Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (67)

Search Parameters:
Keywords = A. canescens

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 10516 KiB  
Article
Morphological and Phylogenetic Characterization of Alternaria Section Undifilum Fungal Endophytes from Astragalus and Swainsona spp.
by Marwa Neyaz, Olabisi Adebisi, Daniel Cook and Rebecca Creamer
J. Fungi 2025, 11(7), 541; https://doi.org/10.3390/jof11070541 - 19 Jul 2025
Viewed by 474
Abstract
The locoweeds Astragalus and Oxytropis in the Americas and China, as well as Swainsona in Australia, harbor swainsonine-producing endophytes responsible for “locoism” or “pea struck” syndromes in grazing animals. Demonstration of Alternaria section Undifilum spp. requires demonstration of morphological characters such as a [...] Read more.
The locoweeds Astragalus and Oxytropis in the Americas and China, as well as Swainsona in Australia, harbor swainsonine-producing endophytes responsible for “locoism” or “pea struck” syndromes in grazing animals. Demonstration of Alternaria section Undifilum spp. requires demonstration of morphological characters such as a wavy germ tube and slow growth. While Astragalus wetherilli, A. pubentissimus, Swainsona canescens, and S. galegifolia plants have been shown to contain swainsonine, and fungi isolated from the plants have been partially characterized genetically, the fungi have not been characterized morphologically. This work sought to complete morphological characterization and determine species for those fungi and from fungi associated with Swainsona luteola and S. brachycarpa. The fungi were isolated from their hosts onto media and exhibited slow growth, resulting in a colony diameter of approximately 10 mm after 30 days. Morphological identification revealed production of conidia that produced a wavy germ tube for the endophytes from Astragalus pubentissimus species, Swainsona canescens, and S. galegifolia. Sequence analyses of the ITS region and the swnK-KS and swnK-TR genes of these fungi suggest that the fungi isolated from Astragalus are closely related and distinct from the fungi isolated from Swainsona. Presence of the swnK gene demonstrates that all the fungi have a necessary component to produce swainsonine. Fungi isolated from Astragalus spp. differed in color, growth, and conidium size, and/or their sequences. While the fungi isolated from Swainsona canescens and S. galegifolia endophytes differed in color, growth, and conidium size, those isolated from Swainsona luteola and S. brachycarpa did not produce conidia. Sequences from all Swainsona endophytes were almost identical and were concluded to be the same species. The new species described here are Alternaria wetherii, A. pubentissima, A. pubentissimoides, and A. swainsonii. Full article
(This article belongs to the Special Issue Fungal Endophytes of Plants: Friend or Foe?)
Show Figures

Figure 1

22 pages, 3318 KiB  
Article
Immunomodulatory Potential of Kaempferol Isolated from Peronema canescens Jack. Leaves Through Inhibition of IL-6 Expression
by Muhammad Ryan Radix Rahardhian, Sri Adi Sumiwi, Yasmiwar Susilawati and Muchtaridi Muchtaridi
Int. J. Mol. Sci. 2025, 26(7), 3068; https://doi.org/10.3390/ijms26073068 - 27 Mar 2025
Cited by 1 | Viewed by 1198
Abstract
Sungkai leaves were selected due to their herbal medicine prevalence and documented biological activities. This study explores the immunomodulatory potential of kaempferol isolated from Sungkai (Peronema canescens Jack.) through a combination of in silico and in vitro methods. P. canescens leaves were [...] Read more.
Sungkai leaves were selected due to their herbal medicine prevalence and documented biological activities. This study explores the immunomodulatory potential of kaempferol isolated from Sungkai (Peronema canescens Jack.) through a combination of in silico and in vitro methods. P. canescens leaves were extracted with ethanol using maceration, followed by fractionation with n-hexane, ethyl acetate, and water using a separatory funnel. Among all the fractions, the ethyl acetate fraction demonstrated the strongest inhibitory effect on IL-6 (Interleukin 6) expression, leading to further separation for the enhanced analysis of its activity. The resulting sub-fractions were purified by vacuum liquid chromatography with n-hexane and ethyl acetate gradient. Sub-fraction E was isolated through preparative thin-layer chromatography to obtain a pure compound identified as kaempferol using UV, FTIR, MS, and NMR analyses. The isolated kaempferol was then evaluated by molecular docking and molecular dynamics simulations, employing MM-PBSA (Molecular Mechanics Poisson–Boltzmann Surface Area) for binding affinity calculations. Kaempferol showed a binding affinity (ΔG) of −5.98 kcal/mol, slightly stronger than TLA (tartaric acid) (−5.90 kcal/mol). Key interactions with amino acid residues, such as Gln175, Arg182, and Arg179, were observed. Additionally, molecular dynamics simulation demonstrated that kaempferol exhibited better stability than TLA between 15 ns and 100 ns. The MM-PBSA analysis showed that kaempferol has strong van der Waals (−17.02 kcal/mol) and electrostatic interactions (−293.16 kcal/mol), with binding free energy (−17.85 kcal/mol) significantly stronger than TLA (−1.00 kcal/mol). This stability, combined with its ability to reduce IL-6 expression in vitro, highlights kaempferol’s immunomodulatory potential. Full article
Show Figures

