Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = 5-S-cysteinyldopa

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 700 KB  
Article
A Simple Method to Determine Pheomelanin Content and Structure in FFPE Human Melanoma Specimens
by Slawomir Kurkiewicz, Łukasz Marek, Irena Tam, Agata Stanek-Widera, Dariusz Lange and Jerzy Stojko
Processes 2025, 13(6), 1636; https://doi.org/10.3390/pr13061636 - 23 May 2025
Cited by 1 | Viewed by 1363
Abstract
Human cutaneous malignant melanoma is a skin cancer that develops from melanocytes, the cells specialised in the production of eu- and pheomelanin. A growing body of evidence suggests that pheomelanin in particular is involved in melanoma development. The aim of this study was [...] Read more.
Human cutaneous malignant melanoma is a skin cancer that develops from melanocytes, the cells specialised in the production of eu- and pheomelanin. A growing body of evidence suggests that pheomelanin in particular is involved in melanoma development. The aim of this study was to develop a new method enabling the determination of the pheomelanin in formalin-fixed paraffin-embedded (FFPE) tissue specimens of human nodular (NM) and superficial spreading (SSM) melanomas. The pheomelanin level was evaluated in a small amount of material obtained from FFPE melanoma samples (less than 1 mg), using a multi-step procedure of paraffin removal, tissue rehydration, and homogenisation, omitting the melanin isolation step. The obtained product was studied for pheomelanin content using the Py-GC/MS/MS method operating in a multiple reaction monitoring (MRM) mode. The results of our research confirmed the presence of all the pheomelanin markers in the FFPE human melanoma specimens and showed that the tissues analysed contained different amounts of pheomelanin isomers (5-S-cysteinylDOPA and 2-S-cysteinylDOPA). The developed Py-GC/MS/MS procedure enables sensitive quantification of pheomelanin in FFPE human melanoma samples, facilitating broader studies on its role in melanoma development and progression. This method opens new avenues for investigating pheomelanin’s involvement in melanoma malignancy. Full article
Show Figures

Graphical abstract

24 pages, 5959 KB  
Review
Role of Sulphur and Heavier Chalcogens on the Antioxidant Power and Bioactivity of Natural Phenolic Compounds
by Maria Laura Alfieri, Lucia Panzella, Riccardo Amorati, Alice Cariola, Luca Valgimigli and Alessandra Napolitano
Biomolecules 2022, 12(1), 90; https://doi.org/10.3390/biom12010090 - 6 Jan 2022
Cited by 30 | Viewed by 5096
Abstract
The activity of natural phenols is primarily associated to their antioxidant potential, but is ultimately expressed in a variety of biological effects. Molecular scaffold manipulation of this large variety of compounds is a currently pursued approach to boost or modulate their properties. Insertion [...] Read more.
The activity of natural phenols is primarily associated to their antioxidant potential, but is ultimately expressed in a variety of biological effects. Molecular scaffold manipulation of this large variety of compounds is a currently pursued approach to boost or modulate their properties. Insertion of S/Se/Te containing substituents on phenols may increase/decrease their H-donor/acceptor ability by electronic and stereo-electronic effects related to the site of substitution and geometrical constrains. Oxygen to sulphur/selenium isosteric replacement in resveratrol or ferulic acid leads to an increase in the radical scavenging activity with respect to the parent phenol. Several chalcogen-substituted phenols inspired by Vitamin E and flavonoids have been prepared, which in some cases prove to be chain-breaking antioxidants, far better than the natural counterparts. Conjugation of catechols with biological thiols (cysteine, glutathione, dihydrolipoic acid) is easily achieved by addition to the corresponding ortho-quinones. Noticeable examples of compounds with potentiated antioxidant activities are the human metabolite 5-S-cysteinyldopa, with high iron-induced lipid peroxidation inhibitory activity, due to strong iron (III) binding, 5-S-glutathionylpiceatannol a most effective inhibitor of nitrosation processes, and 5-S-lipoylhydroxytyrosol, and its polysulfides that proved valuable oxidative-stress protective agents in various cellular models. Different methodologies have been used for evaluation of the antioxidant power of these compounds against the parent compounds. These include kinetics of inhibition of lipid peroxidation alkylperoxyl radicals, common chemical assays of radical scavenging, inhibition of the OH• mediated hydroxylation/oxidation of model systems, ferric- or copper-reducing power, scavenging of nitrosating species. In addition, computational methods allowed researchers to determine the Bond Dissociation Enthalpy values of the OH groups of chalcogen modified phenolics and predict the best performing derivative. Finally, the activity of Se and Te containing compounds as mimic of glutathione peroxidase has been evaluated, together with other biological activities including anticancer action and (neuro)protective effects in various cellular models. These and other achievements are discussed and rationalized to guide future development in the field. Full article
Show Figures

