the structural relationships within the MITRE ATT&CK framework, while LSTM networks are utilized to model the temporal dynamics of attack sequences, effectively capturing the evolution of cyber threats. The combined approach harnesses the complementary strengths of these methods to deliver precise, interpretable, and adaptable solutions for addressing cybersecurity challenges. Experimental evaluation on the CICIDS2017 dataset reveals the model’s strong performance, achieving an Area Under the Curve (AUC) of 0.99 on both balanced and imbalanced test sets, an F1-score of 0.85 for technique prediction, and a Mean Squared Error (MSE) of 0.05 for risk assessment. These findings underscore the model’s capability to accurately reconstruct attack paths and forecast future techniques, offering a promising avenue for strengthening proactive defense mechanisms against evolving cyber threats. Full article
(This article belongs to the Section ICT Infrastructures for Cybersecurity)
Show Figures

Figure 1

22 pages, 696 KiB  
Article
Domain Knowledge-Driven Method for Threat Source Detection and Localization in the Power Internet of Things
by Zhimin Gu, Jing Guo, Jiangtao Xu, Yunxiao Sun and Wei Liang
Electronics 2025, 14(13), 2725; https://doi.org/10.3390/electronics14132725 - 7 Jul 2025
Viewed by 330
Abstract
Although the Power Internet of Things (PIoT) significantly improves operational efficiency by enabling real-time monitoring, intelligent control, and predictive maintenance across the grid, its inherently open and deeply interconnected cyber-physical architecture concurrently introduces increasingly complex and severe security threats. Existing IoT security solutions [...] Read more.
Although the Power Internet of Things (PIoT) significantly improves operational efficiency by enabling real-time monitoring, intelligent control, and predictive maintenance across the grid, its inherently open and deeply interconnected cyber-physical architecture concurrently introduces increasingly complex and severe security threats. Existing IoT security solutions are not fully adapted to the specific requirements of power systems, such as safety-critical reliability, protocol heterogeneity, physical/electrical context awareness, and the incorporation of domain-specific operational knowledge unique to the power sector. These limitations often lead to high false positives (flagging normal operations as malicious) and false negatives (failing to detect actual intrusions), ultimately compromising system stability and security response. To address these challenges, we propose a domain knowledge-driven threat source detection and localization method for the PIoT. The proposed method combines multi-source features—including electrical-layer measurements, network-layer metrics, and behavioral-layer logs—into a unified representation through a multi-level PIoT feature engineering framework. Building on advances in multimodal data integration and feature fusion, our framework employs a hybrid neural architecture combining the TabTransformer to model structured physical and network-layer features with BiLSTM to capture temporal dependencies in behavioral log sequences. This design enables comprehensive threat detection while supporting interpretable and fine-grained source localization. Experiments on a real-world Power Internet of Things (PIoT) dataset demonstrate that the proposed method achieves high detection accuracy and enables the actionable attribution of attack stages aligned with the MITRE Adversarial Tactics, Techniques, and Common Knowledge (ATT&CK) framework. The proposed approach offers a scalable and domain-adaptable foundation for security analytics in cyber-physical power systems. Full article
Show Figures

Figure 1

35 pages, 1485 KiB  
Article
Detecting Cyber Threats in UWF-ZeekDataFall22 Using K-Means Clustering in the Big Data Environment
by Sikha S. Bagui, Germano Correa Silva De Carvalho, Asmi Mishra, Dustin Mink, Subhash C. Bagui and Stephanie Eager
Future Internet 2025, 17(6), 267; https://doi.org/10.3390/fi17060267 - 18 Jun 2025
Viewed by 404
Abstract
In an era marked by the rapid growth of the Internet of Things (IoT), network security has become increasingly critical. Traditional Intrusion Detection Systems, particularly signature-based methods, struggle to identify evolving cyber threats such as Advanced Persistent Threats (APTs)and zero-day attacks. Such threats [...] Read more.
In an era marked by the rapid growth of the Internet of Things (IoT), network security has become increasingly critical. Traditional Intrusion Detection Systems, particularly signature-based methods, struggle to identify evolving cyber threats such as Advanced Persistent Threats (APTs)and zero-day attacks. Such threats or attacks go undetected with supervised machine-learning methods. In this paper, we apply K-means clustering, an unsupervised clustering technique, to a newly created modern network attack dataset, UWF-ZeekDataFall22. Since this dataset contains labeled Zeek logs, the dataset was de-labeled before using this data for K-means clustering. The labeled data, however, was used in the evaluation phase, to determine the attack clusters post-clustering. In order to identify APTs as well as zero-day attack clusters, three different labeling heuristics were evaluated to determine the attack clusters. To address the challenges faced by Big Data, the Big Data framework, that is, Apache Spark and PySpark, were used for our development environment. In addition, the uniqueness of this work is also in using connection-based features. Using connection-based features, an in-depth study is done to determine the effect of the number of clusters, seeds, as well as features, for each of the different labeling heuristics. If the objective is to detect every single attack, the results indicate that 325 clusters with a seed of 200, using an optimal set of features, would be able to correctly place 99% of attacks. Full article
Show Figures

