Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (60)

Search Parameters:
Keywords = 8-arm-polyethylene glycol

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1908 KiB  
Article
The First Example of a Model Amphiphilic Polymer Conetwork Containing a Hydrophobic Oligopeptide: The Case of End-Linked Tetra[Poly(ethylene glycol)-b-oligo(L-alanine)]
by Demetris E. Apostolides, George Michael, Costas S. Patrickios, Takamasa Sakai, Iro Kyroglou, Maria Kasimatis, Hermis Iatrou, Sylvain Prévost and Michael Gradzielski
Gels 2025, 11(5), 331; https://doi.org/10.3390/gels11050331 - 29 Apr 2025
Cited by 1 | Viewed by 531
Abstract
Herein we describe the development of the first model amphiphilic polymer conetwork (APCN) comprising a short hydrophobic hexa(L-alanine) segment being the outer block of an amphiphilic four-armed star block copolymer with inner poly(ethylene glycol) (PEG) blocks bearing benzaldehyde terminal groups and [...] Read more.
Herein we describe the development of the first model amphiphilic polymer conetwork (APCN) comprising a short hydrophobic hexa(L-alanine) segment being the outer block of an amphiphilic four-armed star block copolymer with inner poly(ethylene glycol) (PEG) blocks bearing benzaldehyde terminal groups and end-linked with another four-armed star PEG homopolymer (tetraPEG star) bearing aryl-substituted acylhydrazide terminal groups. The present successful synthesis that yielded the peptide-containing model APCN was preceded by several unsuccessful efforts that followed different synthetic strategies. In addition to the synthetic work, we also present the structural characterization of the peptide-bearing APCN in D2O using small-angle neutron scattering (SANS). Full article
Show Figures

Figure 1

22 pages, 6166 KiB  
Article
Schiff Base-Crosslinked Tetra-PEG-BSA Hydrogel: Design, Properties, and Multifunctional Functions
by Yuanyuan Qu, Jinlong Li, Xin Jia and Lijun Yin
J. Funct. Biomater. 2025, 16(2), 69; https://doi.org/10.3390/jfb16020069 - 18 Feb 2025
Cited by 1 | Viewed by 1716
Abstract
Hydrogel network structures play a crucial role in determining mechanical properties and have broad applications in biomedical and industrial fields. Therefore, their rational design is essential. Herein, we developed a Schiff base-crosslinked hydrogel through the reaction of Tetra-armed polyethylene glycol with aldehyde end [...] Read more.
Hydrogel network structures play a crucial role in determining mechanical properties and have broad applications in biomedical and industrial fields. Therefore, their rational design is essential. Herein, we developed a Schiff base-crosslinked hydrogel through the reaction of Tetra-armed polyethylene glycol with aldehyde end groups (Tetra-PEG-CHO) and bovine serum albumin (BSA) under alkaline conditions. In addition, the Tetra-PEG-BSA hydrogel showed a rapid gelation time of around 11 s, much faster than that of the GLU-BSA, HT-BSA, and GDL-BSA hydrogels. It had high optical transmittance (92.92% at 600 nm) and swelling ratios superior to the other gels in different solutions, maintaining structural integrity even in denaturing environments such as guanidine hydrochloride and SDS. Mechanical tests showed superior strain at break (84.12 ± 0.76%), rupture stress (28.64 ± 1.21 kPa), and energy dissipation ability (468.0 ± 34.9 kJ·m−3), surpassing all control group hydrogels. MTT cytotoxicity assays indicated that cell viability remained >80% at lower concentrations, confirming excellent biocompatibility. These findings suggest that Tetra-PEG-BSA hydrogels may serve as effective materials for drug delivery, tissue engineering, and 3D printing. Full article
(This article belongs to the Section Synthesis of Biomaterials via Advanced Technologies)
Show Figures

