Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (118)

Search Parameters:
Keywords = 3,4′-DHF

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2940 KiB  
Article
Proteomics Analysis of Peripheral Blood Mononuclear Cells from Patients in Early Dengue Infection Reveals Potential Markers of Subsequent Fluid Leakage
by Nilanka Perera, Abhinav Kumar, Bevin Gangadharan, Diyanath Ranasinghe, Ananda Wijewickrama, Gathsaurie Neelika Malavige, Joanna L. Miller and Nicole Zitzmann
Viruses 2025, 17(6), 805; https://doi.org/10.3390/v17060805 - 31 May 2025
Viewed by 899
Abstract
Infections caused by dengue virus (DENV) result in significant morbidity and mortality. A proportion of infected individuals develop dengue haemorrhagic fever (DHF) characterized by circulatory collapse and multiorgan failure. Early detection of individuals likely to develop DHF could lead to improved outcomes for [...] Read more.
Infections caused by dengue virus (DENV) result in significant morbidity and mortality. A proportion of infected individuals develop dengue haemorrhagic fever (DHF) characterized by circulatory collapse and multiorgan failure. Early detection of individuals likely to develop DHF could lead to improved outcomes for patients and help us use healthcare resources more efficiently. We identified proteins that are differentially regulated during early disease in peripheral blood mononuclear cells (PBMCs) of patients who subsequently developed DHF. Four dengue fever (DF), four DHF and two healthy control PBMCs were subjected to tandem mass tag mass spectrometry. Differentially regulated proteins were used to identify up- or down-regulated Gene Ontology pathways. One hundred and sixty proteins were differentially expressed in DENV-infected samples compared to healthy controls. PBMCs from DHF patients differentially expressed 90 proteins compared to DF; these were involved in down-regulation of platelet activation and aggregation, cell adhesion, and cytoskeleton arrangement pathways. Proteins involved in oxidative stress and p38 MAPK signalling were upregulated in DHF samples during early infection compared to DF. This study has identified 90 proteins differentially regulated in PBMCs that could potentially serve as biomarkers to identify patients at risk of developing DHF at an early disease stage. Full article
(This article belongs to the Special Issue Arboviruses and Global Health: A PanDengue Net Initiative)
Show Figures

Figure 1

13 pages, 1659 KiB  
Article
7,8-DHF Modulates Aggressive Behavior in Sebastes schlegelii: Phenotype-Dependent Responses in Aggression-Dimorphic Individuals
by Shufei Xu, Xinna Ma, Yang Xiao, Tao Zhang, Chao Ma and Zhen Ma
Animals 2025, 15(10), 1463; https://doi.org/10.3390/ani15101463 - 19 May 2025
Viewed by 446
Abstract
Aggressive behavior is regulated by intricate neural circuits and molecular mechanisms, notably through the interaction of brain-derived neurotrophic factor (BDNF) with its receptor, tropomyosin receptor kinase B (TrkB), which influences neuroplasticity and related behavioral phenotypes. We investigate the role of the BDNF signaling [...] Read more.
Aggressive behavior is regulated by intricate neural circuits and molecular mechanisms, notably through the interaction of brain-derived neurotrophic factor (BDNF) with its receptor, tropomyosin receptor kinase B (TrkB), which influences neuroplasticity and related behavioral phenotypes. We investigate the role of the BDNF signaling pathway in fish aggression using juvenile black rockfish (Sebastes schlegelii), which exhibit distinct aggressive phenotypes. The TrkB agonist 7,8-dihydroxyflavone (7,8-DHF) was administered intraperitoneally at doses of 1.25, 2.5, and 5 mg/kg to assess its effects on the behavioral characteristics of high-aggression (H-agg) and low-aggression (L-agg) phenotypes. Our findings indicate the following: (1) The effects of 7,8-DHF are dose-dependent, with 2.5 mg/kg identified as the effective threshold dose for H-agg individuals; (2) in the H-agg group, this dose significantly reduced locomotor acceleration, angular velocity, and activity frequency, while prolonging the first movement latency; (3) in the L-agg group, only angular velocity was significantly decreased with the 2.5 mg/kg treatment, with no significant changes observed in other behavioral parameters. This study provides the first evidence for differential behavioral responses to 7,8-DHF in S. schlegelii, demonstrating dose-dependent aggression suppression in H-agg phenotypes and threshold-specific responses in L-agg phenotypes. These insights into the neuro-molecular basis of fish aggression can guide phenotype-specific management in aquaculture, potentially improving stress management, reducing injuries and mortality, and boosting productivity. Full article
Show Figures