Figure 1

29 pages, 662 KiB  
Article
Advanced Persistent Threats and Wireless Local Area Network Security: An In-Depth Exploration of Attack Surfaces and Mitigation Techniques
by Hosam Alamleh, Laura Estremera, Shadman Sakib Arnob and Ali Abdullah S. AlQahtani
J. Cybersecur. Priv. 2025, 5(2), 27; https://doi.org/10.3390/jcp5020027 - 22 May 2025
Viewed by 900
Abstract
Wireless Local Area Networks (WLANs), particularly Wi-Fi, serve as the backbone of modern connectivity, supporting billions of devices globally and forming a critical component in Internet of Things (IoT) ecosystems. However, the increasing ubiquity of WLANs also presents an expanding attack surface for [...] Read more.
Wireless Local Area Networks (WLANs), particularly Wi-Fi, serve as the backbone of modern connectivity, supporting billions of devices globally and forming a critical component in Internet of Things (IoT) ecosystems. However, the increasing ubiquity of WLANs also presents an expanding attack surface for adversaries—especially Advanced Persistent Threats (APTs), which operate with high levels of sophistication, resources, and long-term strategic objectives. This paper provides a holistic security analysis of WLANs under the lens of APT threat models, categorizing APT actors by capability tiers and examining their ability to compromise WLANs through logical attack surfaces. The study identifies and explores three primary attack surfaces: Radio Access Control interfaces, compromised insider nodes, and ISP gateway-level exposures. A series of empirical experiments—ranging from traffic analysis of ISP-controlled routers to offline password attack modeling—evaluate the current resilience of WLANs and highlight specific vulnerabilities such as credential reuse, firmware-based leakage, and protocol downgrade attacks. Furthermore, the paper demonstrates how APT resources significantly accelerate attacks through formal models of computational scaling. It also incorporates threat modeling frameworks, including STRIDE and MITRE ATT&CK, to contextualize risks and map adversary tactics. Based on these insights, this paper offers practical recommendations for enhancing WLAN resilience through improved authentication mechanisms, network segmentation, AI-based anomaly detection, and open firmware adoption. The findings underscore that while current WLAN implementations offer basic protections, they remain highly susceptible to well-resourced adversaries, necessitating a shift toward more robust, context-aware security architectures. Full article
Show Figures

Figure 1

28 pages, 11666 KiB  
Data Descriptor
Introducing UWF-ZeekData24: An Enterprise MITRE ATT&CK Labeled Network Attack Traffic Dataset for Machine Learning/AI
by Marshall Elam, Dustin Mink, Sikha S. Bagui, Russell Plenkers and Subhash C. Bagui
Data 2025, 10(5), 59; https://doi.org/10.3390/data10050059 - 25 Apr 2025
Viewed by 1062
Abstract
This paper describes the creation of a new dataset, UWF-ZeekData24, aligned with the Enterprise MITRE ATT&CK Framework, that addresses critical shortcomings in existing network security datasets. Controlling the construction of attacks and meticulously labeling the data provides a more accurate and dynamic environment [...] Read more.
This paper describes the creation of a new dataset, UWF-ZeekData24, aligned with the Enterprise MITRE ATT&CK Framework, that addresses critical shortcomings in existing network security datasets. Controlling the construction of attacks and meticulously labeling the data provides a more accurate and dynamic environment for testing of IDS/IPS systems and their machine learning algorithms. The outcomes of this research will assist in the development of cybersecurity solutions as well as increase the robustness and adaptability towards modern day cybersecurity threats. This new carefully engineered dataset will enhance cyber defense mechanisms that are responsible for safeguarding critical infrastructures and digital assets. Finally, this paper discusses the differences between crowd-sourced data and data collected in a more controlled environment. Full article
Show Figures

