Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide MTT assay

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3369 KiB  
Article
Phytochemical Profile of Cymbopogon citratus (DC.) Stapf Lemongrass Essential Oil from Northeastern Thailand and Its Antioxidant and Antimicrobial Attributes and Cytotoxic Effects on HT-29 Human Colorectal Adenocarcinoma Cells
by Vijitra Luang-In, Worachot Saengha, Thipphiya Karirat, Chadaporn Senakun and Sirithon Siriamornpun
Foods 2024, 13(18), 2928; https://doi.org/10.3390/foods13182928 - 15 Sep 2024
Cited by 2 | Viewed by 2748
Abstract
Colorectal cancer is the third most prevalent cancer in Thailand, prompting the search for alternative or preventive treatments using natural constituents. In this study, the authors employed hydrodistillation to extract Cymbopogon citratus (DC.) Stapf (lemongrass) essential oil (LEO) from plants in northeastern Thailand [...] Read more.
Colorectal cancer is the third most prevalent cancer in Thailand, prompting the search for alternative or preventive treatments using natural constituents. In this study, the authors employed hydrodistillation to extract Cymbopogon citratus (DC.) Stapf (lemongrass) essential oil (LEO) from plants in northeastern Thailand and assessed its chemical profile, antioxidant, antimicrobial, and anticancer properties. The LEO displayed potent antioxidant activities in DPPH and hydroxyl scavenging assays with IC50 values of 2.58 ± 0.08 and 4.05 ± 0.12 mg/mL, respectively, and demonstrated antimicrobial activities against Escherichia coli, Cutibacterium acnes, Streptococcus agalactiae, and Staphylococcus aureus at 8–10 µg/mL. At 48 h, the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay showed the LEO exhibiting low cell viability (3%) at concentrations of 200–400 µg/mL, with an IC50 value of 82.46 ± 1.73 µg/mL, while in the clonogenic assay it exhibited a lower IC50 value of 23.11 ± 1.80 µg/mL. The GC-MS analysis identified citral (79.24%) consisting of 44.52% geranial and 34.72% neral, and β-myrcene (5.56%). The addition of LEO significantly influenced apoptotic genes (Bcl-2, Bax, p21, and Caspase-3) and proteins, as indicated by real-time polymerase chain reaction (RT-PCR) and Western blot studies. Results suggested that LEO initiated apoptosis through intrinsic pathways and demonstrated potential as a chemopreventive, antimicrobial, and antioxidant agent with substantial health advantages. Full article
Show Figures

Figure 1

27 pages, 7556 KiB  
Article
First-Row Transition Metal Complexes Incorporating the 2-(2′-pyridyl)quinoxaline Ligand (pqx), as Potent Inflammatory Mediators: Cytotoxic Properties and Biological Activities against the Platelet-Activating Factor (PAF) and Thrombin
by Antigoni Margariti, Vasiliki D. Papakonstantinou, George M. Stamatakis, Constantinos A. Demopoulos, Christina Machalia, Evangelia Emmanouilidou, Gregor Schnakenburg, Maria-Christina Nika, Nikolaos S. Thomaidis and Athanassios I. Philippopoulos
Molecules 2023, 28(19), 6899; https://doi.org/10.3390/molecules28196899 - 1 Oct 2023
Cited by 6 | Viewed by 3095
Abstract
Inflammatory mediators constitute a recently coined term in the field of metal-based complexes with antiplatelet activities. Our strategy targets Platelet-Activating Factor (PAF) and its receptor, which is the most potent lipid mediator of inflammation. Thus, the antiplatelet (anti-PAF) potency of any substance could [...] Read more.
Inflammatory mediators constitute a recently coined term in the field of metal-based complexes with antiplatelet activities. Our strategy targets Platelet-Activating Factor (PAF) and its receptor, which is the most potent lipid mediator of inflammation. Thus, the antiplatelet (anti-PAF) potency of any substance could be exerted by inhibiting the PAF-induced aggregation in washed rabbit platelets (WRPs), which internationally is a well-accepted methodology. Herein, a series of mononuclear (mer-[Cr(pqx)Cl3(H2O]) (1), [Co(pqx)Cl2(DMF)] (2) (DMF = N,N′-dimethyl formamide), [Cu(pqx)Cl2(DMSO)] (3) (DMSO = dimethyl sulfoxide), [Zn(pqx)Cl2] (4)) and dinuclear complexes ([Mn(pqx)(H2O)2Cl2]2 (5), [Fe(pqx)Cl2]2 (6) and [Ni(pqx)Cl2]2 (7)) incorporating the 2-(2′-pyridyl)quinoxaline ligand (pqx), were biologically evaluated as inhibitors of the PAF- and thrombin-induced aggregation in washed rabbit platelets (WRPs). The molecular structure of the five-co-ordinate analog (3) has been elucidated by single-crystal X-ray diffraction revealing a trigonal bipyramidal geometry. All complexes are potent inhibitors of the PAF-induced aggregation in WRPs in the micromolar range. Complex (6) displayed a remarkable in vitro dual inhibition against PAF and thrombin, with IC50 values of 1.79 μM and 0.46 μM, respectively. Within the series, complex (5) was less effective (IC50 = 39 μM) while complex (1) was almost 12-fold more potent against PAF, as opposed to thrombin-induced aggregation. The biological behavior of complexes 1, 6 and 7 on PAF’s basic metabolic enzymatic pathways reveals that they affect key biosynthetic and catabolic enzymes of PAF underlying the anti-inflammatory properties of the relevant complexes. The in vitro cytotoxic activities of all complexes in HEK293T (human embryonic kidney cells) and HeLa cells (cervical cancer cells) are described via the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The results reveal that complex 3 is the most potent within the series. Full article
(This article belongs to the Special Issue Metal-Based Drugs: Past, Present and Future II)
Show Figures