Figure 1

21 pages, 9573 KiB  
Article
Focused Ultrasound-Mediated Release of Bone Morphogenetic Protein 2 from Hydrogels for Bone Regeneration
by Tyus J. Yeingst, Angelica M. Helton, Ferdousi S. Rawnaque, Julien H. Arrizabalaga, Dino J. Ravnic, Julianna C. Simon and Daniel J. Hayes
Gels 2025, 11(2), 120; https://doi.org/10.3390/gels11020120 - 6 Feb 2025
Viewed by 1482
Abstract
An ultrasound-responsive hydrogel system was developed that provides on-demand release when stimulated by focused ultrasound (fUS). Diels–Alder cycloadducts crosslinked polyethylene glycol (PEG) hydrogels and underwent a retrograde Diels–Alder reaction when exposed to fUS. Four-arm and eight-arm furan-based Diels–Alder hydrogel compositions were used to [...] Read more.
An ultrasound-responsive hydrogel system was developed that provides on-demand release when stimulated by focused ultrasound (fUS). Diels–Alder cycloadducts crosslinked polyethylene glycol (PEG) hydrogels and underwent a retrograde Diels–Alder reaction when exposed to fUS. Four-arm and eight-arm furan-based Diels–Alder hydrogel compositions were used to evaluate the link between the crosslinking density and the fUS-induced release and retention rates. PEG crosslinked with glutaraldehyde was also used as a non-Diels–Alder control hydrogel. By increasing the exposure time and the amplitude of fUS, the Diels–Alder-based hydrogels exhibited a correlative increase in the release of the entrapped BMP-2. Real-time B-mode imaging was used during fUS to visualize the on-demand degradation of the crosslinking matrix for the release of BMP-2. When monitored with a thermocouple, the increase in temperature observed was minimal in the area surrounding the sample during fUS stimulation, indicating fUS to be an external stimulus which could be used safely for spatiotemporally controlled release. PEG hydrogels were characterized using nuclear magnetic resonance, Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and compression testing. PEG degradation byproducts were evaluated for cytocompatibility in vitro. Overall, this study demonstrated that Diels–Alder-based PEG hydrogels can encapsulate BMP-2, undergo a retrograde reaction when externally stimulated with fUS, and release active BMP-2 to induce differentiation in human mesenchymal stem cells. Full article
(This article belongs to the Special Issue Hydrogel for Tissue Regeneration (2nd Edition))
Show Figures

Figure 1

17 pages, 3866 KiB  
Article
Preparation and Rheological Evaluation of Thiol–Maleimide/Thiol–Thiol Double Self-Crosslinking Hyaluronic Acid-Based Hydrogels as Dermal Fillers for Aesthetic Medicine
by Chia-Wei Chu, Wei-Jie Cheng, Bang-Yu Wen, Yu-Kai Liang, Ming-Thau Sheu, Ling-Chun Chen and Hong-Liang Lin
Gels 2024, 10(12), 776; https://doi.org/10.3390/gels10120776 - 28 Nov 2024
Cited by 1 | Viewed by 1936
Abstract
This study presents the development of thiol–maleimide/thiol–thiol double self-crosslinking hyaluronic acid-based (dscHA) hydrogels for use as dermal fillers. Hyaluronic acid with varying degrees of maleimide substitution (10%, 20%, and 30%) was synthesized and characterized, and dscHA hydrogels were fabricated using [...] Read more.
This study presents the development of thiol–maleimide/thiol–thiol double self-crosslinking hyaluronic acid-based (dscHA) hydrogels for use as dermal fillers. Hyaluronic acid with varying degrees of maleimide substitution (10%, 20%, and 30%) was synthesized and characterized, and dscHA hydrogels were fabricated using two molecular weights of four-arm polyethylene glycol (PEG10K/20K)–thiol as crosslinkers. The six resulting dscHA hydrogels demonstrated solid-like behavior with distinct physical and rheological properties. SEM analysis revealed a decrease in porosity with higher crosslinker MW and maleimide substitution. The swelling ratios of the six hydrogels reached equilibrium at approximately 1 h and ranged from 20% to 35%, indicating relatively low swelling. Degradation rates decreased with increasing maleimide substitution, while crosslinker MW had little effect. Higher maleimide substitution also required greater injection force. Elastic modulus (G′) in the linear viscoelastic region increased with maleimide substitution and crosslinker MW, indicating enhanced firmness. All hydrogels displayed similar creep-recovery behavior, showing instantaneous deformation under constant stress. Alternate-step strain tests indicated that all six dscHA hydrogels could maintain elasticity, allowing them to integrate with the surrounding tissue via viscous deformation caused by the stress exerted by changes in facial expression. Ultimately, the connection between the clinical performance of the obtained dscHA hydrogels used as dermal filler and their physicochemical and rheological properties was discussed to aid clinicians in the selection of the most appropriate hydrogel for facial rejuvenation. While these findings are promising, further studies are required to assess irritation, toxicity, and in vivo degradation before clinical use. Overall, it was concluded that all six dscHA hydrogels show promise as dermal fillers for various facial regions. Full article
(This article belongs to the Special Issue Recent Research on Medical Hydrogels)
Show Figures