Figure 1

21 pages, 1452 KiB  
Article
Estimation of Biresponse Semiparametric Regression Model for Longitudinal Data Using Local Polynomial Kernel Estimator
by Tiani Wahyu Utami, Nur Chamidah, Toha Saifudin, Budi Lestari and Dursun Aydin
Symmetry 2025, 17(3), 392; https://doi.org/10.3390/sym17030392 - 4 Mar 2025
Cited by 2 | Viewed by 938
Abstract
When handling longitudinal data in regression models, we often encounter problems involving two interrelated response variables. These response variables may display an unknown curve shape in their relationship with one predictor variable, referred to as the nonparametric component, while maintaining a linear relationship [...] Read more.
When handling longitudinal data in regression models, we often encounter problems involving two interrelated response variables. These response variables may display an unknown curve shape in their relationship with one predictor variable, referred to as the nonparametric component, while maintaining a linear relationship with other predictor variables, referred to as the parametric component. In such cases, a Biresponse Semiparametric Regression (BSR) approach is a suitable solution. This research aims to estimate the BSR model for longitudinal data using the Local Polynomial Kernel (LPK) estimator by considering a symmetrical variance–covariance matrix estimate validated on simulation data and apply it to a real dataset of Dengue Hemorrhagic Fever (DHF) disease. The parameter estimation method used is a combination of Least Squares (LS) and Weighted Least Squares (WLS). For determining the optimal bandwidth, we use a Generalized Cross–Validation (GCV) method. The simulation study results indicate that with kernel weighting, employing weights derived from the inverse of the variance–covariance matrix significantly enhances the estimation accuracy of the BSR model. In addition, the results of the estimation for modeling the DHF disease, where platelets and hematocrit are response variables, and hemoglobin and examination time are predictor variables, produced an R-Square value of 92.8%. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

10 pages, 1161 KiB  
Article
MCP-1 Reduction by L-SIGN Expression in Dengue Virus-Infected Liver Endothelial Cells
by Keh-Sen Liu, Lin Wang, Po-Ming Chen, Ing-Kit Lee, Kuender D. Yang and Rong-Fu Chen
Viruses 2025, 17(3), 344; https://doi.org/10.3390/v17030344 - 28 Feb 2025
Cited by 1 | Viewed by 689
Abstract
(1) Background: The C-type lectin domain family 4 member M (CLEC4M, also known as L-SIGN) is a crucial pathogen-recognition receptor for the dengue virus (DENV). Our previous study has exhibited a polymorphism in its extracellular neck region, specifically within the long tandem repeats [...] Read more.
(1) Background: The C-type lectin domain family 4 member M (CLEC4M, also known as L-SIGN) is a crucial pathogen-recognition receptor for the dengue virus (DENV). Our previous study has exhibited a polymorphism in its extracellular neck region, specifically within the long tandem repeats of exon 4, which correlates with DHF in DENV infection and causes liver damage. (2) Methods: Using monocyte-derived dendritic cells (MDDCs) and SK-HEP1 liver endothelial cell lines to compare viral replication relative to L-SIGN expression. (3) Results: Results indicated that SK-HEP1 cells were more susceptible to DENV infection than MDDCs, and L-SIGN transfection significantly increased viral replication in SK-HEP1 cell lines. The study also found that L-SIGN-enhanced DENV infection is mediated by the decrease in monocyte chemoattractant protein-1 (MCP-1) but not interferon gamma inducible protein-10 (IP-10). These findings reveal that L-SIGN-induced DENV infection leads to reduced MCP-1 levels, which, in turn, enhances DENV replication velocity. (4) Conclusions: This study offers insights into the molecular mechanisms of DENV replication and identifies potential therapeutic targets involving MCP-1 and L-SIGN pathways. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