Figure 1

15 pages, 3904 KiB  
Article
Effect of Photodynamic Therapy with Chlorin e6 on Canine Tumors
by Rajeev Shrestha, Hyun Ji Lee, Junmo Lim, Pallavi Gurung, Til Bahadur Thapa Magar, Young-Tak Kim, Kija Lee, Seulgi Bae and Yong-Wan Kim
Life 2022, 12(12), 2102; https://doi.org/10.3390/life12122102 - 14 Dec 2022
Cited by 10 | Viewed by 3143
Abstract
This work aims to prepare pure Chlorin e6 (Ce6) and establish Ce6-mediated photodynamic therapy (Ce6-PDT) as a better therapy option for canine tumors as well as mouse tumor models. Five dogs suffering from various cancers were treated with Ce6-PDT from one to several [...] Read more.
This work aims to prepare pure Chlorin e6 (Ce6) and establish Ce6-mediated photodynamic therapy (Ce6-PDT) as a better therapy option for canine tumors as well as mouse tumor models. Five dogs suffering from various cancers were treated with Ce6-PDT from one to several times. After receiving the Ce6 (2.5 mg/kg) for 3 h, tumors were illuminated superficially or interstitially with 660 nm light. Two dogs underwent Ce6-guided fluorescence imaging by photodynamic diagnosis (PDD). Cell proliferation and apoptosis were detected by the 4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay and western blot assay, respectively. Ce6-PDT efficacy was also determined using melanoma and pancreatic cancer mouse models. Two veterinary patients with mammary carcinoma and histiocytic sarcoma had their tumors significantly diminished and showed improved health after receiving Ce6-PDT. Moreover, in the cases of canine tumors, the adjunctive use of Ce6-PDD revealed cancers that were not visible with white light viewing and provided a visual contrast from surrounding tissues. Also, in vivo, Ce6-PDT remarkably reduced melanoma and pancreatic tumors in the mouse model. These findings could pave the way for a better understanding of the underlying processes of Ce6-PDT, making it an effective and safe candidate for use in human and veterinary applications to abolish various cancers. Full article
(This article belongs to the Special Issue Feature Papers in Medical Research)
Show Figures

