Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (47)

Search Parameters:
Keywords = 12p13.33 microdeletion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1161 KB  
Article
Metabolic Dysfunction-Associated Steatotic Liver Disease in a Patient with Phelan–McDermid Syndrome
by Luigi Boccuto, Giuseppe Guido Maria Scarlata, Bridgette A. Moffitt, Sara M. Sarasua, Katy Phelan, Curtis Rogers and Ludovico Abenavoli
Life 2025, 15(10), 1586; https://doi.org/10.3390/life15101586 - 11 Oct 2025
Viewed by 985
Abstract
Background: Phelan–McDermid syndrome (PMS), caused by SHANK3 variants or 22q13.3 deletions, often includes systemic features such as gastrointestinal and hepatic abnormalities. This study highlights the overlap between PMS and metabolic-associated steatotic liver disease (MASLD), focusing on PNPLA3 variants and underscoring the need for [...] Read more.
Background: Phelan–McDermid syndrome (PMS), caused by SHANK3 variants or 22q13.3 deletions, often includes systemic features such as gastrointestinal and hepatic abnormalities. This study highlights the overlap between PMS and metabolic-associated steatotic liver disease (MASLD), focusing on PNPLA3 variants and underscoring the need for structured metabolic monitoring. Methods: We describe a 25-year-old male with PMS due to a 22q13.33 microdeletion involving SHANK3. He exhibited developmental delay, seizures, and hypotonia. Genetic testing revealed homozygosity for the PNPLA3 p.I148M variant. Clinical, anthropometric, biochemical, imaging, and metabolic investigations were performed, including liver ultrasound and metabolic profiling of lymphoblastoid cell lines. Results: Ultrasound revealed moderate hepatic steatosis consistent with MASLD. After ursodeoxycholic acid treatment and a Mediterranean-style diet, steatosis improved to mild. Metabolic profiling demonstrated increased nicotinamide adenine dinucleotide generation under metabolic stimuli, suggesting altered energy homeostasis. Conclusions: We highlight the contribution of PNPLA3 to MASLD in PMS and support systematic hepatic monitoring. Genotype–phenotype associations in PMS may provide insights relevant to MASLD research and clinical management. Full article
Show Figures

Figure 1

10 pages, 1920 KB  
Case Report
Junctional Epidermolysis Bullosa Caused by a Hemiallelic Nonsense Mutation in LAMA3 Revealed by 18q11.2 Microdeletion
by Matteo Iacoviello, Marilidia Piglionica, Ornella Tabaku, Antonella Garganese, Aurora De Marco, Fabio Cardinale, Domenico Bonamonte and Nicoletta Resta
Int. J. Mol. Sci. 2025, 26(15), 7343; https://doi.org/10.3390/ijms26157343 - 29 Jul 2025
Viewed by 1369
Abstract
Inherited epidermolysis bullosa (EB) is a heterogeneous clinical entity that includes over 30 phenotypically and/or genotypically distinct inherited disorders, characterized by mechanical skin fragility and bullae formation. Junctional EB (JEB) is an autosomal recessive disease characterized by an intermediated cleavage level within the [...] Read more.
Inherited epidermolysis bullosa (EB) is a heterogeneous clinical entity that includes over 30 phenotypically and/or genotypically distinct inherited disorders, characterized by mechanical skin fragility and bullae formation. Junctional EB (JEB) is an autosomal recessive disease characterized by an intermediated cleavage level within the skin layers, commonly at the “lamina lucida”. Laryngo-onycho-cutaneous syndrome (LOC) is an extremely rare variant of JEB, characterized by granulation tissue formation in specific body sites (skin, larynx, and nails). Although most cases of JEB are caused by pathogenic variants occurring in the genes encoding for classical components of the lamina lucida, such as laminin 332 (LAMA3, LAMB3, LAMC2), integrin α6β4 (ITGA6, ITGB4), and collagen XVII (COL17A1), other variants have also been described. We report the case of a 4-month-old male infant who presented with recurrent bullous and erosive lesions from the first month of life. At the first dermatological evaluation, the patient was agitated and exhibited hoarse breathing, a clinical sign suggestive of laryngeal involvement. Multiple polygonal skin erosions were observed on the cheeks, along with similar isolated, roundish lesions on the scalp and legs. Notably, nail dystrophy and near-complete anonychia were evident on the left first and fifth toes. Due to the coexistence of skin erosions and nail dystrophy in such a young infant, a congenital bullous disorder was suspected, prompting molecular analysis of all potentially involved genes. In the patient’s DNA, clinical exome sequencing (CES) identified a pathogenic variant, apparently in homozygosity, in the exon 1 of the LAMA3 gene (18q11.2; NM_000227.6): c.47G > A;p.Trp16*. The presence of this variant was confirmed, in heterozygosity, in the genomic DNA of the patient’s mother, while it was absent in the father’s DNA. Subsequently, trio-based SNP array analysis was performed, revealing a paternally derived pathogenic microdeletion encompassing the LAMA3 locus (18q11.2). To our knowledge, this is the first reported case of JEB with a LOC-like phenotype caused by a maternally inherited monoallelic nonsense mutation in LAMA3, unmasked by an almost complete deletion of the paternal allele. The combined use of exome sequencing and SNP array is proving essential for elucidating autosomal recessive diseases with a discordant segregation. This is pivotal for providing accurate genetic counseling to parents regarding future pregnancies. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

