Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (73)

Search Parameters:
Keywords = ADORA1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2357 KiB  
Article
Targeting GLP-1 Signaling Ameliorates Cystogenesis in a Zebrafish Model of Nephronophthisis
by Priska Eckert, Maike Nöller, Merle Müller, Rebecca Haas, Johannes Ruf, Henriette Franz, Katharina Moos, Jia-ao Yu, Dongfang Zhao, Wanqiu Xie, Melanie Boerries, Gerd Walz and Toma A. Yakulov
Int. J. Mol. Sci. 2025, 26(15), 7366; https://doi.org/10.3390/ijms26157366 - 30 Jul 2025
Abstract
Nephronophthisis (NPH) is the leading genetic cause of end-stage renal disease in children and young adults, but no effective disease-modifying therapies are currently available. Here, we identify glucagon-like peptide-1 (GLP-1) signaling as a novel therapeutic target for NPH through a systematic drug repurposing [...] Read more.
Nephronophthisis (NPH) is the leading genetic cause of end-stage renal disease in children and young adults, but no effective disease-modifying therapies are currently available. Here, we identify glucagon-like peptide-1 (GLP-1) signaling as a novel therapeutic target for NPH through a systematic drug repurposing screen in zebrafish. By simultaneously depleting nphp1 and nphp4, we developed a robust zebrafish model that reproduces key features of human NPH, including glomerular cyst formation. Our screen revealed that dipeptidyl peptidase-4 (DPP4) inhibitors (Omarigliptin and Linagliptin) and GLP-1 receptor agonists (Semaglutide) significantly reduce cystogenesis in a dose-dependent manner. Genetic analysis demonstrated that GLP-1 receptor signaling is important for maintaining pronephros integrity, with gcgra and gcgrb (GLP-1 receptor genes) playing a particularly important role. Transcriptomic profiling identified adenosine receptor A2ab (adora2ab) as a key downstream effector of GLP-1 signaling, which regulates ciliary morphology and prevents cyst formation. Notably, nphp1/nphp4 double mutant zebrafish exhibited the upregulation of gcgra as a compensatory mechanism, which might explain their resistance to cystogenesis. This compensation was disrupted by the targeted depletion of GLP-1 receptors or the inhibition of adenylate cyclase, resulting in enhanced cyst formation, specifically in the mutant background. Our findings establish a signaling cascade from GLP-1 receptors to adora2ab in terms of regulating ciliary organization and preventing cystogenesis, offering new therapeutic opportunities for NPH through the repurposing of FDA-approved medications with established safety profiles. Full article
(This article belongs to the Special Issue Zebrafish as a Model in Human Disease: 3rd Edition)
Show Figures

Figure 1

18 pages, 3267 KiB  
Article
Transduction of Lentiviral Vectors and ADORA3 in HEK293T Cells Modulated in Gene Expression and Alternative Splicing
by Yongqi Qian, Zhaoyu Liu, Qingqing Liu, Xiaojuan Tian, Jing Mo, Liang Leng, Can Wang, Guoqing Xu, Sanyin Zhang and Jiang Xie
Int. J. Mol. Sci. 2025, 26(9), 4431; https://doi.org/10.3390/ijms26094431 - 7 May 2025
Cited by 1 | Viewed by 1280
Abstract
For steady transgenic expression, lentiviral vector-mediated gene delivery is a commonly used technique. One question that needs to be explored is how external lentiviral vectors and overexpressed genes perturb cellular homeostasis, potentially altering transcriptional networks. In this study, two Human Embryonic Kidney 293T [...] Read more.
For steady transgenic expression, lentiviral vector-mediated gene delivery is a commonly used technique. One question that needs to be explored is how external lentiviral vectors and overexpressed genes perturb cellular homeostasis, potentially altering transcriptional networks. In this study, two Human Embryonic Kidney 293T (HEK293T)-derived cell lines were established via lentiviral transduction, one overexpressing green fluorescent protein (GFP) and the other co-overexpressing GFP and ADORA3 following puromycin selection to ensure stable genomic integration. Genes with differentially transcript utilization (gDTUs) and differentially expressed genes (DEGs) across cell lines were identified after short-read and long-read RNA-seq. Only 31 genes were discovered to have changed in expression when GFP was expressed, although hundreds of genes showed variations in transcript use. In contrast, even when co-overexpression of GFP and ADORA3 alters the expression of more than 1000 genes, there are still less than 1000 gDTUs. Moreover, DEGs linked to ADORA3 overexpression play a major role in RNA splicing, whereas gDTUs are highly linked to a number of malignancies and the molecular mechanisms that underlie them. For the analysis of gene expression data from stable cell lines derived from HEK293T, our findings provide important insights into changes in gene expression and alternative splicing. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