16 pages, 2428 KiB  
Review
Virus-Induced Pathogenic Antibodies: Lessons from Long COVID and Dengue Hemorrhage Fever
by Der-Shan Sun, Te-Sheng Lien and Hsin-Hou Chang
Int. J. Mol. Sci. 2025, 26(5), 1898; https://doi.org/10.3390/ijms26051898 - 22 Feb 2025
Cited by 1 | Viewed by 1646
Abstract
Virus-induced antibodies represent a dual-edged sword in the immune response to viral infections. While antibodies are critical for neutralizing pathogens, some can paradoxically exacerbate disease severity through mechanisms such as antibody-dependent enhancement (ADE), autoantibody, and prolonged inflammation. Long coronavirus disease (COVID) and dengue [...] Read more.
Virus-induced antibodies represent a dual-edged sword in the immune response to viral infections. While antibodies are critical for neutralizing pathogens, some can paradoxically exacerbate disease severity through mechanisms such as antibody-dependent enhancement (ADE), autoantibody, and prolonged inflammation. Long coronavirus disease (COVID) and dengue hemorrhagic fever (DHF) exemplify conditions where pathogenic antibodies play a pivotal role in disease progression. Long COVID is associated with persistent immune dysregulation and autoantibody production, leading to chronic symptoms and tissue damage. In DHF, pre-existing antibodies against dengue virus contribute to ADE, amplifying viral replication, immune activation, and vascular permeability. This review explores the mechanisms underlying these pathogenic antibody responses, highlighting the shared pathways of immune dysregulation and comparing the distinct features of both conditions. By examining these studies, we identify key lessons for therapeutic strategies, vaccine design, and future research aimed at mitigating the severe outcomes of viral infections. Full article
Show Figures

Figure 1

27 pages, 19982 KiB  
Article
Investigation of the CO2 Pre-Fracturing Mechanism for Enhancing Fracture Propagation and Stimulated Reservoir Volume in Ultra-Deep Oil Reservoirs
by Liming Liu, Ran Ding, Enqing Chen and Cheng Zhang
Energies 2025, 18(1), 96; https://doi.org/10.3390/en18010096 - 30 Dec 2024
Viewed by 1244
Abstract
CO2 pre-fracturing is an innovative technique for enhancing oil and gas production in unconventional reservoirs. Despite its potential, the mechanisms of CO2 pre-fracturing influencing fracture propagation, particularly in ultra-deep reservoirs, remain inadequately understood. This study investigates the CO2 pre-fracturing process [...] Read more.
CO2 pre-fracturing is an innovative technique for enhancing oil and gas production in unconventional reservoirs. Despite its potential, the mechanisms of CO2 pre-fracturing influencing fracture propagation, particularly in ultra-deep reservoirs, remain inadequately understood. This study investigates the CO2 pre-fracturing process in ultra-deep sandstone reservoirs of the central Junggar Basin. A 3D geomechanical model was established using RFPA3D-HF based on rock mechanical parameters from laboratory experiments. The study examines the effect of in situ horizontal stress differences, CO2 pre-injection volume, and slickwater injection rate on fracture complexity index (FCI) and stimulated reservoir volume (SRV). The results reveal that in situ horizontal stress differences are the primary factor influencing fracture propagation. In ultra-deep reservoirs, high horizontal stress difference hinders fracture deflection and bifurcation during slickwater fracturing. CO2 pre-fracturing, through the pre-injection of CO2, reduces formation breakdown pressure and increases reservoir pore pressure due to its low viscosity and high permeability, effectively mitigating the effect of high horizontal stress differences and significantly enhancing fracturing effectiveness. Furthermore, appropriately increasing the CO2 pre-injection volume and slickwater injection rate can increase fracture complexity, resulting in a larger SRV. Notably, adjusting the CO2 pre-injection volume is more effective than adjusting slickwater injection rate in enhancing oil production. This study provides scientific evidence for selecting construction parameters and optimizing oil recovery through CO2 pre-fracturing technology in deep unconventional oil reservoirs and offers new insights into CO2 utilization and storage. Full article
(This article belongs to the Special Issue Failure and Multiphysical Fields in Geo-Energy)
Show Figures