14 pages, 1694 KB  
Article
The Role of MLPA in Detecting Syndromic Submicroscopic Copy Number Variations in Normal QF-PCR Miscarriage Specimens
by Gabriela Popescu-Hobeanu, Mihai-Gabriel Cucu, Alexandru Calotă-Dobrescu, Luminița Dragotă, Anca-Lelia Riza, Ioana Streață, Răzvan Mihail Pleșea, Ciprian Laurențiu Pătru, Cristina Maria Comănescu, Ștefania Tudorache, Dominic Iliescu and Florin Burada
Genes 2025, 16(8), 867; https://doi.org/10.3390/genes16080867 - 24 Jul 2025
Viewed by 1495
Abstract
Background/Objectives: Miscarriage is an increasingly common event worldwide arising from various factors, and identifying its etiology is important for planning and managing any future pregnancies. It is estimated that about half of early pregnancy loss cases are caused by genetic abnormalities, while [...] Read more.
Background/Objectives: Miscarriage is an increasingly common event worldwide arising from various factors, and identifying its etiology is important for planning and managing any future pregnancies. It is estimated that about half of early pregnancy loss cases are caused by genetic abnormalities, while a significantly lower rate is found in late pregnancy loss. Multiplex ligation-dependent probe amplification (MLPA) can detect small changes within a gene with precise breakpoints at the level of a single exon. The aim of our study was to identify the rate of copy number variations (CNVs) in spontaneous pregnancy loss samples after having previously tested them via quantitative fluorescence PCR (QF-PCR), with no abnormal findings. Methods: DNA was extracted from product-of-conception tissue samples, followed by the use of an MLPA kit for the detection of 31 microdeletion/microduplication syndromes (SALSA® MLPA® Probemix P245 Microdeletion Syndromes-1A, MRC-Holland, Amsterdam, The Netherlands). Results: A total of 11 (13.1%) out of the 84 successfully tested samples showed CNVs. Duplications accounted for 9.5% of the analyzed samples (eight cases), while heterozygous or hemizygous deletions were present in three cases (3.6%). Among all the detected CNVs, only three were certainly pathogenic (3.6%), with two deletions associated with DiGeorge-2 syndrome and Rett syndrome, respectively, and a 2q23.1 microduplication syndrome, all detected in early pregnancy loss samples. For the remaining cases, additional genetic tests (e.g., aCGH/SNP microarray) are required to establish CNV size and gene content and therefore their pathogenicity. Conclusions: MLPA assays seem to have limited value in detecting supplementary chromosomal abnormalities in miscarriages. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