18 pages, 7762 KiB  
Article
Identification of Therapeutic Targets for Hyperuricemia: Systematic Genome-Wide Mendelian Randomization and Colocalization Analysis
by Na Chen, Leilei Gong, Li Zhang, Yali Li, Yunya Bai, Dan Gao and Lan Zhang
Biomedicines 2025, 13(5), 1022; https://doi.org/10.3390/biomedicines13051022 - 23 Apr 2025
Viewed by 648
Abstract
Background: At present, there are still limitations and challenges in the treatment of hyperuricemia (HUA). Mendelian randomization (MR) has been widely used to identify new therapeutic targets. Therefore, we conducted a systematic druggable genome-wide MR to explore potential therapeutic targets and drugs [...] Read more.
Background: At present, there are still limitations and challenges in the treatment of hyperuricemia (HUA). Mendelian randomization (MR) has been widely used to identify new therapeutic targets. Therefore, we conducted a systematic druggable genome-wide MR to explore potential therapeutic targets and drugs for HUA. Methods: We integrated druggable genome data; blood, kidney, and intestinal expression quantitative trait loci (eQTLs); and HUA-associated genome-wide association study (GWAS) data to analyze the potential causal relationships between drug target genes and HUA using the MR method. Summary-data-based MR (SMR) analysis and Bayesian colocalization were used to assess causality. In addition, we conducted phenome-wide association studies, protein network construction, and enrichment analysis of significant targets to evaluate their biological functions and potential side effects. Finally, we performed drug prediction and molecular docking to identify potential drugs targeting these genes for HUA treatment. Results: Overall, we identified 22 druggable genes significantly associated with HUA through MR, SMR, and colocalization analyses. Among them, two prior druggable genes (ADORA2B and NDUFC2) reached statistically significant levels in at least two tissues in the blood, kidney, and intestine. Further results from phenome-wide studies revealed that there were no potential side effects of ADORA2B or NDUFC2. Moreover, we screened 15 potential drugs targeting the 22 druggable genes that could serve as candidates for HUA drug development. Conclusions: This study provides genetic evidence supporting the potential benefits of targeting 22 druggable genes for HUA treatment, offering new insights into the development of targeted drugs for HUA. Full article
(This article belongs to the Section Drug Discovery, Development and Delivery)
Show Figures

Figure 1

13 pages, 2411 KiB  
Article
Polyketides with Cardioprotective Bioactivities from Sponge-Associated Fungus Aspergillus giganteus MA46-5
by Ying-Tong Lin, Xiao-Wei Yao, Zheng-Wu Luo, Wei-Xin Jiang, Yin-Fei Wu, Ze-Jun Li, Xue-Wei Duan, Meng-Dan Zhang, Yuan-Yuan Cheng and Cui-Xian Zhang
Molecules 2025, 30(7), 1632; https://doi.org/10.3390/molecules30071632 - 6 Apr 2025
Viewed by 525
Abstract
One pair of novel enantiomers, gigantdioxin A (+)-1 and B (−)-1, with a skeleton of benzo[d][1,3]dioxin; a new acetophenone gigantone A (3); a known 3-chlorogentisyl alcohol (2), which is the bioprecursor of 1; [...] Read more.
One pair of novel enantiomers, gigantdioxin A (+)-1 and B (−)-1, with a skeleton of benzo[d][1,3]dioxin; a new acetophenone gigantone A (3); a known 3-chlorogentisyl alcohol (2), which is the bioprecursor of 1; acetophenone (4); and chromone derivative (5) were obtained from the sponge-associated fungus Aspergillus giganteus MA46-5. Their structures were established by extensive and in-depth spectral analysis, such as UV, 1D and 2D NMR, and HRESIMS. The absolute configurations of (±)-1 were deduced by ORD, chiral separation, and experimental and computational ECD. Meanwhile, we proposed a possible biosynthetic pathway of (±)-1. Fortunately, the pathway was proved by biomimetic synthesis through 2, as a bioprecursor, reacted with n-butyraldehyde. Myocardial protection assays showed that 3 and 4 possessed stronger protective effects than a positive control against myocardial cell H9c2 ischemia–reperfusion injury in low concentrations, and the effect of (−)-1 was almost equal to that of the positive control. Further, we explored the possible mechanism of myocardial protection through network pharmacology. Adenosine A2a receptor (ADORA2A) and serum albumin (ALB) represent potential targets for myocardial protection associated with (−)-1 and 4, respectively. Based on the network pharmacology, we docked the predicted proteins with bioactive compounds using Autodock Vina. Full article
Show Figures

