Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = ACV-resistant strains

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6020 KiB  
Article
Anti-Herpes Simplex Virus (Wild-Type and Drug-Resistant) Properties of Herbal KerraTM, KSTM, and MinozaTM
by Chaleampol Loymunkong, Kiattawee Choowongkomon, Chukkris Heawchaiyaphum, Nutchanat Chatchawankanpanich, Chamsai Pientong, Tipaya Ekalaksananan and Jureeporn Chuerduangphui
Viruses 2025, 17(7), 889; https://doi.org/10.3390/v17070889 - 24 Jun 2025
Viewed by 939
Abstract
Commercial herbal compounds are a main attractive target to explore for a novel drug for the treatment of HSV. This study investigated the anti-HSV infectivity of extracts derived from the Thai commercial herbals KerraTM, KSTM, and MinozaTM. [...] Read more.
Commercial herbal compounds are a main attractive target to explore for a novel drug for the treatment of HSV. This study investigated the anti-HSV infectivity of extracts derived from the Thai commercial herbals KerraTM, KSTM, and MinozaTM. Wild-type HSV-1 KOS, HSV-2, and drug-resistant HSV-1 dxpIII were used to investigate any inhibitory effects of these extracts. A plaque formation assay was performed to investigate the effects of all extracts. The viral ICP4, UL30, gD, and gB and cellular IL1β, IL6, STAT3, and NFKB1 expression levels were evaluated. The KerraTM, KSTM, and MinozaTM extracts at 50–200 μg/mL significantly inhibited HSV-1 KOS and dxpIII infection in the post-entry step, whereas only MinozaTM could not reduce plaque formation of HSV-2. In addition, ICP4, UL30, and gD mRNAs and gB protein were significantly decreased in KerraTM- and KSTM-treated cells. Furthermore, IL1B, IL6, STAT3, and NFKB1 expression was upregulated in KerraTM- and KSTM-treated cells. KerraTM and KSTM could be agents against HSV infection, especially the HSV acyclovir (ACV)-resistant strain. From the docking result and drug-likeness prediction, 2-Methoxy-9H-xanthen-9-one, piperine, and sargassopenilline D found in KerraTM, KSTM, and MinozaTM show high binding energy closely resembling ACV, and are desirable as drug-like characteristics. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

15 pages, 1112 KiB  
Article
Biological Evaluation of 3-Aryl and/or 4-(N-Aryl)aminocoumarins Against Human Pathogens: Antileishmanial and Antiviral Activities
by Vitor Won-Held Rabelo, Leonardo Simões de Abreu Carneiro, Luan Letieri Belem Martins, Fernando Almeida-Souza, Luciene Soares Silva, Leonardo dos Santos Corrêa Amorim, Maria Leonisa Sanchez-Nuñez, Kátia da Silva Calabrese, Paula Alvarez Abreu, Camilla Djenne Buarque and Izabel Christina Nunes de Palmer Paixão
Future Pharmacol. 2024, 4(4), 919-933; https://doi.org/10.3390/futurepharmacol4040048 - 19 Dec 2024
Viewed by 1029
Abstract
Background: Vector-borne diseases, such as leishmaniasis and arboviral infections, represent a great challenge to human health with limited therapeutic options. In addition, sexually transmitted infections, such as herpes, affect billions of people worldwide and the emergence of new strains resistant to common antivirals, [...] Read more.
Background: Vector-borne diseases, such as leishmaniasis and arboviral infections, represent a great challenge to human health with limited therapeutic options. In addition, sexually transmitted infections, such as herpes, affect billions of people worldwide and the emergence of new strains resistant to common antivirals, such as acyclovir (ACV), poses a serious threat to humans. In this context, coumarins have proved to be a valuable source of new derivatives with promising biological activities to fight these diseases. Methodology: 3-aryl and/or 4-(N-aryl)aminocoumarins were synthesized, and their drug-like profile was evaluated using silico tools. Their biological activity against Leishmania amazonensis promastigotes was evaluated using the MTT assay, while their antiviral activity against replication of Chikungunya, Mayaro, Zika, and type 1 Herpes simplex virus (HSV-1) in Vero cells was analyzed using plaque reduction assays. Results: The in silico studies pointed to satisfactory pharmacokinetic and toxicological properties as drug candidates. Hence, their antileishmanial activity was evaluated. None of the compounds exhibited significant activity and compound 2b showed the highest activity (IC50 = 47.10 µM). We further evaluated their cytotoxicity and antiviral activity. Compound 2e showed good activity against ACV-sensitive and -resistant HSV-1 strains with EC50 values of 48.68 µM and 66.26 µM, respectively (selectivity index values of 12.5 and 9.2). Mechanism of action studies indicated that this compound acts at late steps of HSV-1 replication, such as virus egress. Conclusions: Compound 2e possesses a different mechanism of action compared to ACV and presents a promising alternative for the treatment of HSV-1 infections. Full article
Show Figures