Figure 1

15 pages, 668 KiB  
Article
PenQA: A Comprehensive Instructional Dataset for Enhancing Penetration Testing Capabilities in Language Models
by Xiaofeng Zhong, Yunlong Zhang and Jingju Liu
Appl. Sci. 2025, 15(4), 2117; https://doi.org/10.3390/app15042117 - 17 Feb 2025
Viewed by 1711
Abstract
Large language models’ domain-specific capabilities can be enhanced through specialized datasets, yet constructing comprehensive cybersecurity datasets remains challenging due to the field’s multidisciplinary nature. We present PenQA, a novel instructional dataset for penetration testing that integrates theoretical and practical knowledge. Leveraging authoritative sources [...] Read more.
Large language models’ domain-specific capabilities can be enhanced through specialized datasets, yet constructing comprehensive cybersecurity datasets remains challenging due to the field’s multidisciplinary nature. We present PenQA, a novel instructional dataset for penetration testing that integrates theoretical and practical knowledge. Leveraging authoritative sources like MITRE ATT&CK™ and Metasploit, we employ online large language models to generate approximately 50,000 question–answer pairs.We demonstrate PenQA’s efficacy by fine-tuning language models with fewer than 10 billion parameters. Evaluation metrics, including the BLEU, ROUGE, and BERTScore, show significant improvements in the models’ penetration testing capabilities. PenQA is designed to be compatible with various model architectures and updatable as new techniques emerge. This work has implications for automated penetration testing tools, cybersecurity education, and decision support systems. The PenQA dataset is available in our GitHub repository. Full article
(This article belongs to the Special Issue AI Technology and Security in Cloud/Big Data)
Show Figures

Figure 1

27 pages, 2467 KiB  
Article
Enhancing Security Operations Center: Wazuh Security Event Response with Retrieval-Augmented-Generation-Driven Copilot
by Ismail, Rahmat Kurnia, Farid Widyatama, Ilham Mirwansyah Wibawa, Zilmas Arjuna Brata, Ukasyah, Ghitha Afina Nelistiani and Howon Kim
Sensors 2025, 25(3), 870; https://doi.org/10.3390/s25030870 - 31 Jan 2025
Cited by 3 | Viewed by 4034
Abstract
The sophistication of cyberthreats demands more efficient and intelligent tools to support Security Operations Centers (SOCs) in managing and mitigating incidents. To address this, we developed the Security Event Response Copilot (SERC), a system designed to assist analysts in responding to and mitigating [...] Read more.
The sophistication of cyberthreats demands more efficient and intelligent tools to support Security Operations Centers (SOCs) in managing and mitigating incidents. To address this, we developed the Security Event Response Copilot (SERC), a system designed to assist analysts in responding to and mitigating security breaches more effectively. SERC integrates two core components: (1) security event data extraction using Retrieval-Augmented Generation (RAG) methods, and (2) LLM-based incident response guidance. This paper specifically utilizes Wazuh, an open-source Security Information and Event Management (SIEM) platform, as the foundation for capturing, analyzing, and correlating security events from endpoints. SERC leverages Wazuh’s capabilities to collect real-time event data and applies a RAG approach to retrieve context-specific insights from three vectorized data collections: incident response knowledge, the MITRE ATT&CK framework, and the NIST Cybersecurity Framework (CSF) 2.0. This integration bridges strategic risk management and tactical intelligence, enabling precise identification of adversarial tactics and techniques while adhering to best practices in cybersecurity. The results demonstrate the potential of combining structured threat intelligence frameworks with AI-driven models, empowered by Wazuh’s robust SIEM capabilities, to address the dynamic challenges faced by SOCs in today’s complex cybersecurity environment. Full article
(This article belongs to the Special Issue AI Technology for Cybersecurity and IoT Applications)
Show Figures