Figure 1

15 pages, 2415 KB  
Article
Density Functional Theory-Based Calculation Shed New Light on the Bizarre Addition of Cysteine Thiol to Dopaquinone
by Ryo Kishida, Shosuke Ito, Manickam Sugumaran, Ryan Lacdao Arevalo, Hiroshi Nakanishi and Hideaki Kasai
Int. J. Mol. Sci. 2021, 22(3), 1373; https://doi.org/10.3390/ijms22031373 - 29 Jan 2021
Cited by 11 | Viewed by 4541
Abstract
Two types of melanin pigments, brown to black eumelanin and yellow to reddish brown pheomelanin, are biosynthesized through a branched reaction, which is associated with the key intermediate dopaquinone (DQ). In the presence of l-cysteine, DQ immediately binds to the –SH group, [...] Read more.
Two types of melanin pigments, brown to black eumelanin and yellow to reddish brown pheomelanin, are biosynthesized through a branched reaction, which is associated with the key intermediate dopaquinone (DQ). In the presence of l-cysteine, DQ immediately binds to the –SH group, resulting in the formation of cysteinyldopa necessary for the pheomelanin production. l-Cysteine prefers to bond with aromatic carbons adjacent to the carbonyl groups, namely C5 and C2. Surprisingly, this Michael addition takes place at 1,6-position of the C5 (and to some extent at C2) rather than usually expected 1,4-position. Such an anomaly on the reactivity necessitates an atomic-scale understanding of the binding mechanism. Using density functional theory-based calculations, we investigated the binding of l-cysteine thiolate (Cys–S) to DQ. Interestingly, the C2–S bonded intermediate was less energetically stable than the C6–S bonded case. Furthermore, the most preferred Cys–S-attacked intermediate is at the carbon-carbon bridge between the two carbonyls (C3–C4 bridge site) but not on the C5 site. This structure allows the Cys–S to migrate onto the adjacent C5 or C2 with small activation energies. Further simulation demonstrated a possible conversion pathway of the C5–S (and C2–S) intermediate into 5-S-cysteinyldopa (and 2-S-cysteinyldopa), which is the experimentally identified major (and minor) product. Based on the results, we propose that the binding of Cys–S to DQ proceeds via the following path: (i) coordination of Cys–S to C3–C4 bridge, (ii) migration of Cys–S to C5 (C2), (iii) proton rearrangement from cysteinyl –NH3+ to O4 (O3), and (iv) proton rearrangement from C5 (C2) to O3 (O4). Full article
(This article belongs to the Special Issue Melanins and Melanogenesis 2.0: From Nature to Applications)
Show Figures