Graphical abstract

11 pages, 1311 KiB  
Article
A Mutation in the Herpes Simplex Virus Type 1 (HSV-1) UL29 Gene is Associated with Anti-Herpesvirus Drugs’ Susceptibility
by Souichi Yamada, Shizuko Harada, Hikaru Fujii, Hitomi Kinoshita, Phu Hoang Anh Nguyen, Miho Shibamura, Tomoki Yoshikawa, Madoka Kawahara, Hideki Ebihara, Masayuki Saijo and Shuetsu Fukushi
Viruses 2024, 16(12), 1813; https://doi.org/10.3390/v16121813 - 21 Nov 2024
Viewed by 1424
Abstract
Herpes simplex virus type 1 (HSV-1) acyclovir (ACV) resistance is acquired by mutations in the viral thymidine kinase (TK) or DNA polymerase (DNApol) genes. We previously obtained an ACV-resistant clone (HSV-1_VZV_TK_clone α) by sequential passages of HSV-1_VZV-TK, a recombinant virus which lacked its [...] Read more.
Herpes simplex virus type 1 (HSV-1) acyclovir (ACV) resistance is acquired by mutations in the viral thymidine kinase (TK) or DNA polymerase (DNApol) genes. We previously obtained an ACV-resistant clone (HSV-1_VZV_TK_clone α) by sequential passages of HSV-1_VZV-TK, a recombinant virus which lacked its endogenous TK activity and instead expressed the varicella-zoster virus (VZV) TK ectopically. HSV-1_VZV_TK_clone α had been generated using an HSV-1_BAC in the presence of increasing concentrations of ACV. The ACV-resistant clone bore normal TK and DNApol genes. Here, we deployed next-generation full-genome sequencing of HSV-1_VZV_TK_clone α and identified a single nucleotide substitution, resulting in a P597L missense mutation in the UL29 gene product, the ICP8 protein. Recombinant HSV-1 encoding a P597L ICP8 protein was generated, and its properties and ability to confer drug resistance were analyzed. No difference in virus growth and UL29 expression was observed between the mutant recombinant, the wild type, and a revertant mutant viral strain, and susceptibility tests of these strains to ACV and other drugs using Vero, HEL, and ARPE19 cells identified that the recombinant UL29 mutant virus was resistant only to ACV. These results indicate that ICP8 may be involved in the anti-herpesvirus drugs’ mechanism of action on HSV-1. Full article
(This article belongs to the Special Issue Mechanisms of Herpesvirus Resistance)
Show Figures