Figure 1

29 pages, 4178 KiB  
Review
Host Immune Response to Dengue Virus Infection: Friend or Foe?
by Priya Dhole, Amir Zaidi, Hardik K. Nariya, Shruti Sinha, Sandhya Jinesh and Shivani Srivastava
Immuno 2024, 4(4), 549-577; https://doi.org/10.3390/immuno4040033 - 21 Nov 2024
Cited by 2 | Viewed by 5309
Abstract
DENV belongs to the Flaviviridae family and possesses a single-stranded RNA genome of positive polarity. DENV infection manifests in mild subclinical forms or severe forms that may be dengue hemorrhagic fever (DHF) or dengue shock syndrome (DSS). Despite a lot of effort worldwide, [...] Read more.
DENV belongs to the Flaviviridae family and possesses a single-stranded RNA genome of positive polarity. DENV infection manifests in mild subclinical forms or severe forms that may be dengue hemorrhagic fever (DHF) or dengue shock syndrome (DSS). Despite a lot of effort worldwide, the exact mechanism underlying the pathogenesis of severe DENV infection remains elusive. It is believed that both host and viral factors contribute to the outcome of dengue disease. The host factors are age at the time of infection, sex, nutrition, and immune status, including the presence of pre-existing antibodies or reactive T cells. Viral factors include the serotype, genotype, and mutation(s) due to error-prone RNA-dependent polymerase leading to the development of quasispecies. Accumulating bodies of literature have depicted that DENV has many ways to invade and escape the immune system of the host. These invading strategies are directed to overcome innate and adaptive immune responses. Like other viruses, once the infection is established, the host also mounts a series of antiviral responses to combat and eliminate the virus replication. Nevertheless, DENV has evolved a variety of mechanisms to evade the immune system. In this review, we have emphasized the strategies that DENV employs to hijack the host innate (interferon, IFN; toll-like receptors, TLR; major histocompatibility complex, MHC; autophagy; complement; apoptosis; RNAi) and adaptive (antibody-dependent enhancement, ADE; T cell immunity) immune responses, which contribute to the severity of DENV disease. Full article
Show Figures

Figure 1

16 pages, 4428 KiB  
Article
Dengue Envelope Protein as a Cytotoxic Factor Inducing Hemorrhage and Endothelial Cell Death in Mice
by Te-Sheng Lien, Der-Shan Sun, Wen-Sheng Wu and Hsin-Hou Chang
Int. J. Mol. Sci. 2024, 25(19), 10858; https://doi.org/10.3390/ijms251910858 - 9 Oct 2024
Cited by 1 | Viewed by 1593
Abstract
Dengue virus (DENV) infection, prevalent in tropical and subtropical regions, can progress to dengue hemorrhagic fever (DHF), which increases mortality during secondary infections. DHF is characterized by endothelial damage and vascular leakage. Despite its severity, no specific antiviral treatments exist, and the viral [...] Read more.
Dengue virus (DENV) infection, prevalent in tropical and subtropical regions, can progress to dengue hemorrhagic fever (DHF), which increases mortality during secondary infections. DHF is characterized by endothelial damage and vascular leakage. Despite its severity, no specific antiviral treatments exist, and the viral factors responsible for endothelial damage remain unclear. This study examines the role of the DENV envelope protein domain III (EIII) in inducing endothelial apoptosis using a mouse model. Additionally, we aim to explore whether cell death-inducing pathways could serve as drug targets to ameliorate EIII-induced endothelial injury and hemorrhage. In vitro experiments using human endothelial HMEC-1 cells demonstrated that both recombinant EIII (rEIII) and DENV markedly induced caspase-3-mediated endothelial cell death, an effect that was attenuated by co-treatment with chondroitin sulfate B (CSB), N-acetyl cysteine (NAC), and the caspase-3 inhibitor z-DEVD-FMK. In vivo, sequential injections of rEIII and anti-platelet immunoglobulin in mice, designed to mimic the clinical phase of DHF with peak viremia followed by an increase in DENV-induced Ig, including autoantibodies, revealed that these dual treatments markedly triggered caspase-3-dependent apoptosis in vascular endothelial cells at hemorrhage sites. Treatments with z-DEVD-FMK effectively reduced DHF-like symptoms such as thrombocytopenia, hemorrhage, inflammation, hypercoagulation, and endothelial damage. Additionally, CSB and NAC alleviated hemorrhagic symptoms in the mice. These results suggest that targeting EIII, reactive oxygen species, and caspase-3-mediated apoptosis could offer potential therapeutic strategies for addressing EIII-induced hemorrhagic pathogenesis. Full article
Show Figures

