Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (145)

Search Parameters:
Keywords = 3GPP standards

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 817 KB  
Article
Design of a DetNet Framework in a 3GPP 5G System
by Jaehyun Kim, Kyeongjun Ko, Seung-Chan Lim, Joon-Seok Kim, Jaeho Im and Jungtai Kim
Electronics 2026, 15(3), 664; https://doi.org/10.3390/electronics15030664 - 3 Feb 2026
Abstract
Ultra-low latency communication is fundamentally required to reduce end-to-end (E2E) latency related to the transportation of time-critical or time-sensitive traffic in 5G networks. Time-sensitive networking has significant prospects in factory automation and Industrial Internet of Things (IIoT) as a key technology that can [...] Read more.
Ultra-low latency communication is fundamentally required to reduce end-to-end (E2E) latency related to the transportation of time-critical or time-sensitive traffic in 5G networks. Time-sensitive networking has significant prospects in factory automation and Industrial Internet of Things (IIoT) as a key technology that can provide low-latency, highly reliable, and deterministic communications over Ethernet, whereas IETF deterministic networking (DetNet) seeks to provide a complementary network layer to support ultra-low latency communications. DetNet, as standardized in the IETF, provides time-sensitive characteristics that assure extremely low packet loss and latency for ultra-reliable low-latency communications. This study develops a novel framework to enable 3GPP support for DetNet functionalities. First, the proposed framework seeks to support IP-based DetNet traffic and urgent data transmission in the network overload conditions of 3GPP 5G systems. Additionally, the proposed design supports DetNet service connectivity between non-DetNet and DetNet service areas. Based on simulation results, the proposed framework can guarantee deterministic latency requirements and critical data transmission for DetNet compared with conventional approaches. The proposed scheme can achieve more effective performance for moving DetNet devices. Full article
(This article belongs to the Special Issue Edge-Intelligent Sustainable Cyber-Physical Systems)
Show Figures

Figure 1

13 pages, 2483 KB  
Article
Different Driving Mechanisms for Spatial Variations in Soil Autotrophic and Heterotrophic Respiration: A Global Synthesis for Forest and Grassland Ecosystems
by Yun Jiang, Jiajun Xu, Chengjin Chu, Xiuchen Wu and Bingwei Zhang
Agronomy 2026, 16(3), 372; https://doi.org/10.3390/agronomy16030372 - 3 Feb 2026
Abstract
As a pivotal component of the global carbon cycle, the spatial variation in soil respiration (Rs) is crucial for forecasting climate change trajectories. Despite extensive research on the spatial patterns of total Rs, the distinct drivers of its two components, heterotrophic respiration (Rh) [...] Read more.
As a pivotal component of the global carbon cycle, the spatial variation in soil respiration (Rs) is crucial for forecasting climate change trajectories. Despite extensive research on the spatial patterns of total Rs, the distinct drivers of its two components, heterotrophic respiration (Rh) and autotrophic respiration (Ra), are still not well defined. We compiled a global dataset from studies published between 2007 and 2023 to investigate the drivers of spatial variations in Rs, Ra, and Rh. This dataset comprises 308 annual flux measurements from 172 sites. The results showed that Rh contributed 63% and 60% to Rs in forest and grassland ecosystems, respectively. Further analyses using structural equation modelling (SEM) showed that the spatial variation in Rh and Ra exhibited divergent responses to climatic factors and plant community structure (mostly driven by gross primary production, GPP). Rh was more affected by mean annual temperature (MAT) than by mean annual precipitation (MAP), with standardized total effects of 0.17 (forests) and 0.57 (grasslands) for MAT versus 0.10 and 0.07 for MAP, respectively. In contrast, Ra exhibited greater sensitivity to MAP (0.08 and 0.18) than to MAT (−0.01 and 0.04). GPP exerted biome-specific effects: in forests, high GPP enhanced Rh (0.18) more substantially than Ra (0.08), while in grasslands, elevated GPP significantly increased Ra (0.34) but suppressed Rh (−0.30). Moreover, these variables incorporated into the SEMs accounted for a greater proportion of the variation in Rh and Ra in grasslands (R2 = 0.73 for Rh, 0.48 for Ra) as compared to forests (R2 = 0.21 for Rh, 0.22 for Ra), suggesting the greater complexity in forest soil C dynamics. By using the whole yearly measured soil respiration data around the world, this study highlights the differential environmental regulation of Rh and Ra, providing critical insights into the mechanisms governing Rs variations under climate change. Full article
(This article belongs to the Special Issue Soil Carbon Sequestration and Greenhouse Gas Emissions)
Show Figures