Graphical abstract

17 pages, 1467 KiB  
Review
Endothelial Dysfunction in Huntington’s Disease: Pathophysiology and Therapeutic Implications
by Ning Hu, Zihao Chen, Xinyue Zhao, Xin Peng, Yimeng Wu, Kai Yang and Taolei Sun
Int. J. Mol. Sci. 2025, 26(4), 1432; https://doi.org/10.3390/ijms26041432 - 8 Feb 2025
Cited by 2 | Viewed by 1455
Abstract
Huntington’s disease (HD) is a progressive neurodegenerative disorder characterized by motor, cognitive, and psychiatric symptoms. While traditionally viewed through the lens of neuronal dysfunction, emerging evidence highlights the critical role of endothelial dysfunction in HD pathogenesis. This review provides a comprehensive overview of [...] Read more.
Huntington’s disease (HD) is a progressive neurodegenerative disorder characterized by motor, cognitive, and psychiatric symptoms. While traditionally viewed through the lens of neuronal dysfunction, emerging evidence highlights the critical role of endothelial dysfunction in HD pathogenesis. This review provides a comprehensive overview of endothelial dysfunction in HD, drawing on findings from both animal models and human studies. Key features of endothelial dysfunction in HD include impaired angiogenesis, altered cerebral blood flow, compromised neurovascular coupling and cerebrovascular reactivity, and increased blood–brain barrier permeability. Genetic factors such as the mutant huntingtin protein, peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), Brain-derived neurotrophic factor (BDNF), and the adenosine A2A receptor (ADORA2A) interact to influence endothelial function in complex ways. Various therapeutic approaches targeting endothelial dysfunction, including antioxidants, nitric oxide enhancers, calcium channel blockers, statins, and metformin, have shown promise in preclinical HD models but face translational challenges, particularly regarding optimal timing of intervention and patient stratification. The implications of these findings suggest that reconceptualizing HD as a neurovascular disorder, rather than purely neuronal, could lead to more effective treatment strategies. Future research priorities should include: (1) developing validated vascular biomarkers for disease progression, (2) advancing neuroimaging techniques to monitor endothelial dysfunction in real-time. These directions will be crucial for bridging the current gap between preclinical promise and clinical success in vascular-targeted HD therapeutics. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

10 pages, 2960 KiB  
Article
Characterising a Novel Therapeutic Target for Psoriasis, TYK2, Using Functional Genomics
by Shraddha S. Rane, Sarah Elyoussfi, Elan Shellard, Steve Eyre and Richard B. Warren
Int. J. Mol. Sci. 2024, 25(23), 13229; https://doi.org/10.3390/ijms252313229 - 9 Dec 2024
Viewed by 2314
Abstract
Psoriasis (Ps) is a debilitating immune-mediated chronic skin condition. It affects about 1–3% of the world population, with an 8–11% prevalence in Northern European populations. Tyrosine kinase 2 (TYK2) is a newly identified target for Ps. An independent non-coding genetic association with Ps [...] Read more.
Psoriasis (Ps) is a debilitating immune-mediated chronic skin condition. It affects about 1–3% of the world population, with an 8–11% prevalence in Northern European populations. Tyrosine kinase 2 (TYK2) is a newly identified target for Ps. An independent non-coding genetic association with Ps has been identified ~400 kb upstream of TYK2. The variants making up the credible Ps Single-Nucleotide Polymorphism (SNP) set were identified in their genomic context with the potential to influence TYK2 expression by interacting with regulatory elements involved in gene regulation. Previous evidence from our laboratory has suggested that credible SNP sets in intronic regions can be distal regulators of the genes of interest through long-range chromatin interactions. We hypothesise that SNPs at ILF3 are distal regulators of TYK2 expression via long-range chromatin interactions and Ps risk. The dysregulation of the TYK2 pathway in Ps may be mediated by a combination of GWAS risk SNPs at ILF3 and TYK2 and downstream genes. We investigated this by employing functional genomics and molecular biology methods. We developed a CD4 T cell model system with Jurkat-dCAS9-VP64 and Jurkat-dCAS9-KRAB cells using CRISPR activation and CRISPR inhibition of the risk variants rs892086 and rs7248205, selected from the latest Ps GWAS SNP set for their long-range interaction and light Linkage Disequilibrium (R2 > 0.8), respectively. Using CRISPR activation, we demonstrate here that these risk SNPs, although distal to TYK2, do indeed regulate the TYK2 gene. Investigations into annotating the TYK2 pathway using RNA-seq analysis revealed differentially regulated genes, including VEGFA, C1R, ADORA1, GLUD2, NDUFB8, and FCGR2C, which are thought to be implicated in Ps. These genes were observed to be associated with conditions such as psoriatic arthritis, atopic dermatitis, and systemic sclerosis when compared using published databases, which confirms their relevance and importance in inflammatory conditions. With the developed cell model systems using CRISPR technology and differential gene regulation, we demonstrate here that these genes have the potential to define the TYK2/Ps pathway and our understanding of the disease biology. Full article
(This article belongs to the Special Issue Skin Diseases: From Molecular Mechanisms to Pathology)
Show Figures