Figure 1

13 pages, 1250 KiB  
Article
Anti-Herpetic Activity of Killer Peptide (KP): An In Vitro Study
by Arianna Sala, Francesco Ricchi, Laura Giovati, Stefania Conti, Tecla Ciociola and Claudio Cermelli
Int. J. Mol. Sci. 2024, 25(19), 10602; https://doi.org/10.3390/ijms251910602 - 1 Oct 2024
Cited by 2 | Viewed by 1409
Abstract
Antimicrobial peptides represent a promising alternative to traditional drugs in relation to cost, toxicity, and, primarily, the growing problem of drug resistance. Here, we report on the activity against HSV-1 and HSV-2 of a previously described wide-spectrum synthetic decapeptide, Killer Peptide (KP). As [...] Read more.
Antimicrobial peptides represent a promising alternative to traditional drugs in relation to cost, toxicity, and, primarily, the growing problem of drug resistance. Here, we report on the activity against HSV-1 and HSV-2 of a previously described wide-spectrum synthetic decapeptide, Killer Peptide (KP). As determined by plaque reduction assays, treatment with KP at 100 μg/mL resulted in a reduction in the viral yield titer of 3.5 Logs for HSV-1 and 4.1 Logs for HSV-2. Further evaluation of KP antiviral activity focused on the early stages of the virus replicative cycle, including the determination of the residual infectivity of viral suspensions treated with KP. A direct effect of the peptide on viral particles impairing virus absorption and penetration was shown. The toxicity profile proved to be extremely good, with a selectivity index of 29.6 for HSV-1 and 156 for HSV-2. KP was also active against acyclovir (ACV)-resistant HSV isolates, while HSV subcultures in the presence of sub-inhibitory doses of KP did not lead to the emergence of resistant strains. Finally, the antiviral action of KP proved to be synergistic with that of ACV. Overall, these results demonstrate that KP could represent an interesting addition/alternative to acyclovir for antiviral treatment. Full article
(This article belongs to the Special Issue Antimicrobial and Antiviral Peptides)
Show Figures

Figure 1

13 pages, 3218 KiB  
Article
Korean Chestnut Honey Suppresses HSV-1 Infection by Regulating the ROS–NLRP3 Inflammasome Pathway
by Eun-Bin Kwon, Young Soo Kim, Buyun Kim, Se-Gun Kim, Sung-Joon Na, Younghoon Go, Hong Min Choi, Hye Jin Lee, Sang Mi Han and Jang-Gi Choi
Antioxidants 2023, 12(11), 1935; https://doi.org/10.3390/antiox12111935 - 30 Oct 2023
Cited by 4 | Viewed by 3544
Abstract
Herpes simplex virus 1 (HSV-1) is double-stranded DNA virus that belongs to the Orthoherpesviridae family. It causes serious neurological diseases of the central nervous system, such as encephalitis. The current U.S. Food and Drug Administration (FDA)-approved drugs for preventing HSV-1 infection include acyclovir [...] Read more.
Herpes simplex virus 1 (HSV-1) is double-stranded DNA virus that belongs to the Orthoherpesviridae family. It causes serious neurological diseases of the central nervous system, such as encephalitis. The current U.S. Food and Drug Administration (FDA)-approved drugs for preventing HSV-1 infection include acyclovir (ACV) and valacyclovir; however, their long-term use causes severe side effects and often results in the emergence of drug-resistant strains. Therefore, it is important to discover new antiviral agents that are safe and effective against HSV-1 infection. Korean chestnut honey (KCH) has various pharmacological activities, such as antioxidant, antibacterial, and anti-inflammation effects; however, antiviral effects against HSV-1 have not yet been reported. Therefore, we determined the antiviral activity and mechanism of action of KCH after HSV-1 infection on the cellular level. KCH inhibited the HSV-1 infection of host cells through binding and virucidal steps. KCH decreased the production of reactive oxygen species (ROS) and calcium (Ca2+) following HSV-1 infection and suppressed the production of inflammatory cytokines by inhibiting nuclear factor kappa-light-chain-enhancer of activated B cells (NF-кB) activity. Furthermore, we found that KCH inhibited the expression of the nod-like receptor protein 3 (NLRP3) inflammasome during HSV-1 infection. Taken together, the antiviral effects of KCH occur through multiple targets, including the inhibition of viral replication and the ROS-mediated NLRP3 inflammasome pathway. Our findings suggest that KCH has potential for the treatment of HSV-1 infection and related diseases. Full article
(This article belongs to the Special Issue Plant Materials and Their Antioxidant Potential)
Show Figures