Figure 1

24 pages, 698 KB  
Article
SaRA: Sensing-Aware Random Access for Integrated Satellite-Terrestrial Networks
by Yuanke Du, Jian Zhang, Tianci Ju, Zhou Zhou and Peng Chen
Aerospace 2026, 13(2), 140; https://doi.org/10.3390/aerospace13020140 - 1 Feb 2026
Viewed by 132
Abstract
Integrated satellite-terrestrial networks are crucial for critical communications, yet the initial access for user equipment (UE) is hampered by signal blockage and dynamic loads, challenging traditional random access (RA) mechanisms in achieving low latency and high success rates. To address this, we propose [...] Read more.
Integrated satellite-terrestrial networks are crucial for critical communications, yet the initial access for user equipment (UE) is hampered by signal blockage and dynamic loads, challenging traditional random access (RA) mechanisms in achieving low latency and high success rates. To address this, we propose a Sensing-aware Random Access (SaRA) mechanism. SaRA introduces a lightweight sensing micro-slot before the standard RACH procedure, leveraging the sensing signal to jointly determine an optimal access decision threshold and a candidate beam set. This proactively filters users with poor channel conditions and narrows the beam search space. We formulate the resource allocation as a constrained optimization problem and propose a practical, low-complexity algorithm. Extensive simulations validate that SaRA provides substantial gains in access latency and system access capacity under high-load conditions compared with the standard 3GPP FR2 RACH baseline, while maintaining competitive first-attempt success probability with minimal additional overhead. Full article
(This article belongs to the Special Issue Advanced Satellite Communications for Engineers and Scientists)
Show Figures

Figure 1

19 pages, 581 KB  
Article
Patient Journey for Triple-Negative Breast Cancer: Optimal Care Pathways vs. Reality of Care in Italian Breast Units
by Nicla La Verde, Luisa Brogonzoli, Maria Silvia Cona, Laura Cortesi, Elisabetta Iannelli, Eva Massari, Pietro Panizza, Roberto Papa, Maria Carmela Piccirillo, Elisa Sala, Valerio Mattia Scandali, Adele Sgarella, Laura Valentini and Rosaria Iardino
Curr. Oncol. 2026, 33(2), 83; https://doi.org/10.3390/curroncol33020083 - 31 Jan 2026
Viewed by 64
Abstract
Triple-negative breast cancer (TNBC) represents approximately 15% of all breast cancer diagnoses. Its heterogeneity and absence of targetable receptors make treatment particularly challenging, and it is burdened by a worse prognosis than other breast cancer subtypes. The absence of standardized care pathways may [...] Read more.
Triple-negative breast cancer (TNBC) represents approximately 15% of all breast cancer diagnoses. Its heterogeneity and absence of targetable receptors make treatment particularly challenging, and it is burdened by a worse prognosis than other breast cancer subtypes. The absence of standardized care pathways may impede the accessibility of information for patients and caregivers. The present survey was conducted as part of a co-participatory process aimed at informing the development of a patient journey for TNBC. A group of statements was developed based on relevant literature, current guidelines, and good practice points (GPPs) for effective TNBC care and subsequently evaluated by a multi-stakeholder panel. Key steps in the care journey were then selected for the survey, and Coordinators of Italian BUs (65.4%) indicated the level of perceived importance and reported implementation of each item. Descriptive statistical analyses were employed. Despite some gaps concerning issues such as the involvement of general practitioners (GPs), data show agreement on perceived importance and generally adequate levels of reported implementation of core aspects of TNBC care, providing support for the development of an optimal care journey for triple-negative breast cancer patients grounded in real-world practice, which may help generate useful guidance where clear pathways are still lacking. Full article
(This article belongs to the Section Breast Cancer)
Show Figures