Figure 1

19 pages, 6470 KiB  
Article
Study on the Chemical Composition and Anti-Tumor Mechanisms of Clausena lansium Fruit By-Products: Based on LC-MS, Network Pharmacology Analysis, and Protein Target Validation
by Ziyue Zhang, Liangqian Zhang, Pengfei Wu, Yuan Tian, Yao Wen, Meina Xu, Peihao Xu, Ying Jiang, Nan Ma, Qi Wang and Wei Dai
Foods 2024, 13(23), 3878; https://doi.org/10.3390/foods13233878 - 30 Nov 2024
Viewed by 1627
Abstract
Clausena lansium (Lour.) Skeels, commonly known as Wampee, are valued for their edible and medicinal qualities, yet their pericarp and seeds are often discarded, resulting in wasted resources. This study investigates the anti-tumor potential of these by-products, focusing on their chemical composition and [...] Read more.
Clausena lansium (Lour.) Skeels, commonly known as Wampee, are valued for their edible and medicinal qualities, yet their pericarp and seeds are often discarded, resulting in wasted resources. This study investigates the anti-tumor potential of these by-products, focusing on their chemical composition and underlying mechanisms of action. A combination of metabolomics, network pharmacology, molecular docking, and experimental validation was employed in our study. Cytotoxicity screening demonstrated that the pericarp extract exhibited notable anti-tumor effects against MDA-MB-231 breast cancer cells, while the seed extract showed no similar activity. Chemical profiling identified 122 compounds in the pericarp and seeds, with only 26.23% overlap, suggesting that distinct compounds may drive the pericarp’s anti-tumor activity. Network pharmacology and molecular docking analyses identified PTGER3, DRD2, and ADORA2A as key targets, with several alkaloids, flavonoids, coumarins, and sesquiterpenes exhibiting strong binding affinities to these proteins. Western blot analysis further validated that the pericarp extract upregulated DRD2 and downregulated ADORA2A, indicating a possible mechanism for its anticancer effects. These findings suggest that Wampee pericarp holds promise as a source of active compounds with therapeutic potential for breast cancer, with implications for its use in the food and pharmaceutical industries. Full article
Show Figures