Graphical abstract

15 pages, 5902 KiB  
Article
In Situ Crosslinked Biodegradable Hydrogels Based on Poly(Ethylene Glycol) and Poly(ε-Lysine) for Medical Application
by Xia Ding, Bing Yang and Zhaosheng Hou
Molecules 2024, 29(22), 5435; https://doi.org/10.3390/molecules29225435 - 18 Nov 2024
Cited by 2 | Viewed by 1386
Abstract
Hydrogels have emerged as promising biomaterials due to their excellent performance; however, their biocompatibility, biodegradability, and absorbability still require improvement to support a broader range of medical applications. This paper presents a new biofunctionalized hydrogel based on in situ crosslinking between maleimide-terminated four-arm-poly(ethylene [...] Read more.
Hydrogels have emerged as promising biomaterials due to their excellent performance; however, their biocompatibility, biodegradability, and absorbability still require improvement to support a broader range of medical applications. This paper presents a new biofunctionalized hydrogel based on in situ crosslinking between maleimide-terminated four-arm-poly(ethylene glycol) (4–arm–PEG–Mal) and poly(ε-lysine) (ε–PL). The PEG/ε–PL hydrogels, named LG–n, were rapidly formed via amine/maleimide reaction by mixing 4–arm–PEG–Mal and ε–PL under physiological conditions. The corresponding dry gels (DLG–n) were obtained through a freeze-drying technique. 1H NMR, FT–IR, and SEM were utilized to confirm the structures of 4–arm–PEG–Mal and LG–n (or DLG–n), and the effects of solid content on the physicochemical properties of the hydrogels were investigated. Although high solid content could increase the swelling ratio, all LG–n samples exhibited a low equilibrium swelling ratio of less than 30%. LG–7, which contained moderate solid content, exhibited optimal compression properties characterized by a compressive fracture strength of 45.2 kPa and a deformation of 69.5%. Compression cycle tests revealed that LG–n demonstrated good anti-fatigue performance. In vitro degradation studies confirmed the biodegradability of LG–n, with the degradation rate primarily governing the drug (ceftibuten) release efficiency, leading to a sustained release duration of four weeks. Cytotoxicity tests, cell survival morphology observation, live/dead assays, and hemolysis tests indicated that LG–n exhibited excellent cytocompatibility and low hemolysis rates (<5%). Furthermore, the broad-spectrum antibacterial activity of LG–n was verified by an inhibition zone method. In conclusion, the developed LG–n hydrogels hold promising applications in the medical field, particularly as drug sustained-release carriers and wound dressings. Full article
(This article belongs to the Special Issue Hydrogels: Preparation, Characterization, and Applications)
Show Figures

Graphical abstract

18 pages, 2390 KiB  
Article
Paclitaxel-Loaded, Pegylated Carboxylic Graphene Oxide with High Colloidal Stability, Sustained, pH-Responsive Release and Strong Anticancer Effects on Lung Cancer A549 Cell Line
by Athina Angelopoulou, Myria Papachristodoulou, Efstathia Voulgari, Andreas Mouikis, Panagiota Zygouri, Dimitrios P. Gournis and Konstantinos Avgoustakis
Pharmaceutics 2024, 16(11), 1452; https://doi.org/10.3390/pharmaceutics16111452 - 14 Nov 2024
Cited by 4 | Viewed by 2133
Abstract
Background: Graphene Oxide (GO) has shown great potential in biomedical applications for cancer therapeutics. The biosafety and stability issues of GO in biological media have been addressed by functionalization with polyethylene glycol (PEG). Methods: In this work, carboxylated, nanosized GO (nCGO) [...] Read more.
Background: Graphene Oxide (GO) has shown great potential in biomedical applications for cancer therapeutics. The biosafety and stability issues of GO in biological media have been addressed by functionalization with polyethylene glycol (PEG). Methods: In this work, carboxylated, nanosized GO (nCGO) was evaluated as a potential carrier of paclitaxel (PCT). The effect of PEG characteristics on particle size and surface charge, colloidal stability, drug, and release, and the hemolytic potential of nCGO, was investigated. Optimum PEG-nCGO/PCT formulations based on the above properties were evaluated for their anticancer activity (cytotoxicity and apoptosis induction) in the A549 lung cancer cell line. Results: An increase in the length of linear PEG chains and the use of branched (4-arm) instead of linear PEG resulted in a decrease in hydrodynamic diameter and an increase in ζ potential of the pegylated nCGO particles. Pegylated nCGO exhibited high colloidal stability in phosphate-buffered saline and in cell culture media and low hemolytic effect, even at a relatively high concentration of 1 mg/mL. The molecular weight of PEG and branching adversely affected PCT loading. An increased rate of PCT release at an acidic pH of 6.0 compared to the physiological pH of 7.4 was observed with all types of pegylated nCGO/PCT. Pegylated nCGO exhibited lower cytotoxicity and apoptotic activity than non-pegylated nCGO. Cellular uptake of pegylated nCGO increased with incubation time with cells leading to increased cytotoxicity of PEG-nCGO/PCT with incubation time, which became higher than that of free PCT at 24 and 48 h of incubation. Conclusions: The increased biocompatibility of the pegylated nCGO and the enhanced anticancer activity of PEG-nCGO/PCT compared to free PCT are desirable properties with regard to the potential clinical application of PEG-nCGO/PCT as an anticancer nanomedicine. Full article
Show Figures