30 pages, 2301 KB  
Review
Retinoic Acid Induced 1 and Smith–Magenis Syndrome: From Genetics to Biology and Possible Therapeutic Strategies
by Jasmine Covarelli, Elisa Vinciarelli, Alessandra Mirarchi, Paolo Prontera and Cataldo Arcuri
Int. J. Mol. Sci. 2025, 26(14), 6667; https://doi.org/10.3390/ijms26146667 - 11 Jul 2025
Viewed by 1737
Abstract
Haploinsufficiency disorders are genetic diseases caused by reduced gene expression, leading to developmental, metabolic, and tumorigenic abnormalities. The dosage-sensitive Retinoic Acid Induced 1 (RAI1) gene, located within the 17p11.2 region, is central to the core features of Smith––Magenis syndrome (SMS) and [...] Read more.
Haploinsufficiency disorders are genetic diseases caused by reduced gene expression, leading to developmental, metabolic, and tumorigenic abnormalities. The dosage-sensitive Retinoic Acid Induced 1 (RAI1) gene, located within the 17p11.2 region, is central to the core features of Smith––Magenis syndrome (SMS) and Potocki––Lupski syndrome (PTLS), caused by the reciprocal microdeletions and microduplications of this region, respectively. SMS and PTLS present contrasting phenotypes. SMS is characterized by severe neurobehavioral manifestations, sleep disturbances, and metabolic abnormalities, and PTLS shows milder features. Here, we detail the molecular functions of RAI1 in its wild-type and haploinsufficiency conditions (RAI1+/−), as studied in animal and cellular models. RAI1 acts as a transcription factor critical for neurodevelopment and synaptic plasticity, a chromatin remodeler within the Histone 3 Lysine 4 (H3K4) writer complex, and a regulator of faulty 5′-capped pre-mRNA degradation. Alterations of RAI1 functions lead to synaptic scaling and transcriptional dysregulation in neural networks. This review highlights key molecular mechanisms of RAI1, elucidating its role in the interplay between genetics and phenotypic features and summarizes innovative therapeutic approaches for SMS. These data provide a foundation for potential therapeutic strategies targeting RAI1, its mRNA products, or downstream pathways. Full article
(This article belongs to the Special Issue Gene Therapy Approaches in Haploinsufficiency Disorders)
Show Figures

Figure 1

9 pages, 1023 KB  
Review
A Novel Frameshift Variant and a Partial EHMT1 Microdeletion in Kleefstra Syndrome 1 Patients Resulting in Variable Phenotypic Severity and Literature Review
by Maria Tzetis, Anastasios Mitrakos, Ioanna Papathanasiou, Vasiliki Koute, Konstantina Kosma, Roser Pons, Aspasia Michoula, Ioanna Grivea and Aspasia Tsezou
Genes 2025, 16(5), 521; https://doi.org/10.3390/genes16050521 - 29 Apr 2025
Viewed by 2065
Abstract
Background: Kleefstra syndrome 1(KLEFS1, OMIM#610253) is a rare neurodevelopmental disorder (NDD) instigated by heterozygous variants or microdeletions occurring in the 9q34.4 genomic region of the euchromatic histone methyltransferase-1 (EHMT1) gene and is inherited in an autosomal dominant (AD) manner. The clinical [...] Read more.
Background: Kleefstra syndrome 1(KLEFS1, OMIM#610253) is a rare neurodevelopmental disorder (NDD) instigated by heterozygous variants or microdeletions occurring in the 9q34.4 genomic region of the euchromatic histone methyltransferase-1 (EHMT1) gene and is inherited in an autosomal dominant (AD) manner. The clinical phenotype of KLEFS1 includes moderate to severe intellectual disability (ID), hypotonia, and distinctive facial features and additionally involves other organ systems (heart, renal, genitourinary, sensory) albeit with phenotypic heterogeneity between patients. The purpose of this study is to expand the genotypic spectrum of KLEFS1 and compare phenotypic features of the syndrome of already published cases. Methods: Exome sequencing (ES), chromosomal microarray analysis (CMA), as well as sanger sequencing, for confirmation of the de novo status of the frameshift variant, were used. Results: Here we describe two more cases, both males with a similar age and carriers of novel variants; one with a frameshift variant involving exon 13: p.Val692Glyfs*64 and the other with the smallest so far described, 11 Kb (exons 19-25), 9q34.4 microdeletion: 9q34.3 (140703393-140714454). Both presented with an NDD disorder with one showing more severe ID with significant social disabilities, while the other with the microdeletion had mild ID and following a normal education curriculum. Neither of them were obese nor had any other significant organ system disorder. Conclusions: The observed phenotypic variability due to genotypic differences in the two children contributes to the expanding spectrum of KLEFS1 disease phenotypes. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