Figure 1

15 pages, 4350 KiB  
Article
The Effect of Caffeine Exposure on Sleep Patterns in Zebrafish Larvae and Its Underlying Mechanism
by Yuanzheng Wei, Zongyu Miao, Huixin Ye, Meihui Wu, Xinru Wei, Yu Zhang and Lei Cai
Clocks & Sleep 2024, 6(4), 749-763; https://doi.org/10.3390/clockssleep6040048 - 18 Nov 2024
Viewed by 2141
Abstract
The effect of caffeine on the behavior and sleep patterns of zebrafish larvae, as well as its underlying mechanisms, has been a topic of great interest. This study aimed to investigate the impact of caffeine on zebrafish larval sleep/wake behavior and the expression [...] Read more.
The effect of caffeine on the behavior and sleep patterns of zebrafish larvae, as well as its underlying mechanisms, has been a topic of great interest. This study aimed to investigate the impact of caffeine on zebrafish larval sleep/wake behavior and the expression of key regulatory genes such as cAMP-response element binding protein (CREB) and adenosine (ADA) in the sleep pathway. To begin, the study determined the optimal dose and duration of caffeine exposure, with the optimal doses found to be 31.25 μM, 62.5 μM, and 120 μM. Similarly, the optimal exposure time was established as no more than 120 h, ensuring a mortality rate of less than 10%. The confirmation of these conditions was achieved through the assessment of angiogenesis and the inflammatory reaction. As a result, the treatment time point of 24 h post-fertilization (hpf) was selected to examine the effects of caffeine on zebrafish larval sleep rhythm (48 h, with a light cycle of 14:10). Furthermore, the study analyzed the expression of clock genes (bmal1a, per1b, per2, per3, cry2), adenosine receptor genes (adora1a, adora1b, adora2aa, adora2ab, adora2b), and key regulatory factors (CREB and ADA). The research confirmed that caffeine could induce sleep pattern disorders, significantly upregulate adenosine receptor genes (adora1a, adora1b, adora2a, adora2ab, adora2b) (p < 0.05), and markedly decrease the total sleep time and sleep efficiency of the larvae. Additionally, the activity of ADA significantly increased during the exposure (p < 0.001), and the tissue-specific expression of CREB was also significantly increased, as assessed by immunofluorescence. Caffeine may regulate circadian clock genes through the ADA/ADORA/CREB pathway. These findings not only enhance our understanding of the effects of caffeine on zebrafish larvae but also provide valuable insights into the potential impact of caffeine on human behavior and sleep. Full article
(This article belongs to the Section Animal Basic Research)
Show Figures

Figure 1

17 pages, 7786 KiB  
Article
Electroacupuncture Relieves Neuropathic Pain via Adenosine 3 Receptor Activation in the Spinal Cord Dorsal Horn of Mice
by Faisal Ayub Kiani, Hao Li, Sha Nan, Qiuhua Li, Qianghui Lei, Ruiling Yin, Shiya Cao, Mingxing Ding and Yi Ding
Int. J. Mol. Sci. 2024, 25(19), 10242; https://doi.org/10.3390/ijms251910242 - 24 Sep 2024
Cited by 5 | Viewed by 1733
Abstract
Neuropathic pain (NPP) is a devastating and unbearable painful condition. As prevailing treatment strategies have failed to mitigate its complications, there remains a demand for effective therapies. Electroacupuncture (EA) has proved a potent remedial strategy in NPP management in humans and mammals. However, [...] Read more.
Neuropathic pain (NPP) is a devastating and unbearable painful condition. As prevailing treatment strategies have failed to mitigate its complications, there remains a demand for effective therapies. Electroacupuncture (EA) has proved a potent remedial strategy in NPP management in humans and mammals. However, past studies have investigated the underlying mechanism of the analgesic effects of EA on NPP, focusing primarily on adenosine receptors in peripheral tissues. Herein, we elucidate the role of the adenosine (Adora-3) signaling pathway in mediating pain relief through EA in the central nervous system, which is obscure in the literature and needs exploration. Specific pathogen-free (SPF) male adult mice (C57BL/6 J) were utilized to investigate the effect of EA on adenosine metabolism (CD73, ADA) and its receptor activation (Adora-3), as potential mechanisms to mitigate NPP in the central nervous system. NPP was induced via spared nerve injury (SNI). EA treatment was administered seven times post-SNI surgery, and lumber (L4–L6) spinal cord was collected to determine the molecular expression of mRNA and protein levels. In the spinal cord of mice, following EA application, the expression results revealed that EA upregulated (p < 0.05) Adora-3 and CD73 by inhibiting ADA expression. In addition, EA triggered the release of adenosine (ADO), which modulated the nociceptive responses and enhanced neuronal activation. Meanwhile, the interplay between ADO levels and EA-induced antinociception, using an Adora-3 agonist and antagonist, showed that the Adora-3 agonist IB-MECA significantly increased (p < 0.05) nociceptive thresholds and expression levels. In contrast, the antagonist MRS1523 exacerbated neuropathic pain. Furthermore, an upregulated effect of EA on Adora-3 expression was inferred when the Adora-3 antagonist was administered, and the EA treatment increased the fluorescent intensity of Adora-3 in the spinal cord. Taken together, EA effectively modulates NPP by regulating the Adora-3 signaling pathway under induced pain conditions. These findings enhance our understanding of NPP management and offer potential avenues for innovative therapeutic interventions. Full article
(This article belongs to the Special Issue The Multiple Mechanisms Underlying Neuropathic Pain (III))
Show Figures