Figure 1

10 pages, 1301 KiB  
Article
Bioactive Compounds from Endophytic Bacteria Bacillus subtilis Strain EP1 with Their Antibacterial Activities
by Muhammad Numan, Muddaser Shah, Sajjad Asaf, Najeeb Ur Rehman and Ahmed Al-Harrasi
Metabolites 2022, 12(12), 1228; https://doi.org/10.3390/metabo12121228 - 7 Dec 2022
Cited by 9 | Viewed by 3325
Abstract
Endophytic bacteria boost host plant defense and growth by producing vital compounds. In the current study, a bacterial strain was isolated from the Boswellia sacra plant and identified as Bacillus subtilis strain EP1 (accession number: MT256301) through 16S RNA gene sequencing. From the [...] Read more.
Endophytic bacteria boost host plant defense and growth by producing vital compounds. In the current study, a bacterial strain was isolated from the Boswellia sacra plant and identified as Bacillus subtilis strain EP1 (accession number: MT256301) through 16S RNA gene sequencing. From the identified bacteria, four compounds—1 (4-(4-cinnamoyloxy)phenyl)butanoic acid), 2 (cyclo-(L-Pro-D-Tyr)), 3 (cyclo-(L-Val-L-Phe)), and 4 (cyclo-(L-Pro-L-Val))—were isolated and characterized by 1D and 2D NMR and mass spectroscopy. Moreover, antibacterial activity and beta-lactam-producing gene inhibition (δ-(l-α-aminoadipyl)-l-cysteinyl-d-valine synthetase (ACVS) and aminoadipate aminotransferase (AADAT)) assays were performed. Significant antibacterial activity was observed against the human pathogenic bacterial strains (E. coli) by compound 4 with a 13 ± 0.7 mm zone of inhibition (ZOI), followed by compound 1 having an 11 ± 0.7 mm ZOI. In contrast, the least antibacterial activity among the tested samples was offered by compound 2 with a 10 ± 0.9 mm ZOI compared to the standard (26 ± 1.2 mm). Similarly, the molecular analysis of beta-lactam inhibition determined that compounds 3 and 4 inhibited the two genes (2- to 4-fold) in the beta-lactam biosynthesis (ACVS and AADAT) pathway. From these results, it can be concluded that future research on these compounds could lead to the inhibition of antibiotic-resistant pathogenic bacterial strains. Full article
Show Figures

Graphical abstract

14 pages, 3296 KiB  
Article
In Vitro and In Silico Analysis of the Inhibitory Activity of EGCG-Stearate against Herpes Simplex Virus-2
by James D. Stamos, Lee H. Lee, Calvin Taylor, Tony Elias and Sandra D. Adams
Microorganisms 2022, 10(7), 1462; https://doi.org/10.3390/microorganisms10071462 - 20 Jul 2022
Cited by 8 | Viewed by 4616
Abstract
About half a billion people worldwide are infected with herpes simplex virus-2 (HSV-2). Prolonged treatment with acyclovir (ACV) and its analogs leads to the development of resistant strains. The aim of this study was to investigate the antiviral potential of epigallocatechin gallate (EGCG) [...] Read more.
About half a billion people worldwide are infected with herpes simplex virus-2 (HSV-2). Prolonged treatment with acyclovir (ACV) and its analogs leads to the development of resistant strains. The aim of this study was to investigate the antiviral potential of epigallocatechin gallate (EGCG) from Camellia sinensis and a stable analog EGCG-stearate (EGCG-S) against HSV-2 in cultured Vero cells. Cell viability and cell proliferation assays were used to determine the non-cytotoxic concentrations on cultured Vero cells. HSV-2 with a green fluorescent protein (GFP) fusion protein of VP26 virions were treated with non-cytotoxic concentrations of EGCG and EGCG-S. The effects on infectivity and mechanisms were determined by plaque assay, attachment and penetration assays, confocal microscopy, qPCR, and in silico modeling analysis. Our results demonstrate that treatment of HSV-2 virions with EGCG and EGCG-S at a concentration of 75 µM showed greater than 99.9% inhibition by inhibiting the attachment of HSV-2 virions to host cells. The bioinformatic analysis indicated high binding affinity of EGCG-S for glycoprotein D; thus EGCG-S may block fusion of HSV-2 and the cell membrane, preventing entry of HSV-2 into the cell. Full article
(This article belongs to the Special Issue Emerging Viruses and Antiviral Drugs)
Show Figures