Figure 1

37 pages, 2717 KB  
Review
Synthetizing 6G KPIs for Diverse Future Use Cases: A Comprehensive Review of Emerging Standards, Technologies, and Societal Needs
by Shujat Ali, Asma Abu-Samah, Mohammed H. Alsharif, Rosdiadee Nordin, Nauman Saqib, Mohammed Sani Adam, Umawathy Techanamurthy, Manzareen Mustafa and Nor Fadzilah Abdullah
Future Internet 2026, 18(1), 63; https://doi.org/10.3390/fi18010063 - 21 Jan 2026
Viewed by 330
Abstract
The anticipated transition from 5G to 6G is driven not by incremental performance demands but by a widening mismatch between emerging application requirements and the capabilities of existing cellular systems. Despite rapid progress across 3GPP Releases 15–20, the current literature lacks a unified [...] Read more.
The anticipated transition from 5G to 6G is driven not by incremental performance demands but by a widening mismatch between emerging application requirements and the capabilities of existing cellular systems. Despite rapid progress across 3GPP Releases 15–20, the current literature lacks a unified analysis that connects these standardization milestones to the concrete technical gaps that 6G must resolve. This study addresses this omission through a cross-release, application-driven review that traces how the evolution from enhanced mobile broadband to intelligent, sensing integrated networks lays the foundation for three core 6G service pillars: immersive communication (IC), everything connected (EC), and high-precision positioning. By examining use cases such as holographic telepresence, cooperative drone swarms, and large-scale Extended Reality (XR) ecosystems, this study exposes the limitations of today’s spectrum strategies, network architectures, and device capabilities and identifies the performance thresholds of Tbps-level throughput, sub-10 cm localization, sub-ms latency, and 10 M/km2 device density that next-generation systems must achieve. The novelty of this review lies in its synthesis of 3GPP advancements in XR, the non-terrestrial network (NTN), RedCap, ambient Internet of Things (IoT), and consideration of sustainability into a cohesive key performance indicator (KPI) framework that links future services to the required architectural and protocol innovations, including AI-native design and sub-THz operation. Positioned against global initiatives such as Hexa-X and the Next G Alliance, this paper argues that 6G represents a fundamental redesign of wireless communication advancement in 5G, driven by intelligence, adaptability, and long-term energy efficiency to satisfy diverse uses cases and requirements. Full article
Show Figures

Graphical abstract

28 pages, 5719 KB  
Article
A Predictive-Reactive Learning Framework for Cellular-Connected UAV Handover in Urban Heterogeneous Networks
by Muhammad Abrar Afzal and Luis Alonso
Electronics 2026, 15(1), 109; https://doi.org/10.3390/electronics15010109 - 25 Dec 2025
Viewed by 497
Abstract
Unmanned aerial vehicles (UAVs) operating in dense urban environments often face link disruptions due to high mobility and interference. Reliable connectivity in such conditions requires advanced handover strategies. This paper presents a predictive-reactive Q-learning framework (PRQF) that optimizes handover decisions while sustaining throughput [...] Read more.
Unmanned aerial vehicles (UAVs) operating in dense urban environments often face link disruptions due to high mobility and interference. Reliable connectivity in such conditions requires advanced handover strategies. This paper presents a predictive-reactive Q-learning framework (PRQF) that optimizes handover decisions while sustaining throughput in dynamic heterogeneous urban networks. The framework combines an Extreme Gradient Boosting (XGBoost) classifier with a Q-learning agent through a probabilistic gating mechanism. UAVs follow a sinusoidal mobility model to ensure consistent and representative movement across experiments. Simulations using 3GPP-compliant Urban Macro (UMa) channel models in a 10 km × 10 km area show that PRQF achieves an average reduction of 84% in handovers at 100 km/h and 83% at 120 km/h, compared to the standard 3GPP A3 event-based handover method. PRQF also maintains a consistently high average throughput across all methods and speed scenarios. The results show better link stability and communication quality, demonstrating that the proposed framework is adaptable and scalable for reliable UAV communications in urban environments. Full article
Show Figures