Figure 1

17 pages, 2948 KiB  
Article
The Optimization of In Vitro Culture Establishment and Shoot Proliferation of “GiSelA 17” (Prunus canescens × Prunus avium): A Novel Cherry Rootstock
by Ikra Manzoor, Khalid Mushtaq Bhat, Mohammad Amin Mir, Narendran M. Nair, Aashiq Hussain Pandit, Ume Kulsum, Shoeb Quadri, Smithal Deshmukh and Taras Pasternak
Int. J. Plant Biol. 2025, 16(1), 33; https://doi.org/10.3390/ijpb16010033 - 7 Mar 2025
Viewed by 1355
Abstract
“GiSelA 17” (Prunus canescens × Prunus avium) is a novel cherry clonal rootstock with the ability to bear fruit early and resist replant situations, and it has a high tolerance to the menaces of Prunus dwarf virus (PDV) and Prunus necrotic [...] Read more.
“GiSelA 17” (Prunus canescens × Prunus avium) is a novel cherry clonal rootstock with the ability to bear fruit early and resist replant situations, and it has a high tolerance to the menaces of Prunus dwarf virus (PDV) and Prunus necrotic ring spot virus (PNRSV). In this study, two kinds of explants were taken, i.e., shoot tip (E1) (10 mm) and nodal segment (E2) (15 mm) explants. Five different sterilant regimes using sodium hypochlorite, mercuric chloride, and ethyl alcohol were employed to assess surface sterilization. Two types of media, namely Murashige and Skoog (MS) and Woody Plant Medium (WPM), and twelve and six plant growth regulator combinations with benzyl amino purine (BAP) and indole-3-butyric acid (IBA) were used, respectively, for the establishment and proliferation steps. The results show that maximum culture asepsis (75.33%) was obtained with shoot tips (E1) using 0.05% HgCl2 for 5 min + 70% ethanol for 10 s (S4), and maximum explant survival (80.33%) was observed in 0.1% HgCl2 for 5 min (S1) for shoot tips (E1). The maximum establishment rate (83.33%) was found in shoot tips (E1) in MS medium with BAP + IBA (1 + 0.01 mg/L) during the establishment step, with a maximum proliferation rate of 92.00% obtained in MS and BAP (0.75 mg/L). Inferior establishment results (26.66%) were obtained in nodal segments (E2) using WPM and BAP + IBA (1.50 + 0.01 mg/L), with a low proliferation rate (68.66%) in WPM and BAP + IBA (0.25 + 0.01 mg/L). Nonetheless, our research is the first in vitro study on “GiSelA 17” rootstock that focuses on generating the best quality planting material for commercial cherry production. Full article
(This article belongs to the Section Plant Reproduction)
Show Figures