19 pages, 2080 KB  
Article
Genetic Alterations in Atypical Cerebral Palsy Identified Through Chromosomal Microarray and Exome Sequencing
by Ji Yoon Han, Jin Gwack, Jong Hun Kim, Min Kyu Park and Joonhong Park
Int. J. Mol. Sci. 2025, 26(7), 2929; https://doi.org/10.3390/ijms26072929 - 24 Mar 2025
Viewed by 2879
Abstract
This study investigated the genetic causes of atypical cerebral palsy (CP) through chromosomal microarray (CMA) and exome sequencing (ES) in a cohort of 10 Korean patients to identify variants and expand the spectrum of mutations associated with atypical cerebral palsy. Whole ES and/or [...] Read more.
This study investigated the genetic causes of atypical cerebral palsy (CP) through chromosomal microarray (CMA) and exome sequencing (ES) in a cohort of 10 Korean patients to identify variants and expand the spectrum of mutations associated with atypical cerebral palsy. Whole ES and/or genome sequencing (GS) after routine karyotyping and CMA was performed to identify causative variants and expand the spectrum of mutations associated with atypical CP. In cases of atypical CP, scoliosis and/or kyphosis, ranging from mild to severe, were present in all patients. Epilepsy was a comorbidity in seven patients (70%), and intellectual disability (ID) was observed in varying degrees. This study identified three copy number variations (CNVs), including 15q11.2 microdeletion (n = 1), 17p11.2 duplication (n = 1), and 12p13.33p11.23 duplication/18p11.32 microdeletion (n = 1), and six likely pathogenic variants (LPVs) or pathogenic variants (PVs) detected in the SLC2A1, PLAA, CDC42BPB, CACNA1D, ALG12, and SACS genes (n = 6). These findings emphasize the significance of incorporating genetic testing into the diagnostic process for atypical CP to improve our understanding of its molecular basis and inform personalized treatment strategies. To further advance this research, future studies should focus on exploring genotype–phenotype correlations, assessing the functional impact of identified variants, and increasing the sample size to validate the observed patterns. Full article
Show Figures