Figure 1

13 pages, 3957 KiB  
Article
Molecular Mechanism of 5,6-Dihydroxyflavone in Suppressing LPS-Induced Inflammation and Oxidative Stress
by Yujia Cao, Yee-Joo Tan and Dejian Huang
Int. J. Mol. Sci. 2024, 25(19), 10694; https://doi.org/10.3390/ijms251910694 - 4 Oct 2024
Cited by 4 | Viewed by 1632
Abstract
5,6-dihydroxyflavone (5,6-DHF), a flavonoid that possesses potential anti-inflammatory and antioxidant activities owing to its special catechol motif on the A ring. However, its function and mechanism of action against inflammation and cellular oxidative stress have not been elucidated. In the current study, 5,6-DHF [...] Read more.
5,6-dihydroxyflavone (5,6-DHF), a flavonoid that possesses potential anti-inflammatory and antioxidant activities owing to its special catechol motif on the A ring. However, its function and mechanism of action against inflammation and cellular oxidative stress have not been elucidated. In the current study, 5,6-DHF was observed inhibiting lipopolysaccharide (LPS)-induced nitric oxide (NO) and cytoplasmic reactive oxygen species (ROS) production with the IC50 of 11.55 ± 0.64 μM and 0.8310 ± 0.633 μM in murine macrophages, respectively. Meanwhile, 5,6-DHF suppressed the overexpression of pro-inflammatory mediators such as proteins and cytokines and eradicated the accumulation of mitochondrial ROS (mtROS). The blockage of the activation of cell surface toll-like receptor 4 (TLR4), impediment of the phosphorylation of c-Jun N-terminal kinase (JNK) and p38 from the mitogen-activated protein kinases (MAPK) pathway, Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3) from the JAK-STAT pathway, and p65 from nuclear factor-κB (NF-κB) pathways were involved in the process of 5,6-DHF suppressing inflammation. Furthermore, 5,6-DHF acted as a cellular ROS scavenger and heme-oxygenase 1 (HO-1) inducer in relieving cellular oxidative stress. Importantly, 5,6-DHF exerted more potent anti-inflammatory activity than its close structural relatives, such as baicalein and chrysin. Overall, our findings pave the road for further research on 5,6-DHF in animal models. Full article
(This article belongs to the Special Issue Cellular Redox Mechanisms in Inflammation and Programmed Cell Death)
Show Figures

Figure 1

12 pages, 767 KiB  
Article
Dengue Hemorrhagic Fever in Quang Nam Province (Vietnam) from 2020 to 2022—A Study on Serotypes Distribution and Immunology Factors
by Huong T. Pham, Thao N. T. Pham, Nhu H. T. Tran, Quang D. Ha, Duy K. Tran, Nam H. D. Nguyen, Van H. Pham and Son T. Pham
Diagnostics 2024, 14(16), 1772; https://doi.org/10.3390/diagnostics14161772 - 14 Aug 2024
Cited by 4 | Viewed by 2254
Abstract
Background: Dengue hemorrhagic fever (DHF) is the most prevalent and fastest-growing vector-borne disease globally, with symptoms ranging from mild to severe and, in some cases, fatal. Quang Nam province in Vietnam can serve as a model for dengue epidemiological study, as it is [...] Read more.
Background: Dengue hemorrhagic fever (DHF) is the most prevalent and fastest-growing vector-borne disease globally, with symptoms ranging from mild to severe and, in some cases, fatal. Quang Nam province in Vietnam can serve as a model for dengue epidemiological study, as it is an endemic region for DHF with a tropical climate, which significantly constrains the health system. However, there are very few epidemiological and microbiological reports on Dengue virus (DENV) serotypes in this region due to the limited availability of advanced surveillance infrastructure. Aims of the study: This study aims to (1) assess the PCR positivity rates among hospitalized patients with clinical Dengue presentation; (2) identify the circulating DENV serotypes; and (3) assess the impact of secondary DENV infections on outbreak severity by detecting the presence of DENV-specific IgG antibodies in the plasma of DENV-infected patients. Materials and methods: Blood samples from patients clinically diagnosed with DHF and admitted to Quang Nam General Hospital (2020–2022) were analyzed. RNA extraction was performed using the NKDNA/RNAprep MAGBEAD kit, followed by Multiplex Reverse Transcription real-time Polymerase Chain Reaction (MLP RT-rPCR) for DENV detection and serotype identification. Positive samples were further tested for DENV-specific IgG antibodies using an enzyme-linked immunosorbent assay (ELISA). Results: The PCR positivity rate among hospitalized patients was approximately 68% throughout the study period. A significant shift in DENV serotypes was observed, with DENV-2 initially dominant and later giving way to DENV-1. IgG was detected in nearly half of the MPL RT-rPCR-positive samples, indicating secondary DENV infections. Conclusions: Our study highlights persistent dengue prevalence and dynamic shifts in DENV serotypes in Quang Nam province, emphasizing the need for improved diagnostic strategies and timely sample collection. The significant serotype shifts and the presence of IgG in hospitalized patients suggest potential severe outcomes from recurrent DENV infections, possibly linked to antibody-dependent enhancement (ADE) effect, underscoring the importance of advanced surveillance, vector control, vaccination campaigns, and public education to predict and prevent future DHF epidemics. Full article
(This article belongs to the Collection Diagnostic Virology)
Show Figures