Figure 1

14 pages, 4992 KiB  
Article
Investigation into Adhesion of Coatings and Adhesives of Eucalyptus and Grey Poplar for Building Applications
by Csilla Csiha, Tamás Hofmann and Omar Saber Zinad
Forests 2025, 16(2), 287; https://doi.org/10.3390/f16020287 - 7 Feb 2025
Viewed by 607
Abstract
This study investigated the bonding strength and chemical composition (as an influencing factor of adhesion) of red eucalyptus (Eucalyptus camaldulensis) (EUW) and grey poplar (Populus canescens) (GPOW) wood surfaces, comparing their suitability for indoor and outdoor wood-building applications. The [...] Read more.
This study investigated the bonding strength and chemical composition (as an influencing factor of adhesion) of red eucalyptus (Eucalyptus camaldulensis) (EUW) and grey poplar (Populus canescens) (GPOW) wood surfaces, comparing their suitability for indoor and outdoor wood-building applications. The research focused on adhesion strength using different coatings and adhesives, including lasure and 2K lacquer. The results showed that whilst both wood species had a conveniently high cellulose content, GPOW had a higher cellulose content (48.21%) than EUW (45.18%). However, EUW demonstrated superiority in tensile shear strength tests when using structural adhesives. Additionally, EUW exhibited stronger pull-off adhesion with 2K lacquer (5.25 MPa) compared with GPOW (3.42 MPa), suggesting that whilst both reached the expectations, EUW was more appropriate for high-stress indoor applications like flooring or wall cladding. EUW and GPOW performed well with lasure, achieving comparable adhesion strengths. EUW had a density of 1020 kg/m3 vs. 575 kg/m3 for GPOW and stronger bonding capabilities than GPOW, which suggests that it is equally suitable for wood applications inside and outside buildings. The study concluded that whilst both wood species met expectations and proved to be suitable for doors, windows, and other wood-building product applications, GPOW was suitable for the production of cellulose-based products, while EUW was worth relying on for its excellent adhesion to coatings and adhesives. Full article
(This article belongs to the Special Issue Wood Testing, Processing and Modification)
Show Figures

Figure 1

17 pages, 3144 KiB  
Article
Antifungal Potential of Biogenic Zinc Oxide Nanoparticles for Controlling Cercospora Leaf Spot in Mung Bean
by Zill-e-Huma Aftab, Faisal Shafiq Mirza, Tehmina Anjum, Humaira Rizwana, Waheed Akram, Muzamil Aftab, Muhammad Danish Ali and Guihua Li
Nanomaterials 2025, 15(2), 143; https://doi.org/10.3390/nano15020143 - 19 Jan 2025
Cited by 3 | Viewed by 1609
Abstract
Agricultural growers worldwide face significant challenges in promoting plant growth. This research introduces a green strategy utilizing nanomaterials to enhance crop production. While high concentrations of nanomaterials are known to be hazardous to plants, this study demonstrates that low doses of biologically synthesized [...] Read more.
Agricultural growers worldwide face significant challenges in promoting plant growth. This research introduces a green strategy utilizing nanomaterials to enhance crop production. While high concentrations of nanomaterials are known to be hazardous to plants, this study demonstrates that low doses of biologically synthesized zinc oxide nanoparticles (ZnO NPs) can serve as an effective regulatory tool to boost plant growth. These nanoparticles were produced using Nigella sativa seed extract and characterized through UV-Vis spectroscopy, FT-IR, X-ray diffraction, and scanning electron microscopy (SEM). The antifungal properties of ZnO NPs were evaluated against Cercospora canescens, the causative agent of Cercospora leaf spot in mung bean. Application of ZnO NPs significantly improved plant metrics, including shoot, root, pod, leaf, and root nodule counts, as well as plant length, fresh weight, and dry weight—all indicators of healthy growth. Moreover, low-dose ZnO NPs positively influenced enzymatic activity, physicochemical properties, and photosynthetic parameters. These findings suggest that biologically synthesized ZnO NPs offer a promising approach for enhancing crop yield and accelerating plant growth. Full article
(This article belongs to the Special Issue Interplay between Nanomaterials and Plants)
Show Figures