Figure 1

11 pages, 1956 KiB  
Article
Ononitol Monohydrate—A Glycoside Potentially Inhibit HT-115 Human Colorectal Cancer Cell Proliferation through COX-2/PGE-2 Inflammatory Axis Regulations
by Pandurangan Subash-Babu, Alanoud Aladel, Taghreed N. Almanaa, Sahar Abdulaziz AlSedairy and Ali A. Alshatwi
Int. J. Mol. Sci. 2022, 23(22), 14440; https://doi.org/10.3390/ijms232214440 - 21 Nov 2022
Cited by 4 | Viewed by 2529
Abstract
We aimed to inhibit HT-115 human colorectal cancer cell proliferation using ononitol monohydrate (OMH), a bioactive principle isolated from Cassia tora (L.). The cytotoxicity of OMH has been assayed using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide), cell and nuclear morphology, and apoptosis mechanisms have been [...] Read more.
We aimed to inhibit HT-115 human colorectal cancer cell proliferation using ononitol monohydrate (OMH), a bioactive principle isolated from Cassia tora (L.). The cytotoxicity of OMH has been assayed using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide), cell and nuclear morphology, and apoptosis mechanisms have been analyzed using real-time PCR. Higher doses of OMH potentially inhibit 84% of HT-115 cell viability; we observed that the IC50 level was 3.2 µM in 24 h and 1.5 µM in 48 h. The treatment with 3.2 µM of OMH for 48 h characteristically showed 64% apoptotic cells and 3% necrotic cells, confirmed by propidium iodide and acridine orange/ethidium bromide (AO/ErBr) staining. We found the overexpression of cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE-2) in the control HT-115 cells, which was directly associated with colorectal tumorigenesis. However, 3.2 µM of OMH treatment to HT-115 cells for 48 h significantly reduced inflammatory genes, such as TNF-α/IL-1β and COX-2/PGE-2. The downregulation of COX-2 and PGE-2 was more significant with the 3.2 µM dose when compared to the 1.5 µM dose of OMH. Additionally, the protein levels of COX-2 and PGE-2 were decreased in the 3.2 µM OMH-treated cells compared to the control. We found significantly (p ≤ 0.01) increased mRNA expression levels of tumor-suppressor genes, such as pRb2, Cdkn1a, p53, and caspase-3, and decreased Bcl-2, mdm2, and PCNA after 48 h was confirmed with apoptotic stimulation. In conclusion, the antiproliferative effect of OMH via the early suppression of protumorigenic inflammatory agents TNF-α/IL-1β, COX-2/PGE-2 expression, and the increased expression levels of tumor-suppressor genes Cdkn1a and pRb2, which enhanced the activation of Bax and p53. Full article
(This article belongs to the Special Issue Dietary Bioactive Components in Inflammatory Bowel Disease)
Show Figures

Figure 1

20 pages, 2486 KiB  
Article
Effect of Cell Therapy and Exercise Training in a Stroke Model, Considering the Cell Track by Molecular Image and Behavioral Analysis
by Mariana P. Nucci, Fernando A. Oliveira, João M. Ferreira, Yolanda O. Pinto, Arielly H. Alves, Javier B. Mamani, Leopoldo P. Nucci, Nicole M. E. Valle and Lionel F. Gamarra
Cells 2022, 11(3), 485; https://doi.org/10.3390/cells11030485 - 30 Jan 2022
Cited by 10 | Viewed by 3421
Abstract
The goal of this study is to see how combining physical activity with cell treatment impacts functional recovery in a stroke model. Molecular imaging and multimodal nanoparticles assisted in cell tracking and longitudinal monitoring (MNP). The viability of mesenchymal stem cell (MSC) was [...] Read more.
The goal of this study is to see how combining physical activity with cell treatment impacts functional recovery in a stroke model. Molecular imaging and multimodal nanoparticles assisted in cell tracking and longitudinal monitoring (MNP). The viability of mesenchymal stem cell (MSC) was determined using a 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay and bioluminescent image (BLI) after lentiviral transduction and MNP labeling. At random, the animals were divided into 5 groups (control-G1, and experimental G2-G5). The photothrombotic stroke induction was confirmed by local blood perfusion reduction and Triphenyltetrazolium chloride (TTC), and MSC in the G3 and G5 groups were implanted after 24 h, with BLI and near-infrared fluorescence image (NIRF) tracking these cells at 28 h, 2, 7, 14, and 28 days. During a 28-day period, the G5 also conducted physical training, whereas the G4 simply did the training. At 0, 7, 14, and 28 days, the animals were functionally tested using a cylinder test and a spontaneous motor activity test. MNP internalization in MSC was confirmed using brightfield and fluorescence microscopy. In relation to G1 group, only 3% of cell viability reduced. The G2–G5 groups showed more than 69% of blood perfusion reduction. The G5 group performed better over time, with a progressive recovery of symmetry and an increase of fast vertical movements. Up to 7 days, BLI and NIRF followed MSC at the damaged site, demonstrating a signal rise that could be connected to cell proliferation at the injury site during the acute phase of stroke. Local MSC therapy mixed with physical activity resulted in better results in alleviating motor dysfunction, particularly during the acute period. When it comes to neurorehabilitation, this alternative therapy could be a suitable fit. Full article
(This article belongs to the Special Issue Mesenchymal Stromal Cell‐Based Therapy)
Show Figures