Figure 1

10 pages, 1350 KB  
Article
Looks Can Be Deceiving: Diagnostic Power of Exome Sequencing in Debunking 15q11.2 Copy Number Variations
by Camilla Meossi, Alessia Carrer, Claudia Ciaccio, Laura Pezzoli, Lidia Pezzani, Rosa Maria Silipigni, Francesca L. Sciacca, Romano Tenconi, Silvia Esposito, Arianna De Laurentiis, Chiara Pantaleoni, Paola Marchisio, Federica Natacci, Stefano D’Arrigo, Maria Iascone and Donatella Milani
Genes 2024, 15(11), 1441; https://doi.org/10.3390/genes15111441 - 7 Nov 2024
Viewed by 2120
Abstract
Background/Objectives: The pathogenetic role of 15q11.2 Copy Number Variations (CNVs) remains contentious in the scientific community, as microdeletions and microduplications in this region are linked to neurodevelopmental disorders with variable expressivity. This study aims to explore the diagnostic utility of Exome Sequencing [...] Read more.
Background/Objectives: The pathogenetic role of 15q11.2 Copy Number Variations (CNVs) remains contentious in the scientific community, as microdeletions and microduplications in this region are linked to neurodevelopmental disorders with variable expressivity. This study aims to explore the diagnostic utility of Exome Sequencing (ES) in a cohort of pediatric patients with 15q11.2 CNVs. Methods: We enrolled 35 probands with 15q11.2 microdeletions or microduplications from two genetic centers between January 2021 and January 2023. Chromosomal Microarray Analysis (CMA) and ES were performed with written consent obtained from all parents. Pathogenic variants were classified according to ACMG guidelines. Results: CMA identified additional pathogenic CNVs in 3 of 35 children (9%). Subsequent ES revealed likely pathogenic or pathogenic variants in 11 of 32 children (34%). Notably, a higher percentage of isolated autism spectrum disorder (ASD) diagnoses was observed in patients without other CNVs or point mutations (p = 0.019). Conclusions: The ES analysis provided a diagnostic yield of 34% in this pediatric cohort with 15q11.2 CNVs. While the study does not dismiss the contribution of the CNV to the clinical phenotype, the findings suggest that ES may uncover the underlying causes of neurodevelopmental disorders. Continuous monitoring and further genetic testing are recommended for all 15q11.2 CNV carriers to optimize clinical management and familial counseling. Full article
(This article belongs to the Special Issue Genetics and Genomic Advances in Rare Diseases and Common Challenges)
Show Figures

Figure 1

15 pages, 3983 KB  
Case Report
A Patient Case of Malan Syndrome Involving 19p13.2 Deletion of NFIX with Longitudinal Follow-Up and Future Prospectives
by Simran Makker, Bernadine R. Gagnon, Isabella Trew, Vivian Mougios, Anne Hanna, Jessica M. Cale and Craig S. McIntosh
J. Clin. Med. 2024, 13(21), 6575; https://doi.org/10.3390/jcm13216575 - 1 Nov 2024
Cited by 2 | Viewed by 2837
Abstract
Background and Objectives: Malan syndrome is a rare overgrowth syndrome resulting from NFIX haploinsufficiency due to heterozygous loss-of-function mutations or microdeletions of NFIX on chromosome 19 at p13.2. Phenotypic presentation can vary but is characterized by macrocephaly, long and slender body habitus, skeletal [...] Read more.
Background and Objectives: Malan syndrome is a rare overgrowth syndrome resulting from NFIX haploinsufficiency due to heterozygous loss-of-function mutations or microdeletions of NFIX on chromosome 19 at p13.2. Phenotypic presentation can vary but is characterized by macrocephaly, long and slender body habitus, skeletal abnormalities, and intellectual disability. Methods: Here, we report on the presentation, management, and development of a patient with Malan syndrome, highlighting the clinical and behavioral aspects of this syndrome, therapeutic interventions employed, and the course of disease over a 15-year period. We review medical records, cytogenetic analysis and neuropsychologic testing results, as well as speech pathology, optometric, and medical reports. In addition, we discuss personalized therapeutic strategies that could potentially be exploited in the future for such overgrowth syndromes. Results: To our knowledge, this is the first longitudinal follow-up report of a case of Malan syndrome to highlight the clinical course, interventions employed, and resulting improvements in neurocognitive function over time. Conclusions: This case highlights the importance of early diagnosis, intervention, and preventative care in overgrowth syndromes, as well as the potential for therapeutic intervention in the future. Full article
(This article belongs to the Section Clinical Pediatrics)
Show Figures