Figure 1

6 pages, 2005 KiB  
Proceeding Paper
Fibroblast and THP-1 Cell Response to Multi-Arm PEGNHS-Modified Decellularized Porcine Pericardium
by Sreypich Say, Mika Suzuki, Yoshihide Hashimoto, Tsuyoshi Kimura and Akio Kishida
Mater. Proc. 2024, 19(1), 3; https://doi.org/10.3390/materproc2024019003 - 1 Nov 2024
Viewed by 1147
Abstract
The adhesion between an implant and a wound could result in over-bleeding when attempting to separate the two. To address this issue, a cell-repelling implant is preferred. In this study, a cell-repelling membrane was prepared by modifying decellularized porcine pericardium with multi-arm polyethylene [...] Read more.
The adhesion between an implant and a wound could result in over-bleeding when attempting to separate the two. To address this issue, a cell-repelling implant is preferred. In this study, a cell-repelling membrane was prepared by modifying decellularized porcine pericardium with multi-arm polyethylene glycol. With this modification technology, we switched the surface properties of the decellularized porcine pericardium from cell-adhering to cell-repelling. The result showed that this pericardium was successfully modified without any effect on the original properties of the pericardium and also maintained a low inflammatory response. The level of cell adhesion on the surface of the membrane was significantly reduced. Full article
(This article belongs to the Proceedings of The 1st International Online Conference on Functional Biomaterials)
Show Figures

Figure 1

18 pages, 5230 KiB  
Article
Crosslinked Biodegradable Hybrid Hydrogels Based on Poly(ethylene glycol) and Gelatin for Drug Controlled Release
by Zhenzhen Zhao, Zihao Qin, Tianqing Zhao, Yuanyuan Li, Zhaosheng Hou, Hui Hu, Xiaofang Su and Yanan Gao
Molecules 2024, 29(20), 4952; https://doi.org/10.3390/molecules29204952 - 19 Oct 2024
Cited by 9 | Viewed by 2371
Abstract
A series of hybrid hydrogels of poly(ethylene glycol) (PEG) were synthesized using gelatin as a crosslinker and investigated for controlled delivery of the first-generation cephalosporin antibiotic, Cefazedone sodium (CFD). A commercially available 4-arm-PEG–OH was first modified to obtain four-arm-PEG–succinimidyl glutarate (4-arm-PEG–SG), which formed [...] Read more.
A series of hybrid hydrogels of poly(ethylene glycol) (PEG) were synthesized using gelatin as a crosslinker and investigated for controlled delivery of the first-generation cephalosporin antibiotic, Cefazedone sodium (CFD). A commercially available 4-arm-PEG–OH was first modified to obtain four-arm-PEG–succinimidyl glutarate (4-arm-PEG–SG), which formed the gelatin–PEG composite hydrogels (SnNm) through crosslinking with gelatin. To regulate the drug delivery, SnNm hydrogels with various solid contents and crosslinking degrees were prepared. The effect of solid contents and crosslinking degrees on the thermal, mechanical, swelling, degradation, and drug release properties of the hydrogels were intensively investigated. The results revealed that increasing the crosslinking degree and solid content of SnNm could not only enhance the thermal stability, swelling ratio (SR), and compression resistance capacity of SnNm but also prolong the degradation and drug release times. The release kinetics of the SnNm hydrogels were found to follow the first-order model, suggesting that the transport rate of CFD within the matrix of hydrogels is proportional to the concentration of the drug where it is located. Specifically, S1N1-III showed 90% mass loss after 60 h of degradation and a sustained release duration of 72 h. The cytotoxicity assay using the MTT method revealed that cell viability rates of S1N1 were higher than 95%, indicating excellent cytocompatibility. This study offers new insights and methodologies for the development of hydrogels as biomedical composite materials. Full article
(This article belongs to the Special Issue Recent Advances in Porous Materials)
Show Figures