Figure 1

21 pages, 806 KiB  
Article
Labeling Network Intrusion Detection System (NIDS) Rules with MITRE ATT&CK Techniques: Machine Learning vs. Large Language Models
by Nir Daniel, Florian Klaus Kaiser, Shay Giladi, Sapir Sharabi, Raz Moyal, Shalev Shpolyansky, Andres Murillo, Aviad Elyashar and Rami Puzis
Big Data Cogn. Comput. 2025, 9(2), 23; https://doi.org/10.3390/bdcc9020023 - 26 Jan 2025
Cited by 1 | Viewed by 2081
Abstract
Analysts in Security Operations Centers (SOCs) are often occupied with time-consuming investigations of alerts from Network Intrusion Detection Systems (NIDSs). Many NIDS rules lack clear explanations and associations with attack techniques, complicating the alert triage and the generation of attack hypotheses. Large Language [...] Read more.
Analysts in Security Operations Centers (SOCs) are often occupied with time-consuming investigations of alerts from Network Intrusion Detection Systems (NIDSs). Many NIDS rules lack clear explanations and associations with attack techniques, complicating the alert triage and the generation of attack hypotheses. Large Language Models (LLMs) may be a promising technology to reduce the alert explainability gap by associating rules with attack techniques. In this paper, we investigate the ability of three prominent LLMs (ChatGPT, Claude, and Gemini) to reason about NIDS rules while labeling them with MITRE ATT&CK tactics and techniques. We discuss prompt design and present experiments performed with 973 Snort rules. Our results indicate that while LLMs provide explainable, scalable, and efficient initial mappings, traditional machine learning (ML) models consistently outperform them in accuracy, achieving higher precision, recall, and F1-scores. These results highlight the potential for hybrid LLM-ML approaches to enhance SOC operations and better address the evolving threat landscape. By utilizing automation, the presented methods will enhance the analysis efficiency of SOC alerts, and decrease workloads for analysts. Full article
(This article belongs to the Special Issue Generative AI and Large Language Models)
Show Figures

Figure 1

22 pages, 1177 KiB  
Article
DeepOP: A Hybrid Framework for MITRE ATT&CK Sequence Prediction via Deep Learning and Ontology
by Shuqin Zhang, Xiaohang Xue and Xinyu Su
Electronics 2025, 14(2), 257; https://doi.org/10.3390/electronics14020257 - 9 Jan 2025
Cited by 2 | Viewed by 2450
Abstract
As the Industrial Internet of Things (IIoT) increasingly integrates with traditional networks, advanced persistent threats (APTs) pose significant risks to critical infrastructure. Traditional Intrusion Detection Systems (IDSs) and Anomaly Detection Systems (ADSs) are often inadequate in countering sophisticated multi-step APT attacks. This highlights [...] Read more.
As the Industrial Internet of Things (IIoT) increasingly integrates with traditional networks, advanced persistent threats (APTs) pose significant risks to critical infrastructure. Traditional Intrusion Detection Systems (IDSs) and Anomaly Detection Systems (ADSs) are often inadequate in countering sophisticated multi-step APT attacks. This highlights the necessity of studying attacker strategies and developing predictive models to mitigate potential threats. To address these challenges, we propose DeepOP, a hybrid framework for attack sequence prediction that combines deep learning and ontological reasoning. DeepOP leverages the MITRE ATT&CK framework to standardize attacker behavior and predict future attacks with fine-grained precision. Our framework’s core is a novel causal window self-attention mechanism embedded within a transformer-based architecture. This mechanism effectively captures local causal relationships and global dependencies within attack sequences, enabling accurate multi-step attack predictions. In addition, we construct a comprehensive dataset by extracting causally connected attack events from cyber threat intelligence (CTI) reports using ontological reasoning, mapping them to the ATT&CK framework. This approach addresses the challenge of insufficient data for fine-grained attack prediction and enhances the model’s ability to generalize across diverse scenarios. Experimental results demonstrate that the proposed model effectively predicts attacker behavior, achieving competitive performance in multi-step attack prediction tasks. Furthermore, DeepOP bridges the gap between theoretical modeling and practical security applications, providing a robust solution for countering complex APT threats. Full article
(This article belongs to the Special Issue AI-Based Solutions for Cybersecurity)
Show Figures