Figure 1

16 pages, 3326 KiB  
Article
Oleanolic Acid Derivative AXX-18 Exerts Antiviral Activity by Inhibiting the Expression of HSV-1 Viral Genes UL8 and UL52
by Zhaoyang Wang, Jiaoyan Jia, Yuzhou Jiang, Feng Li, Yiliang Wang, Xiaowei Song, Shurong Qin, Yifei Wang, Kai Zheng, Binyuan Hu, Yongxian Cheng and Zhe Ren
Viruses 2022, 14(6), 1287; https://doi.org/10.3390/v14061287 - 13 Jun 2022
Cited by 3 | Viewed by 3187
Abstract
Two-thirds of the world’s population is infected with HSV-1, which is closely associated with many diseases, such as Gingival stomatitis and viral encephalitis. However, the drugs that are currently clinically effective in treating HSV-1 are Acyclovir (ACV), Ganciclovir, and Valacyclovir. Due to the [...] Read more.
Two-thirds of the world’s population is infected with HSV-1, which is closely associated with many diseases, such as Gingival stomatitis and viral encephalitis. However, the drugs that are currently clinically effective in treating HSV-1 are Acyclovir (ACV), Ganciclovir, and Valacyclovir. Due to the widespread use of ACV, the number of drug-resistant strains of ACV is increasing, so searching for new anti-HSV-1 drugs is urgent. The oleanolic-acid derivative AXX-18 showed a CC50 value of 44.69 μM for toxicity to HaCaT cells and an EC50 value of 1.47 μM for anti-HSV-1/F. In addition, AXX-18 showed significant inhibition of ACV-resistant strains 153, 106, and Blue, and the anti-HSV-1 activity of AXX-18 was higher than that of oleanolic acid. The mechanism of action of AXX-18 was found to be similar to that of oleanolic acid, except that AXX-18 could act on both the UL8 and UL52 proteins of the uncoupling helicase-primase enzyme, whereas oleanolic acid could only act on the UL8 protein. We have elucidated the antiviral mechanism of AXX-18 in detail and, finally, found that AXX-18 significantly inhibited the formation of skin herpes. In conclusion, we have explored the anti-HSV-1 activity of AXX-18 in vitro and in vivo as well as identification of its potential target proteins, which will provide a theoretical basis for the development of subsequent anti-HSV-1 drugs. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