Graphical abstract

29 pages, 4245 KiB  
Article
Effects of Ketogenic Diet on Increased Ethanol Consumption Induced by Social Stress in Female Mice
by Laura Torres-Rubio, Marina D. Reguilón, Susana Mellado, María Pascual and Marta Rodríguez-Arias
Nutrients 2024, 16(17), 2814; https://doi.org/10.3390/nu16172814 - 23 Aug 2024
Viewed by 1926
Abstract
Stress is a critical factor in the development of mental disorders such as addiction, underscoring the importance of stress resilience strategies. While the ketogenic diet (KD) has shown efficacy in reducing alcohol consumption in male mice without cognitive impairment, its impact on the [...] Read more.
Stress is a critical factor in the development of mental disorders such as addiction, underscoring the importance of stress resilience strategies. While the ketogenic diet (KD) has shown efficacy in reducing alcohol consumption in male mice without cognitive impairment, its impact on the stress response and addiction development, especially in females, remains unclear. This study examined the KD’s effect on increasing ethanol intake due to vicarious social defeat (VSD) in female mice. Sixty-four female OF1 mice were divided into two dietary groups: standard diet (n = 32) and KD (n = 32). These were further split based on exposure to four VSD or exploration sessions, creating four groups: EXP-STD (n = 16), VSD-STD (n = 16), EXP-KD (n = 16), and VSD-KD (n = 16). KD-fed mice maintained ketosis from adolescence until the fourth VSD/EXP session, after which they switched to a standard diet. The Social Interaction Test was performed 24 h after the last VSD session. Three weeks post-VSD, the Drinking in the Dark test and Oral Ethanol Self-Administration assessed ethanol consumption. The results showed that the KD blocked the increase in ethanol consumption induced by VSD in females. Moreover, among other changes, the KD increased the expression of the ADORA1 and CNR1 genes, which are associated with mechanisms modulating neurotransmission. Our results point to the KD as a useful tool to increase resilience to social stress in female mice. Full article
Show Figures

Figure 1

15 pages, 2204 KiB  
Article
Predicting Resistance to Immunotherapy in Melanoma, Glioblastoma, Renal, Stomach and Bladder Cancers by Machine Learning on Immune Profiles
by Guillaume Mestrallet
Onco 2024, 4(3), 192-206; https://doi.org/10.3390/onco4030014 - 20 Aug 2024
Cited by 3 | Viewed by 2116
Abstract
Strategies for tackling cancer involve surgery, radiotherapy, chemotherapy, and immune checkpoint inhibitors (ICB). However, the effectiveness of ICB remains constrained, prompting the need for a proactive strategy to foresee treatment responses and resistances. This study undertook an analysis across diverse cancer patient cohorts [...] Read more.
Strategies for tackling cancer involve surgery, radiotherapy, chemotherapy, and immune checkpoint inhibitors (ICB). However, the effectiveness of ICB remains constrained, prompting the need for a proactive strategy to foresee treatment responses and resistances. This study undertook an analysis across diverse cancer patient cohorts (including melanoma, clear cell renal carcinoma, glioblastoma, bladder, and stomach cancers) subjected to various immune checkpoint blockade treatments. Surprisingly, our findings unveiled that over 38% of patients demonstrated resistance and persistent disease progression despite undergoing ICB intervention. To unravel the intricacies of resistance, we scrutinized the immune profiles of cancer patients experiencing ongoing disease progression and resistance post-ICB therapy. These profiles delineated multifaceted defects, including compromised macrophage, monocyte, and T cell responses, impaired antigen presentation, aberrant regulatory T cell (Tregs) responses, and an elevated expression of immunosuppressive and G protein-coupled receptor molecules (TGFB1, IL2RA, IL1B, EDNRB, ADORA2A, SELP, and CD276). Building upon these insights into resistance profiles, we harnessed machine learning algorithms to construct models predicting the response and resistance to ICB and developed the accompanying software. While previous work on glioblastoma with only one type of algorithm had an accuracy of 0.82, we managed to develop 20 models that provided estimates of future events of resistance or response in five cancer types, with accuracies ranging between 0.79 and 1, based on their distinct immune characteristics. In conclusion, our approach advocates for the personalized application of immunotherapy in cancer patients based on patient-specific attributes and computational models. Full article
Show Figures