Figure 1

14 pages, 3221 KB  
Article
Splicing Dysregulation of Non-Canonical GC-5′ Splice Sites of Breast Cancer Susceptibility Genes ATM and PALB2
by Inés Llinares-Burguet, Lara Sanoguera-Miralles, Alberto Valenzuela-Palomo, Alicia García-Álvarez, Elena Bueno-Martínez and Eladio A. Velasco-Sampedro
Cancers 2024, 16(21), 3562; https://doi.org/10.3390/cancers16213562 - 22 Oct 2024
Cited by 3 | Viewed by 2301
Abstract
Background/Objectives: The non-canonical GC-5′ splice sites (5′ss) are the most common exception (~1%) to the classical GT/AG splicing rule. They constitute weak 5′ss and can be regulated by splicing factors, so they are especially sensitive to genetic variations inducing the misrecognition of [...] Read more.
Background/Objectives: The non-canonical GC-5′ splice sites (5′ss) are the most common exception (~1%) to the classical GT/AG splicing rule. They constitute weak 5′ss and can be regulated by splicing factors, so they are especially sensitive to genetic variations inducing the misrecognition of their respective exons. We aimed to investigate the GC-5′ss of the breast/ovarian cancer susceptibility genes, ATM (exon 50), BRIP1 (exon 1), and PALB2 (exon 12), and their dysregulation induced by DNA variants. Methods: Splicing assays of the minigenes, mgATM_49-52, mgBRIP1_1-2, and mgPALB2_5-12, were conducted to study the regulation of the indicated GC-5′ss. Results: A functional map of the splicing regulatory elements (SRE) formed by overlapping exonic microdeletions revealed three essential intervals, ATM c.7335_7344del, PALB2 c.3229_3258del, and c.3293_3322del, which are likely targets for spliceogenic SRE-variants. We then selected 14 ATM and 9 PALB2 variants (Hexplorer score < −40) located at these intervals that were assayed in MCF-7 cells. Nine ATM and three PALB2 variants affected splicing, impairing the recognition of exons 50 and 12, respectively. Therefore, these variants likely disrupt the active SREs involved in the inclusion of both exons in the mature mRNA. DeepCLIP predictions suggested the participation of several splicing factors in exon recognition, including SRSF1, SRSF2, and SRSF7, involved in the recognition of other GC sites. The ATM spliceogenic variants c.7336G>T (p.(Glu2446Ter)) and c.7340T>A (p.(Leu2447Ter)) produced significant amounts of full-length transcripts (55–59%), which include premature termination stop codons, so they would inactivate ATM through both splicing disruption and protein truncation mechanisms. Conclusions: ATM exon 50 and PALB2 exon 12 require specific sequences for efficient recognition by the splicing machinery. The mapping of SRE-rich intervals in minigenes is a valuable approach for the identification of spliceogenic variants that outperforms any prediction software. Indeed, 12 spliceogenic SRE-variants were identified in the critical intervals. Full article
Show Figures

Figure 1

14 pages, 557 KB  
Article
Prenatal and Postnatal Diagnosis and Genetic Background of Corpus Callosum Malformations and Neonatal Follow-Up
by Virág Bartek, István Szabó, Ágnes Harmath, Gábor Rudas, Tidhar Steiner, Attila Fintha, Nándor Ács and Artúr Beke
Children 2024, 11(7), 797; https://doi.org/10.3390/children11070797 - 28 Jun 2024
Cited by 4 | Viewed by 3234
Abstract
Introduction: The corpus callosum is one of the five main cerebral commissures. It is key to combining sensory and motor functions. Its structure can be pathological (dysgenesis) or completely absent (agenesis). The corpus callosum dys- or agenesis is a rare disease (1:4000 live [...] Read more.
Introduction: The corpus callosum is one of the five main cerebral commissures. It is key to combining sensory and motor functions. Its structure can be pathological (dysgenesis) or completely absent (agenesis). The corpus callosum dys- or agenesis is a rare disease (1:4000 live births), but it can have serious mental effects. Methods: In our study, we processed the data of 64 pregnant women. They attended a prenatal diagnostic center and genetic counseling from 2005 to 2019 at the Department of Obstetrics and Gynecology at Semmelweis University. Results: The pregnancies had the following outcomes: 52 ended in delivery, 1 in spontaneous abortion, and 11 in termination of pregnancy (TOP) cases (n = 64). The average time of detection with imaging tests was 25.24 gestational weeks. In 16 cases, prenatal magnetic resonance imaging (MRI) was performed. If the abnormality was detected before the 20th week, a genetic test was performed on an amniotic fluid sample obtained from a genetic amniocentesis. Karyotyping and cytogenetic tests were performed in 15 of the investigated cases. Karyotyping gave normal results in three cases (46,XX or XY). In one of these cases, postnatally chromosomal microarray (CMA) was later performed, which confirmed Aicardi syndrome (3q21.3–21.1 microdeletion). In one case, postnatally, the test found Wiedemann–Rautenstrauch syndrome. In other cases, it found X ring, Di George syndrome, 46,XY,del(13q)(q13q22) and 46,XX,del(5p)(p13) (Cri-du-chat syndrome). Edwards syndrome was diagnosed in six cases, and Patau syndrome in one case. Conclusions: We found that corpus callosum abnormalities are often linked to chromosomal problems. We recommend that a cytogenetic test be performed in all cases to rule out inherited diseases. Also, the long-term outcome does not just depend on the disease’s severity and the associated other conditions, and hence proper follow-up and early development are also key. For this reason, close teamwork between neonatology, developmental neurology, and pediatric surgery is vital. Full article
(This article belongs to the Special Issue New Trends in Perinatal and Pediatric Epidemiology)
Show Figures