Figure 1

13 pages, 10019 KiB  
Protocol
A Scalable Method to Fabricate 2D Hydrogel Substrates for Mechanobiology Studies with Independent Tuning of Adhesiveness and Stiffness
by Alessandro Gandin, Veronica Torresan, Tito Panciera and Giovanna Brusatin
Methods Protoc. 2024, 7(5), 75; https://doi.org/10.3390/mps7050075 - 26 Sep 2024
Cited by 2 | Viewed by 1453
Abstract
Mechanical signals from the extracellular matrix are crucial in guiding cellular behavior. Two-dimensional hydrogel substrates for cell cultures serve as exceptional tools for mechanobiology studies because they mimic the biomechanical and adhesive characteristics of natural environments. However, the interdisciplinary knowledge required to synthetize [...] Read more.
Mechanical signals from the extracellular matrix are crucial in guiding cellular behavior. Two-dimensional hydrogel substrates for cell cultures serve as exceptional tools for mechanobiology studies because they mimic the biomechanical and adhesive characteristics of natural environments. However, the interdisciplinary knowledge required to synthetize and manipulate these biomaterials typically restricts their widespread use in biological laboratories, which may not have the material science expertise or specialized instrumentation. To address this, we propose a scalable method that requires minimal setup to produce 2D hydrogel substrates with independent modulation of the rigidity and adhesiveness within the range typical of natural tissues. In this method, norbornene-terminated 8-arm polyethylene glycol is stoichiometrically functionalized with RGD peptides and crosslinked with a di-cysteine terminated peptide via a thiol–ene click reaction. Since the synthesis process significantly influences the final properties of the hydrogels, we provide a detailed description of the chemical procedure to ensure reproducibility and high throughput results. We demonstrate examples of cell mechanosignaling by monitoring the activation state of the mechanoeffector proteins YAP/TAZ. This method effectively dissects the influence of biophysical and adhesive cues on cell behavior. We believe that our procedure will be easily adopted by other cell biology laboratories, improving its accessibility and practical application. Full article
(This article belongs to the Section Molecular and Cellular Biology)
Show Figures

Figure 1

13 pages, 3979 KiB  
Article
Synthesis and Photopatterning of Synthetic Thiol-Norbornene Hydrogels
by Umu S. Jalloh, Arielle Gsell, Kirstene A. Gultian, James MacAulay, Abigail Madden, Jillian Smith, Luke Siri and Sebastián L. Vega
Gels 2024, 10(3), 164; https://doi.org/10.3390/gels10030164 - 23 Feb 2024
Viewed by 3051
Abstract
Hydrogels are a class of soft biomaterials and the material of choice for a myriad of biomedical applications due to their biocompatibility and highly tunable mechanical and biochemical properties. Specifically, light-mediated thiol-norbornene click reactions between norbornene-modified macromers and di-thiolated crosslinkers can be used [...] Read more.
Hydrogels are a class of soft biomaterials and the material of choice for a myriad of biomedical applications due to their biocompatibility and highly tunable mechanical and biochemical properties. Specifically, light-mediated thiol-norbornene click reactions between norbornene-modified macromers and di-thiolated crosslinkers can be used to form base hydrogels amenable to spatial biochemical modifications via subsequent light reactions between pendant norbornenes in the hydrogel network and thiolated peptides. Macromers derived from natural sources (e.g., hyaluronic acid, gelatin, alginate) can cause off-target cell signaling, and this has motivated the use of synthetic macromers such as poly(ethylene glycol) (PEG). In this study, commercially available 8-arm norbornene-modified PEG (PEG-Nor) macromers were reacted with di-thiolated crosslinkers (dithiothreitol, DTT) to form synthetic hydrogels. By varying the PEG-Nor weight percent or DTT concentration, hydrogels with a stiffness range of 3.3 kPa–31.3 kPa were formed. Pendant norbornene groups in these hydrogels were used for secondary reactions to either increase hydrogel stiffness (by reacting with DTT) or to tether mono-thiolated peptides to the hydrogel network. Peptide functionalization has no effect on bulk hydrogel mechanics, and this confirms that mechanical and biochemical signals can be independently controlled. Using photomasks, thiolated peptides can also be photopatterned onto base hydrogels, and mesenchymal stem cells (MSCs) attach and spread on RGD-functionalized PEG-Nor hydrogels. MSCs encapsulated in PEG-Nor hydrogels are also highly viable, demonstrating the ability of this platform to form biocompatible hydrogels for 2D and 3D cell culture with user-defined mechanical and biochemical properties. Full article
(This article belongs to the Special Issue Hydrogel-Based Scaffolds with a Focus on Medical Use (2nd Edition))
Show Figures