Figure 1

18 pages, 1879 KiB  
Article
Efficient Hydrolysis of Sugar Beet Pulp Using Novel Enzyme Complexes
by Maria I. Komarova, Margarita V. Semenova, Pavel V. Volkov, Igor A. Shashkov, Alexandra M. Rozhkova, Ivan N. Zorov, Sergei A. Kurzeev, Aidar D. Satrutdinov, Ekaterina A. Rubtsova and Arkady P. Sinitsyn
Agronomy 2025, 15(1), 101; https://doi.org/10.3390/agronomy15010101 - 1 Jan 2025
Cited by 1 | Viewed by 1100
Abstract
Sugar beet pulp is a byproduct of white sugar production, and it is quite significant in terms of volume. Every year, tens of millions of tons of beet pulp are produced around the world. However, only a fraction of it is currently used, [...] Read more.
Sugar beet pulp is a byproduct of white sugar production, and it is quite significant in terms of volume. Every year, tens of millions of tons of beet pulp are produced around the world. However, only a fraction of it is currently used, mainly as animal feed. The composition of beet pulp includes plant polysaccharides, such as cellulose, arabinan, and pectin. Through the process of enzymatic hydrolysis, these polysaccharides are converted into technical C6/C5 sugars, which can be further used as a substrate for the microbial synthesis of various substances, including biofuels, organic acids, and other green chemistry molecules. The current study was designed with a primary objective that focused on the development of a strain that had the potential for enhanced productivity and the capacity to produce enzymes suitable for beet pulp hydrolysis. The pelA and abfA genes, which encode pectin lyase and arabinofuranosidase, respectively, in the fungus Penicillium canescens (VKPM F-178), were cloned and successfully expressed in the recipient strain Penicillium verruculosum B1-537 (VKPM F-3972D). New recombinant strains were created using the expression system of the mycelial fungus P. verruculosum B1-537, which is capable of simultaneously producing pectin lyase and arabinofuranosidase, as well as homologous cellulases. The screening of strains for increased enzymatic activity towards citrus pectin, sugar beet branched arabinan, and microcrystalline cellulose revealed that a B4 clone of P. verruculosum exhibited the greatest potential in sugar beet pulp cake hydrolysis. This clone was selected as the basis for the creation of a new enzyme preparation with enhanced pectin lyase, arabinase, and cellulase activities. The component composition of the enzyme preparation was determined, and the results indicated that the enzyme content comprised approximately 11% pectin lyase, 40% arabinofuranosidase, and 40% cellulases. The primary products of the enzymatic hydrolysis of the unpretreated beet pulp cake were arabinose and glucose. The degree of arabinan and cellulose conversion was observed to be up to 50% and 80%, respectively, after a period of 48 to 72 h of hydrolysis. The new B4 preparation was observed to be highly efficacious in the hydrolysis of beet cake at elevated concentrations of solids (up to 300 g/L) within the reaction mixture. The newly developed strain, as a producer of pectin lyase, arabinofuranosidase, and cellulase complexes, has the potential to be utilized for the bioconversion of sugar beet processing wastes and for the efficient generation of highly concentrated solutions of technical sugars for further implementation in processes of microbial synthesis. Full article
Show Figures

Figure 1

16 pages, 4573 KiB  
Article
Simultaneous Quantification of 66 Compounds in Two Tibetan Codonopsis Species Reveals Four Chemical Features by Database-Enabled UHPLC-Q-Orbitrap-MS/MS Analysis
by Zhouli Xu, Rongxin Cai, Hanxiao Chai, Shaoman Chen, Yongbai Liang, Xican Li and Guihua Jiang
Molecules 2024, 29(21), 5203; https://doi.org/10.3390/molecules29215203 - 3 Nov 2024
Viewed by 1494
Abstract
Codonopsis canescens Nannf. (CoC) and Codonopsis nervosa Nannf. (CoN) are two traditional Tibetan medicinal herbs (Zangdangshen), which have been widely used in the treatment of various diseases. In this study, their aerial and underground parts were systematically analyzed using database-enabled UHPLC-Q-Orbitrap-MS/MS technology. This [...] Read more.
Codonopsis canescens Nannf. (CoC) and Codonopsis nervosa Nannf. (CoN) are two traditional Tibetan medicinal herbs (Zangdangshen), which have been widely used in the treatment of various diseases. In this study, their aerial and underground parts were systematically analyzed using database-enabled UHPLC-Q-Orbitrap-MS/MS technology. This technology introduced three adduct ions, [M − H], [M + H]+, and [M + NH4]+, to putatively identify a total of 66 compounds. During the putative identification, at least 16 isomers were successfully differentiated, such as isochlorogenic acid A vs. isochlorogenic acid B vs. isochlorogenic acid C. Thereafter, all these identified compounds were further quantified for their contents based on a linear regression method. Their contents were observed to vary from 0.00 to 39,127.03 µg/g. Through multiple comparisons of these quantification results, the study found the following four chemical features: (1) Four sesquiterpenes (especially atractylenolide III) enriched mainly in CoC and rarely in CoN; (2) four quinic acid derivatives were abundant in the aerial part of two species; (3) sixteen flavonoids (particularly diosmetin and chrysoeriol) showed higher content in CoC than in CoN; and (4) lobetyolin was ubiquitously distributed in four parts of both CoC and CoN. Based on these features and the relevant principles, four compounds (lobetyolin, atractylenolide III, diosmetin, and chrysoeriol) are recommended as the quality markers of two Tibetan Codonopsis species. All these findings can facilitate the sustainable development and quality control of the two traditional Tibetan medicinal herbs. Full article
Show Figures