Figure 1

22 pages, 16196 KiB  
Article
A Study on a Scenario-Based Security Incident Prediction System for Cybersecurity
by Yong-Joon Lee
Appl. Sci. 2024, 14(24), 11836; https://doi.org/10.3390/app142411836 - 18 Dec 2024
Cited by 1 | Viewed by 2048
Abstract
In the 4th industrial era, the proliferation of interconnected smart devices and advancements in AI, particularly big data and machine learning, have integrated various industrial domains into cyberspace. This convergence brings novel security threats, making it essential to prevent known incidents and anticipate [...] Read more.
In the 4th industrial era, the proliferation of interconnected smart devices and advancements in AI, particularly big data and machine learning, have integrated various industrial domains into cyberspace. This convergence brings novel security threats, making it essential to prevent known incidents and anticipate potential breaches. This study develops a scenario-based evaluation system to predict and evaluate possible security accidents using the MITRE ATT&CK framework. It analyzes various security incidents, leveraging attack strategies and techniques to create detailed security scenarios and profiling services. Key contributions include integrating security logs, quantifying incident likelihood, and establishing proactive threat management measures. The study also proposes automated security audits and legacy system integration to enhance security posture. Experimental results show the system’s efficacy in detecting and preventing threats, providing actionable insights and a structured approach to threat analysis and response. This research lays the foundation for advanced security prediction systems, ensuring robust defense mechanisms against emerging cyber threats. Full article
Show Figures

Figure 1

15 pages, 473 KiB  
Article
Applying Multi-CLASS Support Vector Machines: One-vs.-One vs. One-vs.-All on the UWF-ZeekDataFall22 Dataset
by Rocio Krebs, Sikha S. Bagui, Dustin Mink and Subhash C. Bagui
Electronics 2024, 13(19), 3916; https://doi.org/10.3390/electronics13193916 - 3 Oct 2024
Cited by 3 | Viewed by 1492
Abstract
This study investigates the technical challenges of applying Support Vector Machines (SVM) for multi-class classification in network intrusion detection using the UWF-ZeekDataFall22 dataset, which is labeled based on the MITRE ATT&CK framework. A key challenge lies in handling imbalanced classes and complex attack [...] Read more.
This study investigates the technical challenges of applying Support Vector Machines (SVM) for multi-class classification in network intrusion detection using the UWF-ZeekDataFall22 dataset, which is labeled based on the MITRE ATT&CK framework. A key challenge lies in handling imbalanced classes and complex attack patterns, which are inherent in intrusion detection data. This work highlights the difficulties in implementing SVMs for multi-class classification, particularly with One-vs.-One (OvO) and One-vs.-All (OvA) methods, including scalability issues due to the large volume of network traffic logs and the tendency of SVMs to be sensitive to noisy data and class imbalances. SMOTE was used to address class imbalances, while preprocessing techniques were applied to improve feature selection and reduce noise in the data. The unique structure of network traffic data, with overlapping patterns between attack vectors, posed significant challenges in achieving accurate classification. Our model reached an accuracy of over 90% with OvO and over 80% with OvA, demonstrating that despite these challenges, multi-class SVMs can be effectively applied to complex intrusion detection tasks when combined with appropriate balancing and preprocessing techniques. Full article
(This article belongs to the Special Issue Machine Learning and Cybersecurity—Trends and Future Challenges)
Show Figures

Figure 1

17 pages, 2794 KiB  
Article
Security Operations Centers: Use Case Best Practices, Coverage, and Gap Analysis Based on MITRE Adversarial Tactics, Techniques, and Common Knowledge
by Samir Achraf Chamkar, Yassine Maleh and Noreddine Gherabi
J. Cybersecur. Priv. 2024, 4(4), 777-793; https://doi.org/10.3390/jcp4040036 - 25 Sep 2024
Cited by 2 | Viewed by 6680
Abstract
The rising frequency and complexity of cybersecurity threats necessitate robust monitoring and rapid response capabilities to safeguard digital assets effectively. As a result, many organizations are increasingly establishing Security Operations Centers (SOCs) to actively detect and respond to cybersecurity incidents. This paper addresses [...] Read more.
The rising frequency and complexity of cybersecurity threats necessitate robust monitoring and rapid response capabilities to safeguard digital assets effectively. As a result, many organizations are increasingly establishing Security Operations Centers (SOCs) to actively detect and respond to cybersecurity incidents. This paper addresses the intricate process of setting up a SOC, emphasizing the need for careful planning, substantial resources, and a strategic approach. This study outlines the essential steps involved in defining the SOC’s objectives and scope, selecting appropriate technologies, recruiting skilled cybersecurity professionals, and developing processes throughout the SOC lifecycle. This paper aims to provide a comprehensive understanding of the SOC’s threat detection capabilities and use cases. It also highlights the importance of choosing technologies that integrate seamlessly with existing IT infrastructure to ensure broad coverage of SOC activities. Furthermore, this study offers actionable insights for organizations looking to enhance their SOC capabilities, including a technical overview of SOC use case coverage and a gap assessment of detection rules. This assessment is based on an alignment with the MITRE ATT&CK framework and an analysis of events generated by the company’s existing IT devices and products. The findings from this research elucidate the indispensable role that SOCs play in bolstering organizational cybersecurity and resilience. Full article
(This article belongs to the Special Issue Cybersecurity Risk Prediction, Assessment and Management)
Show Figures