Figure 1

14 pages, 8402 KiB  
Article
Genetic Analysis of Egg Production Traits in Luhua Chickens: Insights from a Multi-Trait Animal Model and a Genome-Wide Association Study
by Qianwen Yang, Xubin Lu, Guohui Li, Huiyong Zhang, Chenghao Zhou, Jianmei Yin, Wei Han and Haiming Yang
Genes 2024, 15(6), 796; https://doi.org/10.3390/genes15060796 - 17 Jun 2024
Cited by 2 | Viewed by 2218
Abstract
Egg production plays a pivotal role in the economic viability of hens. To analyze the genetic rules of egg production, a total of 3151 Luhua chickens were selected, the egg production traits including egg weight at first laying (Start-EW), egg weight at 43 [...] Read more.
Egg production plays a pivotal role in the economic viability of hens. To analyze the genetic rules of egg production, a total of 3151 Luhua chickens were selected, the egg production traits including egg weight at first laying (Start-EW), egg weight at 43 weeks (EW-43), egg number at 43 weeks (EN-43), and total egg number (EN-All) were recorded. Then, the effects of related factors on egg production traits were explored, using a multi-trait animal model for genetic parameter estimation and a genome-wide association study (GWAS). The results showed that body weight at first egg (BWFE), body weight at 43 weeks (BW-43), age at first egg (AFE), and seasons had significant effects on the egg production traits. Start-EW and EW-43 had moderate heritability of 0.30 and 0.21, while EN-43 and EN-All had low heritability of 0.13 and 0.16, respectively. Start-EW exhibited a robust positive correlation with EW-43, while Start-EW was negatively correlated with EN-43 and EN-All. Furthermore, gene ontology (GO) results indicated that Annexin A2 (ANXA2) and Frizzled family receptor 7 (FZD7) related to EW-43, Cyclin D1 (CCND1) and A2B adenosine receptor (ADORA2B) related to EN-All, and have been found to be mainly involved in metabolism and growth processes, and deserve more attention and further study. This study contributes to accelerating genetic progress in improving low heritability egg production traits in layers, especially in Luhua chickens. Full article
(This article belongs to the Special Issue Poultry Breeding and Genetics)
Show Figures

Figure 1

12 pages, 1668 KiB  
Article
Effect of ADORA2A Gene Polymorphism and Acute Caffeine Supplementation on Hormonal Response to Resistance Exercise: A Double-Blind, Crossover, Placebo-Controlled Study
by Mohammad Rahman Rahimi, Ekaterina A. Semenova, George John, Fateme Fallah, Andrey K. Larin, Edward V. Generozov and Ildus I. Ahmetov
Nutrients 2024, 16(12), 1803; https://doi.org/10.3390/nu16121803 - 8 Jun 2024
Cited by 5 | Viewed by 3950
Abstract
Previous studies have reported that TT genotype carriers of the adenosine A2a receptor (ADORA2A) gene rs5751876 polymorphism have better ergogenic and anti-inflammatory responses to caffeine intake compared to C allele carriers. The aim of the present study was twofold: (1) to [...] Read more.
Previous studies have reported that TT genotype carriers of the adenosine A2a receptor (ADORA2A) gene rs5751876 polymorphism have better ergogenic and anti-inflammatory responses to caffeine intake compared to C allele carriers. The aim of the present study was twofold: (1) to investigate the association of the ADORA2A rs5751876 polymorphism with acute caffeine supplementation on hormonal (growth hormone and testosterone) response to resistance exercise (RE); (2) to examine the relationship between the rs5751876 polymorphism and the resting levels of growth hormone and testosterone in athletes who are light caffeine consumers. A double-blind, crossover, placebo-controlled study involving 30 resistance-trained men (age 21.7 ± 4.1) was conducted to assess the impact of caffeine supplementation on serum growth hormone (GH) and testosterone (TS) levels before, immediately after, and 15 min post-RE. One hour before engaging in resistance exercise, subjects were randomly administered 6 mg of caffeine per kg of body mass or a placebo (maltodextrin). After a 7-day washout period, the same protocol was repeated. Resting testosterone and growth hormone levels were examined in the sera of 94 elite athletes (31 females, age 21.4 ± 2.8; 63 males, age 22.9 ± 3.8). Caffeine consumption led to significantly greater increases in GH and TS in men with the TT genotype compared to C allele carriers. Furthermore, in the group of athletes, carriers of the TT genotype had significantly higher testosterone (p = 0.0125) and growth hormone (p = 0.0365) levels compared to C allele carriers. In conclusion, the ADORA2A gene rs5751876 polymorphism may modify the effect of caffeine intake on the hormonal response to exercise. Full article
Show Figures