14 pages, 2807 KiB  
Article
Antiviral Activity of Rosa damascena Mill. and Rosa alba L. Essential Oils against the Multiplication of Herpes Simplex Virus Type 1 Strains Sensitive and Resistant to Acyclovir
by Neli Vilhelmova-Ilieva, Ana Dobreva, Rositsa Doynovska, Dimo Krastev and Milka Mileva
Biology 2021, 10(8), 746; https://doi.org/10.3390/biology10080746 - 4 Aug 2021
Cited by 10 | Viewed by 3706
Abstract
Background: The specific chemotherapeutics against herpes simplex virus type 1 (HSV) are nucleoside analogues such as acyclovir (ACV), but the most important problem is the formation of resistant mutants. The search for new therapeutic alternatives leads us to the purpose of investigating the [...] Read more.
Background: The specific chemotherapeutics against herpes simplex virus type 1 (HSV) are nucleoside analogues such as acyclovir (ACV), but the most important problem is the formation of resistant mutants. The search for new therapeutic alternatives leads us to the purpose of investigating the effects of Rosa damascena Mill. and Rosa alba L. essential oils on the viral reproduction of susceptible (Victoria) and acyclovir-resistant (R-100) strains of HSV-1 replication in vitro, individually and in combination with acyclovir. Methods: Cytopathic effect inhibition test was used for assessment of antiviral activity of the oils, and the three-dimensional model of Prichard and Shipman was applied to evaluate the combined effect of oils with ACV on HSV-1 replication. Results: Both oils do not affect the replication of viral strains; they are able to influence only viral adsorption and extracellular virions and protect healthy cells from subsequent infection. In combination with lower doses of acyclovir, both oils demonstrate a significant synergistic effect on the replication of HSV-1, which is more contagious than the Victoria strain. Conclusions: The nonspecific mechanism of the reduction in viral reproduction caused by rose oils and the synergistic effect of their co-administration with the lower doses of specific inhibitor ACV makes them suitable therapeutics for overcoming viral resistance to HSV-1 infections. Full article
Show Figures

Figure 1

19 pages, 3863 KiB  
Article
Ginkgolic Acid Inhibits Herpes Simplex Virus Type 1 Skin Infection and Prevents Zosteriform Spread in Mice
by Maimoona S. Bhutta, Oren Shechter, Elisa S. Gallo, Stephen D. Martin, Esther Jones, Gustavo F. Doncel and Ronen Borenstein
Viruses 2021, 13(1), 86; https://doi.org/10.3390/v13010086 - 9 Jan 2021
Cited by 22 | Viewed by 4771
Abstract
Herpes simplex virus type 1 (HSV-1) causes a lifelong latent infection with an estimated global prevalence of 66%. Primary and recurrent HSV infections are characterized by a tingling sensation, followed by an eruption of vesicles, which can cause painful erosions. Commonly used antiviral [...] Read more.
Herpes simplex virus type 1 (HSV-1) causes a lifelong latent infection with an estimated global prevalence of 66%. Primary and recurrent HSV infections are characterized by a tingling sensation, followed by an eruption of vesicles, which can cause painful erosions. Commonly used antiviral drugs against HSV infection are nucleoside analogues including acyclovir (ACV), famciclovir, and valacyclovir. Although these nucleoside analogues reduce morbidity and mortality in immunocompetent individuals, ACV-resistant HSV strains (ACVR-HSV) have been isolated from immunocompromised patients. Thus, ACVR-HSV infection poses a critical emerging public health concern. Recently, we reported that ginkgolic acid (GA) inhibits HSV-1 by disrupting viral structure, blocking fusion, and inhibiting viral protein synthesis. Additionally, we showed GA affords a broad spectrum of fusion inhibition of all three classes of fusion proteins, including those of HIV, Ebola, influenza A and Epstein Barr viruses. Here we report GA’s antiviral activity against HSV-1 skin infection in BALB/cJ mice. GA-treated mice demonstrated a significantly reduced mortality rate and decreased infection scores compared to controls treated with dimethylsulfoxide (DMSO)-vehicle. Furthermore, GA efficiently inhibited ACVR-HSV-1 strain 17+ in vitro and in vivo. Since GA’s mechanism of action includes virucidal activity and fusion inhibition, it is expected to work alone or synergistically with other anti-viral drugs, and we anticipate it to be effective against additional cutaneous and potentially systemic viral infections. Full article
(This article belongs to the Special Issue Pathogenesis and Novel Antiviral Targets of Alphaherpesviruses)
Show Figures