Figure 1

10 pages, 1362 KB  
Article
From Alpha-Thalassemia Trait to NPRL3-Related Epilepsy: A Genomic Diagnostic Odyssey
by Maryam Nabavi Nouri, Lama Alandijani, Kalene van Engelen, Soumitra Tole, Emilie Lalonde and Tugce B. Balci
Genes 2024, 15(7), 836; https://doi.org/10.3390/genes15070836 - 25 Jun 2024
Viewed by 2923
Abstract
Introduction: The NPRL3 gene is a critical component of the GATOR1 complex, which negatively regulates the mTORC1 pathway, essential for neurogenesis and brain development. Located on chromosome 16p13.3, NPRL3 is situated near the α-globin gene cluster. Haploinsufficiency of NPRL3, either by [...] Read more.
Introduction: The NPRL3 gene is a critical component of the GATOR1 complex, which negatively regulates the mTORC1 pathway, essential for neurogenesis and brain development. Located on chromosome 16p13.3, NPRL3 is situated near the α-globin gene cluster. Haploinsufficiency of NPRL3, either by deletion or a pathogenic variant, is associated with a variable phenotype of focal epilepsy, with or without malformations of cortical development, with known decreased penetrance. Case Description: This work details the diagnostic odyssey of a neurotypical 10-year-old boy who presented at age 2 with unusual nocturnal episodes and a history of microcytic anemia, as well as a review of the existing literature on NPRL3-related epilepsy, with an emphasis on individuals with deletions who also present with α-thalassemia trait. The proband’s episodes were mistaken for gastroesophageal reflux disease for several years. He had molecular testing for his α-thalassemia trait and was noted to carry a deletion encompassing the regulatory region of the α-thalassemia gene cluster. Following the onset of overt focal motor seizures, genetic testing revealed a heterozygous loss of NPRL3, within a 106 kb microdeletion on chromosome 16p13.3, inherited from his mother. This deletion encompassed the entire NPRL3 gene, which overlaps the regulatory region of the α-globin gene cluster, giving him the dual diagnosis of NPRL3-related epilepsy and α-thalassemia trait. Brain imaging postprocessing showed left hippocampal sclerosis and mid-posterior para-hippocampal focal cortical dysplasia, leading to the consideration of epilepsy surgery. Conclusions: This case underscores the necessity of early and comprehensive genetic assessments in children with epilepsy accompanied by systemic features, even in the absence of a family history of epilepsy or a developmental delay. Recognizing phenotypic overlaps is crucial to avoid diagnostic delays. Our findings also highlight the impact of disruptions in regulatory regions in genetic disorders: any individual with full gene deletion of NPRL3 would have, at a minimum, α-thalassemia trait, due to the presence of the major regulatory element of α-globin genes overlapping the gene’s introns. Full article
Show Figures