Figure 1

21 pages, 4311 KiB  
Article
Biologically Active Sheep Colostrum for Topical Treatment and Skin Care
by Kinga Kazimierska, Ilona Szabłowska-Gadomska, Stefan Rudziński, Katarzyna Kośla, Elżbieta Płuciennik, Łukasz Bobak, Aleksandra Zambrowicz and Urszula Kalinowska-Lis
Int. J. Mol. Sci. 2024, 25(15), 8091; https://doi.org/10.3390/ijms25158091 - 25 Jul 2024
Cited by 4 | Viewed by 2117
Abstract
Colostrum is gaining popularity in cosmetic products. The present study compared the composition and selected biological properties of colostrum from Polish sheep (colostrum 1) and Swiss sheep (colostrum 2), particularly those that can affect healthy or diseased skin. The antioxidant activity of the [...] Read more.
Colostrum is gaining popularity in cosmetic products. The present study compared the composition and selected biological properties of colostrum from Polish sheep (colostrum 1) and Swiss sheep (colostrum 2), particularly those that can affect healthy or diseased skin. The antioxidant activity of the colostrums was measured using ABTS and DPPH assays. The effect on the proliferation of human skin fibroblasts, neonatal epidermal keratinocytes, and human diabetic fibroblast (dHF) cells isolated from diabetic foot ulcers was also assayed in vitro by MTT and Presto Blue tests, respectively. The colostrum simulated dHF cell proliferation by up to 115.4%. The highest used concentration of colostrum 1 stimulated normal fibroblast proliferation by 191.2% (24 h) and 222.2% (48 h). Both colostrums inhibited epidermal keratinocyte viability. The influence of the colostrums on the expression of genes related to proliferation (Ki67) and immune response (IL-6, PTGS-2, TSG-6) in dHF cells were compared. Colostrum 1 increased the rate of wound closure (scar test). Analysis of total fat, protein and fatty acid content found the Polish colostrum to be a richer source of fat than the Swiss colostrum, which contained a larger amount of protein. Both colostrums exhibit properties that suggest they could be effective components in cosmetic or medicinal formulations for skin care, especially supporting its regeneration, rejuvenation, and wound healing. Full article
Show Figures

Figure 1

11 pages, 9701 KiB  
Article
Antibiofilm and Antivirulence Potentials of 3,2′-Dihydroxyflavone against Staphylococcus aureus
by Inji Park, Yong-Guy Kim, Jin-Hyung Lee and Jintae Lee
Int. J. Mol. Sci. 2024, 25(15), 8059; https://doi.org/10.3390/ijms25158059 - 24 Jul 2024
Cited by 5 | Viewed by 1510
Abstract
Staphylococcus aureus, particularly drug-resistant strains, poses significant challenges in healthcare due to its ability to form biofilms, which confer increased resistance to antibiotics and immune responses. Building on previous knowledge that several flavonoids exhibit antibiofilm activity, this study sought to identify a [...] Read more.
Staphylococcus aureus, particularly drug-resistant strains, poses significant challenges in healthcare due to its ability to form biofilms, which confer increased resistance to antibiotics and immune responses. Building on previous knowledge that several flavonoids exhibit antibiofilm activity, this study sought to identify a novel flavonoid capable of effectively inhibiting biofilm formation and virulence factor production in S. aureus strains including MRSA. Among the 19 flavonoid-like compounds tested, 3,2′-dihydroxyflavone (3,2′-DHF) was identified for the first time as inhibiting biofilm formation and virulence factors in S. aureus with an MIC 75 µg/mL. The antibiofilm activity was further confirmed by microscopic methods. Notably, 3,2′-DHF at 5 µg/mL was effective in inhibiting both mono- and polymicrobial biofilms involving S. aureus and Candida albicans, a common co-pathogen. 3,2′-DHF reduces hemolytic activity, slime production, and the expression of key virulence factors such as hemolysin gene hla and nuclease gene nuc1 in S. aureus. These findings highlight the potential of 3,2′-DHF as a novel antibiofilm and antivirulence agent against both bacterial and fungal biofilms, offering a promising alternative to traditional antibiotics in the treatment of biofilm-associated infections. Full article
(This article belongs to the Special Issue Molecular Research of Biofilms in Microbial Infections)
Show Figures