Figure 1

12 pages, 2683 KiB  
Article
Polyglycerol-Based Hydrogel as Versatile Support Matrix for 3D Multicellular Tumor Spheroid Formation
by Boonya Thongrom, Peng Tang, Smriti Arora and Rainer Haag
Gels 2023, 9(12), 938; https://doi.org/10.3390/gels9120938 - 29 Nov 2023
Cited by 2 | Viewed by 2482
Abstract
Hydrogel-based artificial scaffolds are essential for advancing cell culture models from 2D to 3D, enabling a more realistic representation of physiological conditions. These hydrogels can be customized through crosslinking to mimic the extracellular matrix. While the impact of extracellular matrix scaffolds on cell [...] Read more.
Hydrogel-based artificial scaffolds are essential for advancing cell culture models from 2D to 3D, enabling a more realistic representation of physiological conditions. These hydrogels can be customized through crosslinking to mimic the extracellular matrix. While the impact of extracellular matrix scaffolds on cell behavior is widely acknowledged, mechanosensing has become a crucial factor in regulating various cellular functions. cancer cells’ malignant properties depend on mechanical cues from their microenvironment, including factors like stiffness, shear stress, and pressure. Developing hydrogels capable of modulating stiffness holds great promise for better understanding cell behavior under distinct mechanical stress stimuli. In this study, we aim to 3D culture various cancer cell lines, including MCF-7, HT-29, HeLa, A549, BT-474, and SK-BR-3. We utilize a non-degradable hydrogel formed from alpha acrylate-functionalized dendritic polyglycerol (dPG) and thiol-functionalized 4-arm polyethylene glycol (PEG) via the thiol-Michael click reaction. Due to its high multivalent hydroxy groups and bioinert ether backbone, dPG polymer was an excellent alternative as a crosslinking hub and is highly compatible with living microorganisms. The rheological viscoelasticity of the hydrogels is tailored to achieve a mechanical stiffness of approximately 1 kPa, suitable for cell growth. Cancer cells are in situ encapsulated within these 3D network hydrogels and cultured with cell media. The grown tumor spheroids were characterized by fluorescence and confocal microscopies. The average grown size of all tumoroid types was ca. 150 µm after 25 days of incubation. Besides, the stability of a swollen gel remains constant after 2 months at physiological conditions, highlighting the nondegradable potential. The successful formation of multicellular tumor spheroids (MCTSs) for all cancer cell types demonstrates the versatility of our hydrogel platform in 3D cell growth. Full article
(This article belongs to the Special Issue Advances in Acrylate-Based Hydrogels)
Show Figures