Figure 1

18 pages, 1202 KB  
Article
A Data-Driven Distributed Autonomous Architecture for the 6G Network
by Qiuyue Gao, Jinyan Li and Yanxia Xing
Electronics 2026, 15(1), 102; https://doi.org/10.3390/electronics15010102 - 25 Dec 2025
Viewed by 424
Abstract
Driven by technological innovation, service diversification, and the evolution and defects of current networks, the 6th-generation (6G) network architecture is lacking in research. One of the challenges in this research is that the architectural design should take into account multiple factors: customers, operators, [...] Read more.
Driven by technological innovation, service diversification, and the evolution and defects of current networks, the 6th-generation (6G) network architecture is lacking in research. One of the challenges in this research is that the architectural design should take into account multiple factors: customers, operators, and vendors. For service-oriented and network-oriented design requirements, this article proposes a data-driven distributed autonomous architecture (DDAA) for 6G with a three-layer four-plane logical hierarchy. The architecture is simplified as four network function units (NFUs), the interaction among which is carried via dual-bus interfaces, i.e., the service-based interface (SBI) and data transmission interface (DTI). In addition, it is user data-centric and rendered as distributed autonomous domains (ADs) with different scales to better adapt to customized services. Different transition stages from the 5th generation (5G) to 6G are discussed. Network simplification evaluation is further provided by going through several signaling procedures of the 3rd-generation partnership project (3GPP), inspiring advanced research and subsequent standardization of the 6G network architecture. Full article
(This article belongs to the Special Issue 6G and Beyond: Architectures, Challenges, and Opportunities)
Show Figures

Figure 1

32 pages, 5517 KB  
Article
Evaluation of Jamming Attacks on NR-V2X Systems: Simulation and Experimental Perspectives
by Antonio Santos da Silva, Kevin Herman Muraro Gularte, Giovanni Almeida Santos, Davi Salomão Soares Corrêa, Luís Felipe Oliveira de Melo, João Paulo Javidi da Costa, José Alfredo Ruiz Vargas, Daniel Alves da Silva and Tai Fei
Signals 2026, 7(1), 1; https://doi.org/10.3390/signals7010001 - 19 Dec 2025
Viewed by 674
Abstract
Autonomous vehicles (AVs) are transforming transportation by improving safety, efficiency, and intelligence through integrated sensing, computing, and communication technologies. However, their growing reliance on Vehicle-to-Everything (V2X) communication exposes them to cybersecurity vulnerabilities, particularly at the physical layer. Among these, jamming attacks represent a [...] Read more.
Autonomous vehicles (AVs) are transforming transportation by improving safety, efficiency, and intelligence through integrated sensing, computing, and communication technologies. However, their growing reliance on Vehicle-to-Everything (V2X) communication exposes them to cybersecurity vulnerabilities, particularly at the physical layer. Among these, jamming attacks represent a critical threat by disrupting wireless channels and compromising message delivery, severely impacting vehicle coordination and safety. This work investigates the robustness of New Radio (NR)-V2X-enabled vehicular systems under jamming conditions through a dual-methodology approach. First, two Cooperative Intelligent Transport System (C-ITS) scenarios standardized by 3GPP—Do Not Pass Warning (DNPW) and Intersection Movement Assist (IMA)—are implemented in the OMNeT++ simulation environment using Simu5G, Veins, and SUMO. The simulations incorporate four types of jamming strategies and evaluate their impact on key metrics such as packet loss, signal quality, inter-vehicle spacing, and collision risk. Second, a complementary laboratory experiment is conducted using AnaPico vector signal generators (a Keysight Technologies brand) and an Anritsu multi-channel spectrum receiver, replicating controlled wireless conditions to validate the degradation effects observed in the simulation. The findings reveal that jamming severely undermines communication reliability in NR-V2X systems, both in simulation and in practice. These findings highlight the urgent need for resilient NR-V2X protocols and countermeasures to ensure the integrity of cooperative autonomous systems in adversarial environments. Full article
Show Figures