Figure 1

30 pages, 2658 KiB  
Article
SecuriDN: A Modeling Tool Supporting the Early Detection of Cyberattacks to Smart Energy Systems
by Davide Cerotti, Daniele Codetta Raiteri, Giovanna Dondossola, Lavinia Egidi, Giuliana Franceschinis, Luigi Portinale, Davide Savarro and Roberta Terruggia
Energies 2024, 17(16), 3882; https://doi.org/10.3390/en17163882 - 6 Aug 2024
Cited by 1 | Viewed by 1442
Abstract
SecuriDN v. 0.1 is a tool for the representation of the assets composing the IT and the OT subsystems of Distributed Energy Resources (DERs) control networks and the possible cyberattacks that can threaten them. It is part of a platform that allows the [...] Read more.
SecuriDN v. 0.1 is a tool for the representation of the assets composing the IT and the OT subsystems of Distributed Energy Resources (DERs) control networks and the possible cyberattacks that can threaten them. It is part of a platform that allows the evaluation of the security risks of DER control systems. SecuriDN is a multi-formalism tool, meaning that it manages several types of models: architecture graph, attack graphs and Dynamic Bayesian Networks (DBNs). In particular, each asset in the architecture is characterized by an attack graph showing the combinations of attack techniques that may affect the asset. By merging the attack graphs according to the asset associations in the architecture, a DBN is generated. Then, the evidence-based and time-driven probabilistic analysis of the DBN permits the quantification of the system security level. Indeed, the DBN probabilistic graphical model can be analyzed through inference algorithms, suitable for forward and backward assessment of the system’s belief state. In this paper, the features and the main goals of SecuriDN are described and illustrated through a simplified but realistic case study. Full article
(This article belongs to the Special Issue Model Predictive Control-Based Approach for Microgrids)
Show Figures

Figure 1

17 pages, 2567 KiB  
Article
Dynamic Cyberattack Simulation: Integrating Improved Deep Reinforcement Learning with the MITRE-ATT&CK Framework
by Sang Ho Oh, Jeongyoon Kim and Jongyoul Park
Electronics 2024, 13(14), 2831; https://doi.org/10.3390/electronics13142831 - 18 Jul 2024
Viewed by 1912
Abstract
As cyberattacks become increasingly sophisticated and frequent, it is crucial to develop robust cybersecurity measures that can withstand adversarial attacks. Adversarial simulation is an effective technique for evaluating the security of systems against various types of cyber threats. However, traditional adversarial simulation methods [...] Read more.
As cyberattacks become increasingly sophisticated and frequent, it is crucial to develop robust cybersecurity measures that can withstand adversarial attacks. Adversarial simulation is an effective technique for evaluating the security of systems against various types of cyber threats. However, traditional adversarial simulation methods may not capture the complexity and unpredictability of real-world cyberattacks. In this paper, we propose the improved deep reinforcement learning (DRL) algorithm to enhance adversarial attack simulation for cybersecurity with real-world scenarios from MITRE-ATT&CK. We first describe the challenges of traditional adversarial simulation and the potential benefits of using DRL. We then present an improved DRL-based simulation framework that can realistically simulate complex and dynamic cyberattacks. We evaluate the proposed DRL framework using a cyberattack scenario and demonstrate its effectiveness by comparing it with existing DRL algorithms. Overall, our results suggest that DRL has significant potential for enhancing adversarial simulation for cybersecurity in real-world environments. This paper contributes to developing more robust and effective cybersecurity measures that can adapt to the evolving threat landscape of the digital world. Full article
(This article belongs to the Special Issue AI-Based Solutions for Cybersecurity)
Show Figures

Figure 1

Back to TopTop