Graphical abstract

13 pages, 1258 KiB  
Review
Peronema canescens as a Source of Immunomodulatory Agents: A New Opportunity and Perspective
by Ahmad Hafidul Ahkam, Yasmiwar Susilawati and Sri Adi Sumiwi
Biology 2024, 13(9), 744; https://doi.org/10.3390/biology13090744 - 22 Sep 2024
Cited by 1 | Viewed by 1637
Abstract
Immunomodulators are pivotal in managing various health conditions by regulating the immune response by either enhancing or suppressing it to maintain homeostasis. The growing interest in natural sources of immunomodulatory agents has spurred the investigation of numerous medicinal plants, including Peronema canescens, [...] Read more.
Immunomodulators are pivotal in managing various health conditions by regulating the immune response by either enhancing or suppressing it to maintain homeostasis. The growing interest in natural sources of immunomodulatory agents has spurred the investigation of numerous medicinal plants, including Peronema canescens, commonly known in Asia as sungkai. Traditionally used for its medicinal properties in Southeast Asia, Peronema canescens belongs to the Verbenaceae family and has garnered significant attention. This review discusses the immunomodulatory activity of the active compounds in Peronema canescens and explores the potential directions for future research. Full article
Show Figures

Figure 1

21 pages, 3752 KiB  
Article
Enhancing Resistance to Cercospora Leaf Spot in Mung Bean (Vigna radiata L.) through Bradyrhizobium sp. DOA9 Priming: Molecular Insights and Bio-Priming Potential
by Apisit Songsaeng, Pakpoom Boonchuen, Phongkeat Nareephot, Pongdet Piromyou, Jenjira Wongdee, Teerana Greetatorn, Sukanya Inthaisong, Piyada Alisha Tantasawat, Kamonluck Teamtisong, Panlada Tittabutr, Shusei Sato, Nantakorn Boonkerd, Pongpan Songwattana and Neung Teaumroong
Plants 2024, 13(17), 2495; https://doi.org/10.3390/plants13172495 - 5 Sep 2024
Cited by 2 | Viewed by 2033
Abstract
Mung bean (Vigna radiata L.), a vital legume in Asia with significant nutritional benefits, is highly susceptible to Cercospora leaf spot (CLS) caused by Cercospora canescens, leading to significant yield losses. As an alternative to chemical fungicides, bio-priming with rhizobacteria can [...] Read more.
Mung bean (Vigna radiata L.), a vital legume in Asia with significant nutritional benefits, is highly susceptible to Cercospora leaf spot (CLS) caused by Cercospora canescens, leading to significant yield losses. As an alternative to chemical fungicides, bio-priming with rhizobacteria can enhance plant resistance. This study explores the potential of Bradyrhizobium sp. strain DOA9 to augment resistance in mung bean against CLS via root priming. The results reveal that short (3 days) and double (17 and 3 days) priming with DOA9 before fungal infection considerably reduces lesion size on infected leaves by activating defense-related genes, including Pti1, Pti6, EDS1, NDR1, PR-1, PR-2, Prx, and CHS, or by suppressing the inhibition of PR-5 and enhancing peroxidase (POD) activity in leaves. Interestingly, the Type 3 secretion system (T3SS) of DOA9 may play a role in establishing resistance in V. radiata CN72. These findings suggest that DOA9 primes V. radiata CN72′s defense mechanisms, offering an effective bio-priming strategy to alleviate CLS. Hence, our insights propose the potential use of DOA9 as a bio-priming agent to manage CLS in V. radiata CN72, providing a sustainable alternative to chemical fungicide applications. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