Figure 1

19 pages, 1497 KB  
Review
Significance of 5-S-Cysteinyldopa as a Marker for Melanoma
by Kazumasa Wakamatsu, Satoshi Fukushima, Akane Minagawa, Toshikazu Omodaka, Tokimasa Hida, Naohito Hatta, Minoru Takata, Hisashi Uhara, Ryuhei Okuyama and Hironobu Ihn
Int. J. Mol. Sci. 2020, 21(2), 432; https://doi.org/10.3390/ijms21020432 - 9 Jan 2020
Cited by 19 | Viewed by 6204
Abstract
Melanoma is one of the most lethal and malignant cancers and its incidence is increasing worldwide, and Japan is not an exception. Although there are numerous therapeutic options for melanoma, the prognosis is still poor once it has metastasized. The main concern after [...] Read more.
Melanoma is one of the most lethal and malignant cancers and its incidence is increasing worldwide, and Japan is not an exception. Although there are numerous therapeutic options for melanoma, the prognosis is still poor once it has metastasized. The main concern after removal of a primary melanoma is whether it has metastasized, and early detection of metastatic melanoma would be effective in improving the prognosis of patients. Thus, it is very important to identify reliable methods to detect metastases as early as possible. Although many prognostic biomarkers (mainly for metastases) of melanoma have been reported, there are very few effective for an early diagnosis. Serum and urinary biomarkers for melanoma diagnosis have especially received great interest because of the relative ease of sample collection and handling. Several serum and urinary biomarkers appear to have significant potential both as prognostic indicators and as targets for future therapeutic methods, but still there are no efficient serum and urinary biomarkers for early detection, accurate diagnosis and prognosis, efficient monitoring of the disease and reliable prediction of survival and recurrence. Levels of 5-S-cysteinyldopa (5SCD) in the serum or urine as biomarkers of melanoma have been found to be significantly elevated earlier and to reflect melanoma progression better than physical examinations, laboratory tests and imaging techniques, such as scintigraphy and echography. With recent developments in the treatment of melanoma, studies reporting combinations of 5SCD levels and new applications for the treatment of melanoma are gradually increasing. This review summarizes the usefulness of 5SCD, the most widely used and well-known melanoma marker in the serum and urine, compares 5SCD and other useful markers, and finally its application to other fields. Full article
(This article belongs to the Special Issue Skin Cancer: From Pathophysiology to Novel Therapeutic Approaches)
Show Figures

Graphical abstract

13 pages, 4091 KB  
Review
“Fifty Shades” of Black and Red or How Carboxyl Groups Fine Tune Eumelanin and Pheomelanin Properties
by Raffaella Micillo, Lucia Panzella, Kenzo Koike, Giuseppe Monfrecola, Alessandra Napolitano and Marco D’Ischia
Int. J. Mol. Sci. 2016, 17(5), 746; https://doi.org/10.3390/ijms17050746 - 17 May 2016
Cited by 113 | Viewed by 17678
Abstract
Recent advances in the chemistry of melanins have begun to disclose a number of important structure-property-function relationships of crucial relevance to the biological role of human pigments, including skin (photo) protection and UV-susceptibility. Even slight variations in the monomer composition of black eumelanins [...] Read more.
Recent advances in the chemistry of melanins have begun to disclose a number of important structure-property-function relationships of crucial relevance to the biological role of human pigments, including skin (photo) protection and UV-susceptibility. Even slight variations in the monomer composition of black eumelanins and red pheomelanins have been shown to determine significant differences in light absorption, antioxidant, paramagnetic and redox behavior, particle morphology, surface properties, metal chelation and resistance to photo-oxidative wear-and-tear. These variations are primarily governed by the extent of decarboxylation at critical branching points of the eumelanin and pheomelanin pathways, namely the rearrangement of dopachrome to 5,6-dihydroxyindole (DHI) and 5,6-dihydroxyindole-2-carboxylic acid (DHICA), and the rearrangement of 5-S-cysteinyldopa o-quinoneimine to 1,4-benzothiazine (BTZ) and its 3-carboxylic acid (BTZCA). In eumelanins, the DHICA-to-DHI ratio markedly affects the overall antioxidant and paramagnetic properties of the resulting pigments. In particular, a higher content in DHICA decreases visible light absorption and paramagnetic response relative to DHI-based melanins, but markedly enhances antioxidant properties. In pheomelanins, likewise, BTZCA-related units, prevalently formed in the presence of zinc ions, appear to confer pronounced visible and ultraviolet A (UVA) absorption features, accounting for light-dependent reactive oxygen species (ROS) production, whereas non-carboxylated benzothiazine intermediates seem to be more effective in inducing ROS production by redox cycling mechanisms in the dark. The possible biological and functional significance of carboxyl retention in the eumelanin and pheomelanin pathways is discussed. Full article
(This article belongs to the Special Issue Biochemistry and Mechanisms of Melanogenesis)
Show Figures

Graphical abstract

Back to TopTop