Figure 1

31 pages, 7089 KB  
Article
Performance Analysis of a MIMO System Under Realistic Conditions Using 3GPP Channel Model
by Nikolaos Mouziouras, Andreas Tsormpatzoglou and Constantinos T. Angelis
Symmetry 2025, 17(12), 2159; https://doi.org/10.3390/sym17122159 - 15 Dec 2025
Viewed by 376
Abstract
In recent years, the scientific community has increasingly focused on state-of-the-art techniques, such as MIMO and mmWave transmission, aimed at enhancing the performance of telecommunication channels both quantitatively and qualitatively through various approaches. These efforts often rely on channel models designed to more [...] Read more.
In recent years, the scientific community has increasingly focused on state-of-the-art techniques, such as MIMO and mmWave transmission, aimed at enhancing the performance of telecommunication channels both quantitatively and qualitatively through various approaches. These efforts often rely on channel models designed to more accurately represent real-world conditions, thereby ensuring that the results are objective and practically applicable. In the present study, we employ one of the most scientifically reliable system- level simulators, Vienna SLS Simulator, to evaluate the performance of a wireless channel that we configure based on the latest standards (3GPP TR 36.873). We take into account the well-known non-symmetrical behavior of mMIMOs, where m stands for microwave MIMOs, in wireless communication systems and analyze the resulting changes in key performance metrics including average cell throughput, average user spectral efficiency and signal-to-interference-plus-noise ratio (SINR). We vary specific parameters such as transmission power, antenna polarization, ratio of indoor to outdoor users, and others with the aim of validating or challenging existing scientific assumptions. Particular attention is given to studying how variations in the aforementioned factors affect channel geometry and spatial uniformity, emphasizing the role of antenna geometry, polarization and user distribution in shaping channel asymmetries in mmWave MU-MIMO systems. Overall, this study provides insights into designing more balanced and efficient wireless systems in realistic urban environments. Full article
(This article belongs to the Special Issue Exploring Symmetry in Wireless Communication)
Show Figures

Figure 1

17 pages, 1314 KB  
Article
Random Access Resource Configuration for LEO Satellite Communication Systems Based on TDD
by Jiawen Yi, Tianhao Fang, Li Chai, Wenjin Wang and Yi Zheng
Telecom 2025, 6(4), 94; https://doi.org/10.3390/telecom6040094 - 8 Dec 2025
Viewed by 491
Abstract
Time division duplexing (TDD) technology holds great promise for future satellite communication systems. To address the interference and low resource utilization encountered in satellite TDD scenarios, this paper proposes a flexible and on-demand frame structure, where the interference can be mitigated by scheduling [...] Read more.
Time division duplexing (TDD) technology holds great promise for future satellite communication systems. To address the interference and low resource utilization encountered in satellite TDD scenarios, this paper proposes a flexible and on-demand frame structure, where the interference can be mitigated by scheduling the UE transmissions instead of configuring a long guard period (GP). Based on the frame structure, the interference between downlink broadcasting signals and preambles is analyzed, followed by formulating a random access channel (RACH) occasion (RO) configuration optimization problem that aims to maximize the RO utilization, and a structured global candidate exploration algorithm (SGCEA) is proposed to solve it. Some simulation experiments are carried out based on the practical configurations from the third-generation partnership project (3GPP)standards. Simulation results show that the proposed algorithm consistently identifies the optimal RO configuration from the predefined configurations, and the utilization remains above 80% as the satellite coverage area increases, which demonstrates the superior performance of the proposed approach and highlights its potential for practical deployment in future TDD-based satellite communication systems. Full article
Show Figures