15 pages, 7678 KiB  
Article
Analysis of Whole-Genome for Identification of Seven Penicillium Species with Significant Economic Value
by Yuanhao Huang, Lianguo Fu, Yutong Gan, Guihong Qi, Lijun Hao, Tianyi Xin, Wenjie Xu and Jingyuan Song
Int. J. Mol. Sci. 2024, 25(15), 8172; https://doi.org/10.3390/ijms25158172 - 26 Jul 2024
Cited by 3 | Viewed by 1819
Abstract
The Penicillium genus exhibits a broad global distribution and holds substantial economic value in sectors including agriculture, industry, and medicine. Particularly in agriculture, Penicillium species significantly impact plants, causing diseases and contamination that adversely affect crop yields and quality. Timely detection of Penicillium [...] Read more.
The Penicillium genus exhibits a broad global distribution and holds substantial economic value in sectors including agriculture, industry, and medicine. Particularly in agriculture, Penicillium species significantly impact plants, causing diseases and contamination that adversely affect crop yields and quality. Timely detection of Penicillium species is crucial for controlling disease and preventing mycotoxins from entering the food chain. To tackle this issue, we implement a novel species identification approach called Analysis of whole GEnome (AGE). Here, we initially applied bioinformatics analysis to construct specific target sequence libraries from the whole genomes of seven Penicillium species with significant economic impact: P. canescens, P. citrinum, P. oxalicum, P. polonicum, P. paneum, P. rubens, and P. roqueforti. We successfully identified seven Penicillium species using the target we screened combined with Sanger sequencing and CRISPR-Cas12a technologies. Notably, based on CRISPR-Cas12a technology, AGE can achieve rapid and accurate identification of genomic DNA samples at a concentration as low as 0.01 ng/µL within 30 min. This method features high sensitivity and portability, making it suitable for on-site detection. This robust molecular approach provides precise fungal species identification with broad implications for agricultural control, industrial production, clinical diagnostics, and food safety. Full article
(This article belongs to the Special Issue Recent Molecular Research in Interaction of Plants and Fungi)
Show Figures

Figure 1

16 pages, 2758 KiB  
Article
Effects of Drought Stress on Leaf Functional Traits and Biomass Characteristics of Atriplex canescens
by Shuai Wang, Hai Zhou, Zhibin He, Dengke Ma, Weihao Sun, Xingzhi Xu and Quanyan Tian
Plants 2024, 13(14), 2006; https://doi.org/10.3390/plants13142006 - 22 Jul 2024
Cited by 8 | Viewed by 2240
Abstract
Drought is a critical factor constraining plant growth in arid regions. However, the performance and adaptive mechanism of Atriplex canescens (A. canescens) under drought stress remain unclear. Hence, a three-year experiment with three drought gradients was performed in a common garden, [...] Read more.
Drought is a critical factor constraining plant growth in arid regions. However, the performance and adaptive mechanism of Atriplex canescens (A. canescens) under drought stress remain unclear. Hence, a three-year experiment with three drought gradients was performed in a common garden, and the leaf functional traits, biomass and biomass partitioning patterns of A. canescens were investigated. The results showed that drought stress had significant effects on A. canescens leaf functional traits. A. canescens maintained the content of malondialdehyde (MDA) and the activity of superoxide dismutase (SOD), but the peroxidase (POD) and catalase (CAT) activity decreased, and the content of proline (Pro) and soluble sugar (SS) increased only under heavy drought stress. Under drought stress, the leaves became smaller but denser, the specific leaf area (SLA) decreased, but the dry matter content (LDMC) maintained stability. Total biomass decreased 60% to 1758 g under heavy drought stress and the seed and leaf biomass was only 10% and 20% of non-stress group, but there had no significant difference on root biomass. More biomass was allocated to root under drought stress. The root biomass allocation ratio was doubled from 9.62% to 19.81% under heavy drought, and the root/shoot ratio (R/S) increased from 0.11 to 0.25. The MDA was significantly and negatively correlated with biomass, while the SPAD was significantly and positively correlated with total and aboveground organs biomass. The POD, CAT, Pro and SS had significant correlations with root and seed allocation ratio. The leaf morphological traits related to leaf shape and weight had significant correlations with total and aboveground biomass and biomass allocation. Our study demonstrated that under drought stress, A. canescens made tradeoffs between growth potential and drought tolerance and evolved with a conservative strategy. These findings provide more information for an in-depth understanding of the adaption strategies of A. canescens to drought stress and provide potential guidance for planting and sustainable management of A. canescens in arid and semi-arid regions. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