Figure 1

16 pages, 3134 KiB  
Article
Organophosphorus Flame Retardant TDCPP Displays Genotoxic and Carcinogenic Risks in Human Liver Cells
by Quaiser Saquib, Abdullah M. Al-Salem, Maqsood A. Siddiqui, Sabiha M. Ansari, Xiaowei Zhang and Abdulaziz A. Al-Khedhairy
Cells 2022, 11(2), 195; https://doi.org/10.3390/cells11020195 - 7 Jan 2022
Cited by 28 | Viewed by 3793
Abstract
Tris(1,3-Dichloro-2-propyl)phosphate (TDCPP) is an organophosphorus flame retardant (OPFR) widely used in a variety of consumer products (plastics, furniture, paints, foams, and electronics). Scientific evidence has affirmed the toxicological effects of TDCPP in in vitro and in vivo test models; however, its genotoxicity and [...] Read more.
Tris(1,3-Dichloro-2-propyl)phosphate (TDCPP) is an organophosphorus flame retardant (OPFR) widely used in a variety of consumer products (plastics, furniture, paints, foams, and electronics). Scientific evidence has affirmed the toxicological effects of TDCPP in in vitro and in vivo test models; however, its genotoxicity and carcinogenic effects in human cells are still obscure. Herein, we present genotoxic and carcinogenic properties of TDCPP in human liver cells (HepG2). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) and neutral red uptake (NRU) assays demonstrated survival reduction in HepG2 cells after 3 days of exposure at higher concentrations (100–400 μM) of TDCPP. Comet assay and flow cytometric cell cycle experiments showed DNA damage and apoptosis in HepG2 cells after 3 days of TDCPP exposure. TDCPP treatment incremented the intracellular reactive oxygen species (ROS), nitric oxide (NO), Ca2+ influx, and esterase level in exposed cells. HepG2 mitochondrial membrane potential (ΔΨm) significantly declined and cytoplasmic localization of P53, caspase 3, and caspase 9 increased after TDCPP exposure. qPCR array quantification of the human cancer pathway revealed the upregulation of 11 genes and downregulation of two genes in TDCPP-exposed HepG2 cells. Overall, this is the first study to explicitly validate the fact that TDCPP bears the genotoxic, hepatotoxic, and carcinogenic potential, which may jeopardize human health. Full article
(This article belongs to the Collection Oxidative Stress in Human Health and Disease)
Show Figures

Figure 1

12 pages, 1596 KiB  
Article
Synergy, Additivity, and Antagonism between Cisplatin and Selected Coumarins in Human Melanoma Cells
by Paula Wróblewska-Łuczka, Aneta Grabarska, Magdalena Florek-Łuszczki, Zbigniew Plewa and Jarogniew J. Łuszczki
Int. J. Mol. Sci. 2021, 22(2), 537; https://doi.org/10.3390/ijms22020537 - 7 Jan 2021
Cited by 33 | Viewed by 3447
Abstract
(1) Cisplatin (CDDP) is used in melanoma chemotherapy, but it has many side effects. Hence, the search for natural substances that can reduce the dose of CDDP, and CDDP-related toxicity, is highly desired. Coumarins have many biological properties, including anticancer and antiproliferative effects. [...] Read more.
(1) Cisplatin (CDDP) is used in melanoma chemotherapy, but it has many side effects. Hence, the search for natural substances that can reduce the dose of CDDP, and CDDP-related toxicity, is highly desired. Coumarins have many biological properties, including anticancer and antiproliferative effects. (2) An in vitro 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay on two human melanoma cell lines (FM55P and FM55M2) examined the antitumor properties of CDDP and five naturally occurring coumarins (osthole, xanthotoxin, xanthotoxol, isopimpinellin, and imperatorin). The antiproliferative effects produced by combinations of CDDP with the coumarins were assessed using type I isobolographic analysis. (3) The most potent anticancer properties of coumarins were presented by osthole and xanthotoxol. These compounds were characterized by the lowest median inhibitory concentration (IC50) values relative to the FM55P and FM55M2 melanoma cells. Isobolographic analysis showed that for both melanoma cell lines, the combination of CDDP and osthole exerted synergistic and additive interactions, while the combination of CDDP and xanthotoxol exerted additive interactions. Combinations of CDDP with xanthotoxin, isopimpinellin, and imperatorin showed antagonistic and additive interactions in two melanoma cell lines. (4) The combination of CDDP and osthole was characterized by the most desirable synergistic interaction. Isobolographic analysis allows the selection of potential candidates for cancer drugs among natural substances. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