Figure 1

29 pages, 700 KB  
Review
Towards 6G: A Review of Optical Transport Challenges for Intelligent and Autonomous Communications
by Evelio Astaiza Hoyos, Héctor Fabio Bermúdez-Orozco and Jorge Alejandro Aldana-Gutierrez
Computation 2025, 13(12), 286; https://doi.org/10.3390/computation13120286 - 5 Dec 2025
Viewed by 1054
Abstract
The advent of sixth-generation (6G) communications envisions a paradigm of ubiquitous intelligence and seamless physical–digital fusion, demanding unprecedented performance from the optical transport infrastructure. Achieving terabit-per-second capacities, microsecond latency, and nanosecond synchronisation precision requires a convergent, flexible, open, and AI-native x-Haul architecture that [...] Read more.
The advent of sixth-generation (6G) communications envisions a paradigm of ubiquitous intelligence and seamless physical–digital fusion, demanding unprecedented performance from the optical transport infrastructure. Achieving terabit-per-second capacities, microsecond latency, and nanosecond synchronisation precision requires a convergent, flexible, open, and AI-native x-Haul architecture that integrates communication with distributed edge computing. This study conducts a systematic literature review of recent advances, challenges, and enabling optical technologies for intelligent and autonomous 6G networks. Using the PRISMA methodology, it analyses sources from IEEE, ACM, and major international conferences, complemented by standards from ITU-T, 3GPP, and O-RAN. The review examines key optical domains including Coherent PON (CPON), Spatial Division Multiplexing (SDM), Hollow-Core Fibre (HCF), Free-Space Optics (FSO), Photonic Integrated Circuits (PICs), and reconfigurable optical switching, together with intelligent management driven by SDN, NFV, and Artificial Intelligence/Machine Learning (AI/ML). The findings reveal that achieving 6G transport targets will require synergistic integration of multiple optical technologies, AI-based orchestration, and nanosecond-level synchronisation through Precision Time Protocol (PTP) over fibre. However, challenges persist regarding scalability, cost, energy efficiency, and global standardisation. Overcoming these barriers will demand strategic R&D investment, open and programmable architectures, early AI-native integration, and sustainability-oriented network design to make optical fibre a key enabler of the intelligent and autonomous 6G ecosystem. Full article
(This article belongs to the Topic Computational Complex Networks)
Show Figures

Graphical abstract

22 pages, 2718 KB  
Article
Joint Beam Position Grouping and RO Allocation for LEO Satellite Communication Systems
by Bojun Guo, Yiming Zhu, Yi Zheng, Yafei Wang, Mengyao Cao, Wenjin Wang and Li Chai
Electronics 2025, 14(23), 4731; https://doi.org/10.3390/electronics14234731 - 30 Nov 2025
Viewed by 400
Abstract
International organizations such as the 3rd Generation Partnership Project (3GPP) and the International Telecommunication Union (ITU) regard non-terrestrial networks (NTNs) as an essential component of the sixth-generation (6G) mobile communication technology and have advanced relevant standardization efforts. Low Earth orbit (LEO) satellite communication [...] Read more.
International organizations such as the 3rd Generation Partnership Project (3GPP) and the International Telecommunication Union (ITU) regard non-terrestrial networks (NTNs) as an essential component of the sixth-generation (6G) mobile communication technology and have advanced relevant standardization efforts. Low Earth orbit (LEO) satellite communication (SatCom) constitutes a key part of NTNs, and efficient uplink random access (RA) is crucial for establishing initial connections in LEO SatCom systems. However, the long propagation delay and wide coverage of LEO satellites substantially increase access latency and collision probability due to the limited number of beams and their constrained coverage areas. In addition, the highly non-uniform spatial distribution of user equipment (UE) further aggravates access inefficiency. To this end, this paper investigates joint beam position grouping and RA channel (RACH) occasions (ROs) allocation (JBPGRA) for LEO SatCom systems. Specifically, we develop a system model for RA under beam hopping and identify the key factors that influence RA performance. Furthermore, we derive expressions for both the instantaneous signal-to-interference-plus-noise ratio (SINR) and the average SINR under a given non-uniform UE spatial distribution. Building on this analysis, the JBPGRA problem is formulated as an integer linear programming problem that seeks to maximize RA success while conserving RO resources under non-uniform UE distribution. To achieve a practical solution, we propose an efficient JBPGRA algorithm composed of beam position classification, sparse beam position grouping, and RO allocation modules. Simulation results demonstrate that, under the same UE density, the proposed JBPGRA scheme achieves over 29% higher access success rate in dense beam positions compared with the uniform baseline adopted in existing SatCom systems, while reducing RO consumption by more than 49% and decreasing the number of beam position groups by over 57%. Full article
(This article belongs to the Special Issue Advances in Satellite/UAV Communications)
Show Figures