Figure 1

12 pages, 519 KiB  
Article
Pre-or co-SARS-CoV-2 Infections Significantly Increase Severe Dengue Virus Disease Criteria: Implications for Clinicians
by Moeen Hamid Bukhari, Esther Annan, Ubydul Haque, Pedro Arango, Andrew K. I. Falconar and Claudia M. Romero-Vivas
Pathogens 2024, 13(7), 573; https://doi.org/10.3390/pathogens13070573 - 10 Jul 2024
Cited by 3 | Viewed by 1895
Abstract
Few studies have investigated whether SARS-CoV-2 infections increase the incidence of dengue haemorrhagic fever/shock syndrome (DHF/DSS) and/or severe dengue (SD) in dengue virus (DENV)-infected patients. This study was performed on a site with high incidences of classical dengue, but relatively few DHF/DSS or [...] Read more.
Few studies have investigated whether SARS-CoV-2 infections increase the incidence of dengue haemorrhagic fever/shock syndrome (DHF/DSS) and/or severe dengue (SD) in dengue virus (DENV)-infected patients. This study was performed on a site with high incidences of classical dengue, but relatively few DHF/DSS or SD cases as defined by the WHO 1997 or 2009 criteria, respectively. Clinical, haematological/biochemical, and viral diagnostic data were collected from febrile patients before, during, and after the COVID-19 epidemic to assess whether (a) DENV-infected patients with prior SARS-CoV-2 infections or (b) DENV-SARS-CoV-2-co-infected patients had increased incidences of SD/DHF/DSS using logistic regression and machine learning models. Higher numbers of DHF/DSS/SD occurred during the COVID-19 epidemic, particularly in males and 18–40-year-olds. Significantly increased symptoms in the DENV-SARS-CoV-2-co-infected cases were (a) haemoconcentration (p < 0.0009) and hypotension (p < 0.0005) (DHF/DSS and SD criteria), (b) thrombocytopenia and mucosal bleeding (DHF/DSS-criteria), (c) abdominal pain, persistent vomiting, mucosal bleeding, and thrombocytopenia (SD warning signs) and (d) dyspnoea, but without fluid accumulation. DENV-infected patients with prior SARS-CoV-2 infections had significantly increased incidences of thrombocytopenia (DHF/DSS-criteria) and/or abdominal pain and persistent vomiting and also thrombocytopenia (SD warning signs), but without significant haemoconcentration or hypotension. DENV-SARS-CoV-2 co-infections significantly increased the incidence of DHF/DSS/SD, while DENV-infected patients with prior SARS-CoV-2 infections displayed significantly increased incidences of thrombocytopenia (DHF/DSS-criteria) and three important SD warning signs, which are therefore very important for health workers/clinicians in assessing patients’ DHF/DSS/SD risk factors and planning their optimal therapies. Full article
(This article belongs to the Special Issue Surveillance and Control Strategies to Fight Mosquito-Borne Diseases)
Show Figures