Figure 1

12 pages, 295 KiB  
Article
Genetic Polymorphisms of P2RX7 but Not of ADORA2A Are Associated with the Severity of SARS-CoV-2 Infection
by Jorge Lindo, Célia Nogueira, Rui Soares, Nuno Cunha, Maria Rosário Almeida, Lisa Rodrigues, Patrícia Coelho, Francisco Rodrigues, Rodrigo A. Cunha and Teresa Gonçalves
Int. J. Mol. Sci. 2024, 25(11), 6135; https://doi.org/10.3390/ijms25116135 - 2 Jun 2024
Cited by 2 | Viewed by 2184
Abstract
SARS-CoV-2 infection ranges from mild to severe presentations, according to the intensity of the aberrant inflammatory response. Purinergic receptors dually control the inflammatory response: while adenosine A2A receptors (A2ARs) are anti-inflammatory, ATP P2X7 receptors (P2X7Rs) exert pro-inflammatory effects. The aim of this study [...] Read more.
SARS-CoV-2 infection ranges from mild to severe presentations, according to the intensity of the aberrant inflammatory response. Purinergic receptors dually control the inflammatory response: while adenosine A2A receptors (A2ARs) are anti-inflammatory, ATP P2X7 receptors (P2X7Rs) exert pro-inflammatory effects. The aim of this study was to assess if there were differences in allelic and genotypic frequencies of a loss-of-function SNP of ADORA2A (rs2298383) and a gain-of-function single nucleotide polymorphism (SNP) of P2RX7 (rs208294) in the severity of SARS-CoV-2-associated infection. Fifty-five individuals were enrolled and categorized according to the severity of the infection. Endpoint genotyping was performed in blood cells to screen for both SNPs. The TT genotype (vs. CT + CC) and the T allele (vs. C allele) of P2RX7 SNP were found to be associated with more severe forms of COVID-19, whereas the association between ADORA2A SNP and the severity of infection was not significantly different. The T allele of P2RX7 SNP was more frequent in people with more than one comorbidity and with cardiovascular conditions and was associated with colorectal cancer. Our findings suggest a more prominent role of P2X7R rather than of A2AR polymorphisms in SARS-CoV-2 infection, although larger population-based studies should be performed to validate our conclusions. Full article
20 pages, 13470 KiB  
Article
Network Pharmacology Analysis of the Potential Pharmacological Mechanism of a Sleep Cocktail
by Yuyun Liang, Yanrong Lv, Jing Qin and Wenbin Deng
Biomolecules 2024, 14(6), 630; https://doi.org/10.3390/biom14060630 - 27 May 2024
Cited by 2 | Viewed by 3283
Abstract
Insomnia, also known as sleeplessness, is a sleep disorder due to which people have trouble sleeping, followed by daytime sleepiness, low energy, irritability, and a depressed mood. It may result in an increased risk of accidents of all kinds as well as problems [...] Read more.
Insomnia, also known as sleeplessness, is a sleep disorder due to which people have trouble sleeping, followed by daytime sleepiness, low energy, irritability, and a depressed mood. It may result in an increased risk of accidents of all kinds as well as problems focusing and learning. Dietary supplements have become popular products for alleviating insomnia, while the lenient requirements for pre-market research result in unintelligible mechanisms of different combinations of dietary supplements. In this study, we aim to systematically identify the molecular mechanisms of a sleep cocktail’s pharmacological effects based on findings from network pharmacology and molecular docking. A total of 249 targets of the sleep cocktail for the treatment of insomnia were identified and enrichment analysis revealed multiple pathways involved in the nervous system and inflammation. Protein–protein interaction (PPI) network analysis and molecular complex detection (MCODE) analysis yielded 10 hub genes, including AKT1, ADORA1, BCL2, CREB1, IL6, JUN, RELA, STAT3, TNF, and TP53. Results from weighted correlation network analysis (WGCNA) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of insomnia-related transcriptome data from peripheral blood mononuclear cells (PBMCs) showed that a sleep cocktail may also ease insomnia via regulating the inflammatory response. Molecular docking results reveal good affinity of Sleep Cocktail to 9 selected key targets. It is noteworthy that the crucial target HSP90AA1 binds to melatonin most stably, which was further validated by MD simulation. Full article
Show Figures

Figure 1

Back to TopTop