Figure 1

16 pages, 4358 KiB  
Article
Amentoflavone Inhibits HSV-1 and ACV-Resistant Strain Infection by Suppressing Viral Early Infection
by Feng Li, Xiaowei Song, Guifeng Su, Yiliang Wang, Zhaoyang Wang, Jiaoyan Jia, Shurong Qing, Lianzhou Huang, Yuan Wang, Kai Zheng and Yifei Wang
Viruses 2019, 11(5), 466; https://doi.org/10.3390/v11050466 - 22 May 2019
Cited by 57 | Viewed by 5727
Abstract
Infection of Herpes simplex virus 1 (HSV-1) induces severe clinical disorders, such as herpes simplex encephalitis and keratitis. Acyclovir (ACV) is the current therapeutic drug against viral infection and ACV-resistant strains have gradually emerged, leading to the requirement for novel antiviral agents. In [...] Read more.
Infection of Herpes simplex virus 1 (HSV-1) induces severe clinical disorders, such as herpes simplex encephalitis and keratitis. Acyclovir (ACV) is the current therapeutic drug against viral infection and ACV-resistant strains have gradually emerged, leading to the requirement for novel antiviral agents. In this study, we exhibited the antiviral activity of amentoflavone, a naturally occurring biflavonoid, toward HSV-1 and ACV-resistant strains. Amentoflavone significantly inhibited infection of HSV-1 (F strain), as well as several ACV-resistant strains including HSV-1/106, HSV-1/153 and HSV-1/Blue at high concentrations. Time-of-drug-addition assay further revealed that amentoflavone mainly impaired HSV-1 early infection. More detailed study demonstrated that amentoflavone affected cofilin-mediated F-actin reorganization and reduced the intracellular transportation of HSV-1 from the cell membrane to the nucleus. In addition, amentoflavone substantially decreased transcription of viral immediate early genes. Collectively, amentoflavone showed strong antiviral activity against HSV-1 and ACV-resistant strains, and amentoflavone could be a promising therapeutic candidate for HSV-1 pathogenesis. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

23 pages, 956 KiB  
Review
Traditional Chinese Medicine as a Potential Source for HSV-1 Therapy by Acting on Virus or the Susceptibility of Host
by Wen Li, Xiao-Hua Wang, Zhuo Luo, Li-Fang Liu, Chang Yan, Chang-Yu Yan, Guo-Dong Chen, Hao Gao, Wen-Jun Duan, Hiroshi Kurihara, Yi-Fang Li and Rong-Rong He
Int. J. Mol. Sci. 2018, 19(10), 3266; https://doi.org/10.3390/ijms19103266 - 20 Oct 2018
Cited by 46 | Viewed by 11396
Abstract
Herpes simplex virus type 1 (HSV-1) is the most common virus, with an estimated infection rate of 60–95% among the adult population. Once infected, HSV-1 can remain latent in the host for a lifetime and be reactivated in patients with a compromised immune [...] Read more.
Herpes simplex virus type 1 (HSV-1) is the most common virus, with an estimated infection rate of 60–95% among the adult population. Once infected, HSV-1 can remain latent in the host for a lifetime and be reactivated in patients with a compromised immune system. Reactivation of latent HSV-1 can also be achieved by other stimuli. Though acyclovir (ACV) is a classic drug for HSV-1 infection, ACV-resistant strains have been found in immune-compromised patients and drug toxicity has also been commonly reported. Therefore, there is an urge to search for new anti-HSV-1 agents. Natural products with potential anti-HSV-1 activity have the advantages of minimal side effects, reduced toxicity, and they exert their effect by various mechanisms. This paper will not only provide a reference for the safe dose of these agents if they are to be used in humans, referring to the interrelated data obtained from in vitro experiments, but also introduce the main pharmacodynamic mechanisms of traditional Chinese medicine (TCM) against HSV-1. Taken together, TCM functions as a potential source for HSV-1 therapy by direct (blocking viral attachment/absorption/penetration/replication) or indirect (reducing the susceptibility to HSV-1 or regulating autophagy) antiviral activities. The potential of these active components in the development of anti-HSV-1 drugs will also be described. Full article
(This article belongs to the Special Issue Natural Products against Viral Infections)
Show Figures

Graphical abstract

Back to TopTop