17 pages, 5766 KiB  
Article
Butyrate Stimulates Histone H3 Acetylation, 8-Isoprostane Production, RANKL Expression, and Regulated Osteoprotegerin Expression/Secretion in MG-63 Osteoblastic Cells
by Mei-Chi Chang, Yunn-Jy Chen, Yun-Chia Lian, Bei-En Chang, Chih-Chia Huang, Wei-Ling Huang, Yu-Hwa Pan and Jiiang-Huei Jeng
Int. J. Mol. Sci. 2018, 19(12), 4071; https://doi.org/10.3390/ijms19124071 - 17 Dec 2018
Cited by 44 | Viewed by 5625
Abstract
Butyric acid as a histone deacetylase (HDAC) inhibitor is produced by a number of periodontal and root canal microorganisms (such as Porphyromonas, Fusobacterium, etc.). Butyric acid may affect the biological activities of periodontal/periapical cells such as osteoblasts, periodontal ligament cells, etc., [...] Read more.
Butyric acid as a histone deacetylase (HDAC) inhibitor is produced by a number of periodontal and root canal microorganisms (such as Porphyromonas, Fusobacterium, etc.). Butyric acid may affect the biological activities of periodontal/periapical cells such as osteoblasts, periodontal ligament cells, etc., and thus affect periodontal/periapical tissue destruction and healing. The purposes of this study were to study the toxic effects of butyrate on the matrix and mineralization marker expression in MG-63 osteoblasts. Cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Cellular apoptosis and necrosis were analyzed by propidium iodide/annexin V flow cytometry. The protein and mRNA expression of osteoprotegerin (OPG) and receptor activator of nuclear factor kappa-B ligand (RANKL) were analyzed by Western blotting and reverse transcriptase-polymerase chain reaction (RT-PCR). OPG, soluble RANKL (sRANKL), 8-isoprostane, pro-collagen I, matrix metalloproteinase-2 (MMP-2), osteonectin (SPARC), osteocalcin and osteopontin (OPN) secretion into culture medium were measured by enzyme-linked immunosorbant assay. Alkaline phosphatase (ALP) activity was checked by ALP staining. Histone H3 acetylation levels were evaluated by immunofluorescent staining (IF) and Western blot. We found that butyrate activated the histone H3 acetylation of MG-63 cells. Exposure of MG-63 cells to butyrate partly decreased cell viability with no marked increase in apoptosis and necrosis. Twenty-four hours of exposure to butyrate stimulated RANKL protein expression, whereas it inhibited OPG protein expression. Butyrate also inhibited the secretion of OPG in MG-63 cells, whereas the sRANKL level was below the detection limit. However, 3 days of exposure to butyrate (1 to 8 mM) or other HDAC inhibitors such as phenylbutyrate, valproic acid and trichostatin stimulated OPG secretion. Butyrate stimulated 8-isoprostane, MMP-2 and OPN secretion, but not procollagen I, or osteocalcin in MG-63 cells. Exposure to butyrate (2–4 mM) for 3 days markedly stimulated osteonectin secretion and ALP activity. In conclusion, higher concentrations of butyric acid generated by periodontal and root canal microorganisms may potentially induce bone destruction and impair bone repair by the alteration of OPG/RANKL expression/secretion, 8-isoprostane, MMP-2 and OPN secretion, and affect cell viability. However, lower concentrations of butyrate (1–4 mM) may stimulate ALP, osteonectin and OPG. These effects are possibly related to increased histone acetylation. These events are important in the pathogenesis and repair of periodontal and periapical destruction. Full article
(This article belongs to the Special Issue Histone Deacetylase Inhibitors in Health and Disease)
Show Figures

Figure 1

Back to TopTop