40 pages, 2668 KiB  
Article
Ethnomedicinal Plants and Herbal Preparations Used by Rural Communities in Tehsil Hajira (Poonch District of Azad Kashmir, Pakistan)
by Tahira Jabeen, Muhammad Shoaib Amjad, Khalid Ahmad, Rainer W. Bussmann, Huma Qureshi and Ivana Vitasović-Kosić
Plants 2024, 13(10), 1379; https://doi.org/10.3390/plants13101379 - 15 May 2024
Cited by 1 | Viewed by 2582
Abstract
The present study emphasizes the importance of documenting ethnomedicinal plants and herbal practices of the local rural communities of Tehsil Hajira (Pakistan). The aim was to document, explore and quantify the traditional ethnomedicinal knowledge. Ethnobotanical data were collected using semi-structured questionnaires and analyzed [...] Read more.
The present study emphasizes the importance of documenting ethnomedicinal plants and herbal practices of the local rural communities of Tehsil Hajira (Pakistan). The aim was to document, explore and quantify the traditional ethnomedicinal knowledge. Ethnobotanical data were collected using semi-structured questionnaires and analyzed using various quantitative indices. The results showed that 144 medicinal plant species from 70 families and 128 genera play an important role in herbal preparations. The most common type of preparation was powder (19.0%), followed by paste (16.7%), aqueous extract (15.7%), decoction (14.7%) and juice (11.0%). Fragaria nubicola (0.94) and Viola canescens (0.93) had the highest relative frequency of mention (RFC), while Berberis lycium (1.22) and Fragaria nubicola (1.18) had the highest use value (UV). Geranium wallichianum (85.5), Ligustrum lucidum (83) and Indigofera heterantha (71.5) were the most important species in the study area with the highest relative importance (RI) value. The diseases treated were categorized into 17 classes, with diseases of the digestive system and liver having the highest Informant Consensus Factor (ICF) value, followed by diseases of the oropharynx and musculoskeletal system. Important plants mentioned for the treatment of various diseases of the gastrointestinal tract are Zanthoxylum alatum, Berberis lycium, Mentha longifolia, Punica granatum, Rubus ellipticus and Viola canescens. New applications of rarely documented plants from this area are: Oxalis corniculata paste of the whole plant to treat vitiligo, Carthamus tinctorius flowers to treat chicken pox, Dioscorea deltoidea tuber powder to treat productive cough, Inula cappa root decoction to treat miscarriage, Habenaria digitata tuber juice for the treatment of fever, Viola canescens leaves and flowers for the treatment of sore throat and Achillea millefolium root and leaf juice for the treatment of pneumonia. These plants may contain interesting biochemical compounds and should be subjected to further pharmacological studies to develop new drugs. Traditional medicinal knowledge in the area under study is mainly limited to the elderly, traditional healers and midwives. Therefore, resource conservation strategies and future pharmacological studies are strongly recommended. Full article
(This article belongs to the Section Plant Systematics, Taxonomy, Nomenclature and Classification)
Show Figures

Figure 1

10 pages, 5334 KiB  
Communication
Characterization of the Worthen Sparrow (Spizella wortheni)’s Nest Building Materials in Northeastern Mexico
by Eliseo B. Suarez, Miguel Mellado, Marcos Luna, Eloy A. Lozano, Guadalupe Calderon, Yesenia Angel, Oscar Angel, Mayra L. Medina and José E. García
Animals 2024, 14(8), 1230; https://doi.org/10.3390/ani14081230 - 19 Apr 2024
Viewed by 1426
Abstract
The study was conducted within a well-managed beef cattle operation in northeastern Mexico. Each nest was weighed and dissected to obtain the plant and animal material used to build the nests. The number of materials present per nest and relative frequency were determined. [...] Read more.
The study was conducted within a well-managed beef cattle operation in northeastern Mexico. Each nest was weighed and dissected to obtain the plant and animal material used to build the nests. The number of materials present per nest and relative frequency were determined. Twenty-one building materials were used. Over the years, Muhlenbergia torreyi represented 85.5% of the total biomass of the nests, and Aristida longiseta, Bouteloua gracilis, Brickellia canescens, Purshia mexicana and Cirsium ehrenbergii constituted 2.45, 2.80, 2.44, 1.34 and 1.11% of the total biomass, respectively. The above-mentioned grasses represented 95.62% of the total biomass. Material of animal origin was horse and cow hair, which represented 0.84 and 0.58% of the total biomass, respectively. It was concluded that, at the study site, Muhlenbergia torreyi was a key nest-building material for the Worthen sparrow nest. Full article
(This article belongs to the Section Ecology and Conservation)
Show Figures