Figure 1

14 pages, 3186 KiB  
Article
Relationship between the Number of Repeats in the Neck Regions of L-SIGN and Augmented Virus Replication and Immune Responses in Dengue Hemorrhagic Fever
by Keh-Sen Liu, Po-Ming Chen, Lin Wang, Ing-Kit Lee, Kuender D. Yang and Rong-Fu Chen
Int. J. Mol. Sci. 2024, 25(10), 5497; https://doi.org/10.3390/ijms25105497 - 17 May 2024
Cited by 1 | Viewed by 1432
Abstract
C-type lectins play a crucial role as pathogen-recognition receptors for the dengue virus, which is responsible for causing both dengue fever (DF) and dengue hemorrhagic fever (DHF). DHF is a serious illness caused by the dengue virus, which exists in four different serotypes: [...] Read more.
C-type lectins play a crucial role as pathogen-recognition receptors for the dengue virus, which is responsible for causing both dengue fever (DF) and dengue hemorrhagic fever (DHF). DHF is a serious illness caused by the dengue virus, which exists in four different serotypes: DEN-1, DEN-2, DEN-3, and DEN-4. We conducted a genetic association study, during a significant DEN-2 outbreak in southern Taiwan, to explore how variations in the neck-region length of L-SIGN (also known as CD209L, CD299, or CLEC4M) impact the severity of dengue infection. PCR genotyping was utilized to identify polymorphisms in variable-number tandem repeats. We constructed L-SIGN variants containing either 7- or 9-tandem repeats and transfected these constructs into K562 and U937 cells, and cytokine and chemokine levels were evaluated using enzyme-linked immunosorbent assays (ELISAs) following DEN-2 virus infection. The L-SIGN allele 9 was observed to correlate with a heightened risk of developing DHF. Subsequent results revealed that the 9-tandem repeat was linked to elevated viral load alongside predominant T-helper 2 (Th2) cell responses (IL-4 and IL-10) in K562 and U937 cells. Transfecting K562 cells in vitro with L-SIGN variants containing 7- and 9-tandem repeats confirmed that the 9-tandem repeat transfectants facilitated a higher dengue viral load accompanied by increased cytokine production (MCP-1, IL-6, and IL-8). Considering the higher prevalence of DHF and an increased frequency of the L-SIGN neck’s 9-tandem repeat in the Taiwanese population, individuals with the 9-tandem repeat may necessitate more stringent protection against mosquito bites during dengue outbreaks in Taiwan. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

23 pages, 4070 KiB  
Article
Levels of Small Extracellular Vesicles Containing hERG-1 and Hsp47 as Potential Biomarkers for Cardiovascular Diseases
by Luis A. Osorio, Mauricio Lozano, Paola Soto, Viviana Moreno-Hidalgo, Angely Arévalo-Gil, Angie Ramírez-Balaguera, Daniel Hevia, Jorge Cifuentes, Yessia Hidalgo, Francisca Alcayaga-Miranda, Consuelo Pasten, Danna Morales, Diego Varela, Cinthya Urquidi, Andrés Iturriaga, Alejandra Rivera-Palma, Ricardo Larrea-Gómez and Carlos E. Irarrázabal
Int. J. Mol. Sci. 2024, 25(9), 4913; https://doi.org/10.3390/ijms25094913 - 30 Apr 2024
Cited by 4 | Viewed by 2277
Abstract
The diagnosis of cardiovascular disease (CVD) is still limited. Therefore, this study demonstrates the presence of human ether-a-go-go-related gene 1 (hERG1) and heat shock protein 47 (Hsp47) on the surface of small extracellular vesicles (sEVs) in human peripheral blood and their association with [...] Read more.
The diagnosis of cardiovascular disease (CVD) is still limited. Therefore, this study demonstrates the presence of human ether-a-go-go-related gene 1 (hERG1) and heat shock protein 47 (Hsp47) on the surface of small extracellular vesicles (sEVs) in human peripheral blood and their association with CVD. In this research, 20 individuals with heart failure and 26 participants subjected to cardiac stress tests were enrolled. The associations between hERG1 and/or Hsp47 in sEVs and CVD were established using Western blot, flow cytometry, electron microscopy, ELISA, and nanoparticle tracking analysis. The results show that hERG1 and Hsp47 were present in sEV membranes, extravesicularly exposing the sequences 430AFLLKETEEGPPATE445 for hERG1 and 169ALQSINEWAAQTT- DGKLPEVTKDVERTD196 for Hsp47. In addition, upon exposure to hypoxia, rat primary cardiomyocytes released sEVs into the media, and human cardiomyocytes in culture also released sEVs containing hERG1 (EV-hERG1) and/or Hsp47 (EV-Hsp47). Moreover, the levels of sEVs increased in the blood when cardiac ischemia was induced during the stress test, as well as the concentrations of EV-hERG1 and EV-Hsp47. Additionally, the plasma levels of EV-hERG1 and EV-Hsp47 decreased in patients with decompensated heart failure (DHF). Our data provide the first evidence that hERG1 and Hsp47 are present in the membranes of sEVs derived from the human cardiomyocyte cell line, and also in those isolated from human peripheral blood. Total sEVs, EV-hERG1, and EV-Hsp47 may be explored as biomarkers for heart diseases such as heart failure and cardiac ischemia. Full article
(This article belongs to the Special Issue Roles and Function of Extracellular Vesicles in Diseases 2.0)
Show Figures

Graphical abstract

Back to TopTop