Figure 1

23 pages, 1941 KB  
Article
Dynamic Resource Allocation in Full-Duplex Integrated Sensing and Communication: A Multi-Objective Memetic Grey Wolf Optimizer Approach
by Xu Feng, Jianquan Wang, Lei Sun, Chaoyi Zhang and Teng Wang
Electronics 2025, 14(19), 3763; https://doi.org/10.3390/electronics14193763 - 23 Sep 2025
Viewed by 736
Abstract
To meet the dual demands of 6G cellular networks for high spectral efficiency and environmental sensing, this paper proposes a full-duplex (FD) integrated sensing and communication (ISAC) dynamic resource allocation framework. At the heart of the framework lies a dynamic frame structure that [...] Read more.
To meet the dual demands of 6G cellular networks for high spectral efficiency and environmental sensing, this paper proposes a full-duplex (FD) integrated sensing and communication (ISAC) dynamic resource allocation framework. At the heart of the framework lies a dynamic frame structure that can self-adapt the time-domain resource ratio between sensing and communication, designed to flexibly handle complex traffic demands. In FD mode, however, the trade-off between communication and sensing performance, exacerbated by severe self-interference (SI), morphs into a non-convex, NP-hard multi-objective optimization problem (MOP). To tackle this, we propose an Adaptive Hybrid Memetic Multi-Objective Grey Wolf Optimizer (AM-MOGWO). Finally, simulations were conducted on a high-fidelity platform that integrates 3GPP-standardized channels, which was further extended to a challenging multi-cell interference scenario to validate the algorithm’s robustness. AM-MOGWO was systematically benchmarked against standard Grey Wolf Optimizer (GWO), random search (RS), and the genetic algorithm (GA). Simulation results demonstrate that in both the single-cell and the more complex multi-cell environments, the proposed algorithm excels in locating the Pareto-optimal solution set, where its solution set significantly outperforms the baseline methods. Its hypervolume (HV) metric surpasses the second-best approach by more than 93%. This result quantitatively demonstrates the algorithm’s superiority in finding a high-quality set of trade-off solutions, confirming the framework’s high efficiency in complex interference environments. Full article
(This article belongs to the Special Issue Integrated Sensing and Communications for 6G)
Show Figures