Figure 1

23 pages, 4230 KiB  
Article
Deoxyxylulose 5-Phosphate Synthase Does Not Play a Major Role in Regulating the Methylerythritol 4-Phosphate Pathway in Poplar
by Diego González-Cabanelas, Erica Perreca, Johann M. Rohwer, Axel Schmidt, Tobias Engl, Bettina Raguschke, Jonathan Gershenzon and Louwrance P. Wright
Int. J. Mol. Sci. 2024, 25(8), 4181; https://doi.org/10.3390/ijms25084181 - 10 Apr 2024
Viewed by 1699
Abstract
The plastidic 2-C-methylerythritol 4-phosphate (MEP) pathway supplies the precursors of a large variety of essential plant isoprenoids, but its regulation is still not well understood. Using metabolic control analysis (MCA), we examined the first enzyme of this pathway, 1-deoxyxylulose 5-phosphate synthase (DXS), in [...] Read more.
The plastidic 2-C-methylerythritol 4-phosphate (MEP) pathway supplies the precursors of a large variety of essential plant isoprenoids, but its regulation is still not well understood. Using metabolic control analysis (MCA), we examined the first enzyme of this pathway, 1-deoxyxylulose 5-phosphate synthase (DXS), in multiple grey poplar (Populus × canescens) lines modified in their DXS activity. Single leaves were dynamically labeled with 13CO2 in an illuminated, climate-controlled gas exchange cuvette coupled to a proton transfer reaction mass spectrometer, and the carbon flux through the MEP pathway was calculated. Carbon was rapidly assimilated into MEP pathway intermediates and labeled both the isoprene released and the IDP+DMADP pool by up to 90%. DXS activity was increased by 25% in lines overexpressing the DXS gene and reduced by 50% in RNA interference lines, while the carbon flux in the MEP pathway was 25–35% greater in overexpressing lines and unchanged in RNA interference lines. Isoprene emission was also not altered in these different genetic backgrounds. By correlating absolute flux to DXS activity under different conditions of light and temperature, the flux control coefficient was found to be low. Among isoprenoid end products, isoprene itself was unchanged in DXS transgenic lines, but the levels of the chlorophylls and most carotenoids measured were 20–30% less in RNA interference lines than in overexpression lines. Our data thus demonstrate that DXS in the isoprene-emitting grey poplar plays only a minor part in controlling flux through the MEP pathway. Full article
Show Figures

Figure 1

13 pages, 1211 KiB  
Article
Phytochemical Evaluation of Terminalia canescens DC. Radlk. Extracts with Antibacterial and Antibiotic Potentiation Activities against Selected β-Lactam Drug-Resistant Bacteria
by Muhammad Jawad Zai, Matthew James Cheesman and Ian Edwin Cock
Molecules 2024, 29(6), 1385; https://doi.org/10.3390/molecules29061385 - 20 Mar 2024
Cited by 4 | Viewed by 1819
Abstract
Terminalia canescens DC. Radlk. (family: Combretaceae) is native to northern Australia. Species of the genus Terminalia are widely used as traditional medicines to treat diverse ailments, including bacterial infections. However, we were unable to find any studies that had examined the antimicrobial activity [...] Read more.
Terminalia canescens DC. Radlk. (family: Combretaceae) is native to northern Australia. Species of the genus Terminalia are widely used as traditional medicines to treat diverse ailments, including bacterial infections. However, we were unable to find any studies that had examined the antimicrobial activity of T. canescens. In this study, T. canescens was screened against a panel of bacterial pathogens, including multi-antibiotic-resistant strains. Solvents with different polarities were used to extract different complements of phytochemicals from T. canescens leaves. Methanolic and aqueous extracts exhibited substantial antimicrobial activity against various pathogens, including those that are multidrug-resistant strains. When combined with some selected clinical antibiotics, some extracts potentiated the antibacterial inhibitory activity. This study identified two synergistic, eleven additive, eleven non-interactive and eight antagonistic interactions. The toxicities of the plant extracts were examined in the Artemia franciscana nauplii assay and were found to be non-toxic, except the aqueous extract, which showed toxicity. Metabolomic liquid chromatography–mass spectrometry (LC-MS) analyses highlighted and identified several flavonoids, including vitexin, quercetin, orientin and kaempferol, as well as the tannins ellagic acid and pyrogallol, which may contribute to the antibacterial activities observed herein. The possible mechanism of action of these extracts was further explored in this study. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

Back to TopTop