Graphical abstract

13 pages, 1682 KiB  
Article
Multi-Armed Star-Shaped Block Copolymers of Poly(ethylene glycol)-Poly(furfuryl glycidol) as Long Circulating Nanocarriers
by Yasuhiro Nakagawa, Kotaro Ushidome, Keita Masuda, Kazunori Igarashi, Yu Matsumoto, Tatsuya Yamasoba, Yasutaka Anraku, Madoka Takai and Horacio Cabral
Polymers 2023, 15(12), 2626; https://doi.org/10.3390/polym15122626 - 9 Jun 2023
Cited by 3 | Viewed by 2490
Abstract
Multi-arm star-shaped block copolymers with precisely tuned nano-architectures are promising candidates for drug delivery. Herein, we developed 4- and 6-arm star-shaped block copolymers consisting of poly(furfuryl glycidol) (PFG) as the core-forming segments and biocompatible poly(ethylene glycol) (PEG) as the shell-forming blocks. The polymerization [...] Read more.
Multi-arm star-shaped block copolymers with precisely tuned nano-architectures are promising candidates for drug delivery. Herein, we developed 4- and 6-arm star-shaped block copolymers consisting of poly(furfuryl glycidol) (PFG) as the core-forming segments and biocompatible poly(ethylene glycol) (PEG) as the shell-forming blocks. The polymerization degree of each block was controlled by adjusting the feeding ratio of a furfuryl glycidyl ether and ethylene oxide. The size of the series of block copolymers was found to be less than 10 nm in DMF. In water, the polymers showed sizes larger than 20 nm, which can be related to the association of the polymers. The star-shaped block copolymers effectively loaded maleimide-bearing model drugs in their core-forming segment with the Diels–Alder reaction. These drugs were rapidly released upon heating via a retro Diels–Alder step. When the star-shaped block copolymers were injected intravenously in mice, they showed prolonged blood circulation, with more than 80% of the injected dose remaining in the bloodstream at 6 h after intravenous injection. These results indicate the potential of the star-shaped PFG-PEG block copolymers as long-circulating nanocarriers. Full article
(This article belongs to the Special Issue Bioactivated Polymers for Nanomedicine)
Show Figures

Graphical abstract

20 pages, 3723 KiB  
Article
Injectable Hydrogels Based on Cyclodextrin/Cholesterol Inclusion Complexation and Loaded with 5-Fluorouracil/Methotrexate for Breast Cancer Treatment
by Saud Almawash, Ahmed M. Mohammed, Mohamed A. El Hamd and Shaaban K. Osman
Gels 2023, 9(4), 326; https://doi.org/10.3390/gels9040326 - 12 Apr 2023
Cited by 9 | Viewed by 2477
Abstract
Breast cancer is the second most common cancer in women worldwide. Long-term treatment with conventional chemotherapy may result in severe systemic side effects. Therefore, the localized delivery of chemotherapy helps to overcome such a problem. In this article, self-assembling hydrogels were constructed via [...] Read more.
Breast cancer is the second most common cancer in women worldwide. Long-term treatment with conventional chemotherapy may result in severe systemic side effects. Therefore, the localized delivery of chemotherapy helps to overcome such a problem. In this article, self-assembling hydrogels were constructed via inclusion complexation between host β-cyclodextrin polymers (8armPEG20k-CD and pβ-CD) and the guest polymers 8-armed poly(ethylene glycol) capped either with cholesterol (8armPEG20k-chol) or adamantane (8armPEG20k-Ad) and were loaded with 5-fluorouracil (5-FU) and methotrexate (MTX). The prepared hydrogels were characterized by SEM and rheological behaviors. The in vitro release of 5-FU and MTX was studied. The cytotoxicity of our modified systems was investigated against breast tumor cells (MCF-7) using an MTT assay. Additionally, the histopathological changes in breast tissues were monitored before and after their intratumor injection. The results of rheological characterization indicated the viscoelastic behavior in all cases except for 8armPEG-Ad. In vitro release results showed a variable range of release profiles from 6 to 21 days, depending on the hydrogel composition. MTT findings indicated the inhibition ability of our systems against the viability of cancer cells depending on the kind and concentration of the hydrogel and the incubation period. Moreover, the results of histopathology showed the improvement of cancer manifestation (swelling and inflammation) after intratumor injection of loaded hydrogel systems. In conclusion, the obtained results indicated the applicability of the modified hydrogels as injectable vehicles for both loading and controlled release of anticancer therapies. Full article
(This article belongs to the Special Issue Cancer Cell Biology in Biological Hydrogel)
Show Figures