Figure 1

24 pages, 4372 KB  
Article
Performance Analysis of Multi-OEM TV White Space Radios in Outdoor Environments
by Mla Vilakazi, Koketso Makaleng, Lwando Ngcama, Mofolo Mofolo and Luzango Mfupe
Appl. Sci. 2025, 15(18), 9977; https://doi.org/10.3390/app15189977 - 12 Sep 2025
Viewed by 1673
Abstract
The television white space (TVWS) spectrum presents a promising opportunity to extend wireless broadband access, particularly in rural, underserved, and hard-to-reach communities. To leverage this potential, low-power radio communication equipment must efficiently utilise the TVWS spectrum on a secondary basis while ensuring strict [...] Read more.
The television white space (TVWS) spectrum presents a promising opportunity to extend wireless broadband access, particularly in rural, underserved, and hard-to-reach communities. To leverage this potential, low-power radio communication equipment must efficiently utilise the TVWS spectrum on a secondary basis while ensuring strict compliance with regulatory requirements to prevent harmful interference to primary services. This paper presents a comparative performance analysis of TVWS radio equipment from three original equipment manufacturers (OEMs). The equipment under test was identified to reflect each OEM, as follows: OEM 1 and OEM 2 from South Korea and OEM 3 from the USA. We evaluated their performance in two real-world field scenarios, namely outdoor short-distance and outdoor long-distance. The evaluation was based on the following key metrics: (i) spectrum utilisation efficiency (SUE), (ii) received signal strength (RSS), (iii) downlink throughput, and (iv) connectivity to the Geo-Location Spectrum Database (GLSD) in compliance with the South African TVWS regulatory framework. The overall preliminary experimental results indicate that in both scenarios, white space devices (WSDs) based on the Institute of Electrical and Electronics Engineers (IEEE) 802.11af Standard demonstrated better performance than those based on the 3rd Generation Partnership Project Long-Term Evolution-Advanced (3GPP LTE-A) Standard in terms of the SUE, downlink throughput, and RSS metrics. All WSDs under test demonstrated sufficient compliance with the regulatory requirement metric. Full article
(This article belongs to the Special Issue Applications of Wireless and Mobile Communications)
Show Figures

Figure 1

48 pages, 1393 KB  
Review
Mission-Critical Services in 4G/5G and Beyond: Standardization, Key Challenges, and Future Perspectives
by Florin Rastoceanu, Constantin Grozea, Mihai Enache, Raluca Nelega, Gergo Kovacs and Emanuel Puschita
Sensors 2025, 25(16), 5156; https://doi.org/10.3390/s25165156 - 19 Aug 2025
Cited by 3 | Viewed by 7512
Abstract
Mission-critical services (MCX) comprise a standardized suite of capabilities including Mission-Critical Push-to-Talk (MCPTT), MCVideo, and MCData, designed to meet stringent requirements for availability, reliability, latency, security, and Quality of Service (QoS). These services are essential for public safety, emergency response, and other critical [...] Read more.
Mission-critical services (MCX) comprise a standardized suite of capabilities including Mission-Critical Push-to-Talk (MCPTT), MCVideo, and MCData, designed to meet stringent requirements for availability, reliability, latency, security, and Quality of Service (QoS). These services are essential for public safety, emergency response, and other critical infrastructure domains, where communication performance directly affects operational effectiveness. Integration into 4G and 5G mobile networks, supported by targeted standardization efforts, has extended broadband capabilities to mission-critical environments. 5G networks provide the technical foundations for MCX through ultra-low latency (below 1 ms), high availability (99.999%), broadband throughput over 100 Mbps per user, deterministic QoS via network slicing, massive device connectivity (over one million devices per square kilometer), and seamless Non-Terrestrial Network (NTN) integration. Technical enablers such as Proximity Services (ProSe), network slicing, and Ultra-Reliable Low-Latency Communications (URLLC) are fundamental to delivering these capabilities. This paper reviews MCX architectures, service frameworks, and protocols, relating MCPTT, MCData, and MCVideo to the key performance requirements defined in ITU-T M.2377-2. It also examines the frozen features of 3GPP Release 19, including enhancements to MC services, NTN integration, Reduced Capability device support, sub-meter positioning, extended network slicing for Public Protection and Disaster Relief (PPDR), and strengthened security mechanisms. Finally, the study addresses challenges such as standard maturity, interoperability, and deterministic QoS, identifying research priorities toward 6G readiness. By consolidating advances from standards bodies, research initiatives, and deployments, this work serves as a technical reference for scalable, secure, and standards-compliant MCX solutions in current and future networks. Full article
(This article belongs to the Special Issue Feature Papers in the 'Sensor Networks' Section 2025)
Show Figures

Figure 1

Back to TopTop