Figure 1

13 pages, 2627 KiB  
Article
Aggregation and Gelation Behavior of Stereocomplexed Four-Arm PLA-PEG Copolymers Containing Neutral or Cationic Linkers
by Francesca Signori, Jos W. H. Wennink, Simona Bronco, Jan Feijen, Marcel Karperien, Ranieri Bizzarri and Pieter J. Dijkstra
Int. J. Mol. Sci. 2023, 24(4), 3327; https://doi.org/10.3390/ijms24043327 - 7 Feb 2023
Cited by 5 | Viewed by 2253
Abstract
Poly(lactide) (PLA) and poly(ethylene glycol) (PEG)-based hydrogels were prepared by mixing phosphate buffer saline (PBS, pH 7.4) solutions of four-arm (PEG-PLA)2-R-(PLA-PEG)2 enantiomerically pure copolymers having the opposite chirality of the poly(lactide) blocks. Dynamic Light Scattering, rheology measurements, and fluorescence spectroscopy [...] Read more.
Poly(lactide) (PLA) and poly(ethylene glycol) (PEG)-based hydrogels were prepared by mixing phosphate buffer saline (PBS, pH 7.4) solutions of four-arm (PEG-PLA)2-R-(PLA-PEG)2 enantiomerically pure copolymers having the opposite chirality of the poly(lactide) blocks. Dynamic Light Scattering, rheology measurements, and fluorescence spectroscopy suggested that, depending on the nature of the linker R, the gelation process followed rather different mechanisms. In all cases, mixing of equimolar amounts of the enantiomeric copolymers led to micellar aggregates with a stereocomplexed PLA core and a hydrophilic PEG corona. Yet, when R was an aliphatic heptamethylene unit, temperature-dependent reversible gelation was mainly induced by entanglements of PEG chains at concentrations higher than 5 wt.%. When R was a linker containing cationic amine groups, thermo-irreversible hydrogels were promptly generated at concentrations higher than 20 wt.%. In the latter case, stereocomplexation of the PLA blocks randomly distributed in micellar aggregates is proposed as the major determinant of the gelation process. Full article
(This article belongs to the Collection Feature Papers in Molecular Nanoscience)
Show Figures

Figure 1

11 pages, 3269 KiB  
Article
Study of Excipients in Delayed Skin Reactions to mRNA Vaccines: Positive Delayed Intradermal Reactions to Polyethylene Glycol Provide New Insights for COVID-19 Arm
by David Pesqué, Ramon Maria Pujol, Orianna Marcantonio, Ainhoa Vidal-Navarro, José María Ramada, Alba Arderiu-Formentí, Agustí Albalat-Torres, Consol Serra and Ana María Giménez-Arnau
Vaccines 2022, 10(12), 2048; https://doi.org/10.3390/vaccines10122048 - 30 Nov 2022
Cited by 1 | Viewed by 3852
Abstract
Background: Skin local reactions to mRNA COVID-19 vaccines have been linked to the use of vaccine excipients. The aim of the study is to evaluate the role of skin testing excipients in delayed skin reactions due to mRNA COVID-19 vaccines. Methods: Skin testing [...] Read more.
Background: Skin local reactions to mRNA COVID-19 vaccines have been linked to the use of vaccine excipients. The aim of the study is to evaluate the role of skin testing excipients in delayed skin reactions due to mRNA COVID-19 vaccines. Methods: Skin testing among a group of healthcare workers with skin reactions due to mRNA vaccines was performed. Patch testing and intradermal testing (IDT) with polyethylene glycol (PEG)-400, PEG-2000, trometamol, and 1,2-dimyristoyl-sn-glycero-3-phosphocholine were performed. Healthcare workers without skin reactions to vaccines were used for skin testing as controls. Results: Thirty-one healthcare workers (from a total of 4315 vaccinated healthcare workers) experienced cutaneous adverse vaccine reactions. Skin testing was performed in sixteen of the healthcare workers (11 delayed large local reactions (DLLR) and 5 widespread reactions). Positive IDT for PEG-2000 1% in DLLR was seen in 10 (90.9%) patients, in comparison with one (16.6%) individual with a delayed widespread reaction. Delayed positive IDT reactions for PEG-2000 1% on day 2 were observed in three (27.3%) patients with DLLR. Patch testing of the excipients was negative. Among 10 controls, only one exhibited a transient positive IDT reaction to PEG-2000 1%. Conclusions: Immediate and delayed reactions to IDT are frequently detected in patients with DLLR. The observation of positive delayed intradermal reactions to PEG disclosed only in patients with DLLR reinforces a possible role of PEG in the development of these reactions. Skin testing of other excipients is of little importance in clinical practice. Full article
(This article belongs to the Special Issue Adverse Events of COVID-19 Vaccines)
Show Figures

Figure 1

Back to TopTop