Figure 1

9 pages, 1558 KB  
Case Report
An Unclassified Deletion Involving the Proximal Short Arm of Chromosome 10: A New Syndrome?
by Graziano Santoro, Mariarosaria Incoronato, Edoardo Spagnoli, Ilaria Gabbiato, Simona Contini, Marta Piovan, Maurizio Ferrari, Cristina Lapucci and Daniela Zuccarello
Genes 2024, 15(6), 650; https://doi.org/10.3390/genes15060650 - 21 May 2024
Viewed by 2436
Abstract
To date, only 13 studies have described patients with large overlapping deletions of 10p11.2-p12. These individuals shared a common phenotype characterized by intellectual disability, developmental delay, distinct facial dysmorphic features, abnormal behaviour, visual impairment, cardiac malformation, and cryptorchidism in males. Molecular cytogenetic analysis [...] Read more.
To date, only 13 studies have described patients with large overlapping deletions of 10p11.2-p12. These individuals shared a common phenotype characterized by intellectual disability, developmental delay, distinct facial dysmorphic features, abnormal behaviour, visual impairment, cardiac malformation, and cryptorchidism in males. Molecular cytogenetic analysis revealed that the deletion in this chromosomal region shares a common smallest region of overlap (SRO) of 80 kb, which contains only the WAC gene (WW-domain-containing adaptor with coiled coil). In this clinical case report, we report a 5-year-old girl, born from non-consanguineous parents, with a 10p11.22p11.21 microdeletion. She presents clinical features that overlap with other patients described in the literature, such as dysmorphic traits, speech delay, and behavioural abnormalities (hyperactivity), even though the WAC gene is not involved in the microdeletion. Our results are the first to highlight that the deletion described here represents a contiguous gene syndrome that is enough to explain the distinct phenotype but partially overlaps with the previous cases reported in the literature, even though the same genes are not involved. In particular, in this study, we speculate about the role of the WAC gene that seems to be associated with normal motor development. In fact, we found that our patient is the only one described in the literature with a large deletion in the 10p11.22p11.21 region without the involvement of the WAC gene deletion, and, interestingly, the patient did not have motor delay. Full article
(This article belongs to the Special Issue Current Diagnostics for Rare and Ultrarare Diseases)
Show Figures

Figure 1

13 pages, 1355 KB  
Article
Diversity of Clinical and Molecular Characteristics in Korean Patients with 16p11.2 Microdeletion Syndrome
by Ji Yoon Han, Yong Gon Cho, Dae Sun Jo and Joonhong Park
Int. J. Mol. Sci. 2024, 25(1), 253; https://doi.org/10.3390/ijms25010253 - 23 Dec 2023
Cited by 1 | Viewed by 1863
Abstract
16p11.2 copy number variations (CNVs) are increasingly recognized as one of the most frequent genomic disorders, and the 16p11.2 microdeletion exhibits broad phenotypic variability and a diverse clinical phenotype. We describe the neurodevelopmental course and discordant clinical phenotypes observed within and between individuals [...] Read more.
16p11.2 copy number variations (CNVs) are increasingly recognized as one of the most frequent genomic disorders, and the 16p11.2 microdeletion exhibits broad phenotypic variability and a diverse clinical phenotype. We describe the neurodevelopmental course and discordant clinical phenotypes observed within and between individuals with identical 16p11.2 microdeletions. An analysis with the CytoScan Dx Assay was conducted on a GeneChip System 3000Dx, and the sample signals were then compared to a reference set using the Chromosome Analysis Suite software version 3.1. Ten patients from six separate families were identified with 16p11.2 microdeletions. Nine breakpoints (BPs) 4-5 and one BP2-5 of the 16p11.2 microdeletion were identified. All patients with 16p11.2 microdeletions exhibited developmental delay and/or intellectual disability. Sixty percent of patients presented with neonatal hypotonia, but muscle weakness improved with age. Benign infantile epilepsy manifested between the ages of 7–10 months (a median of 8 months) in six patients (60%). Vertebral dysplasia was observed in two patients (20%), and mild scoliosis was noted in three patients. Sixty percent of patients were overweight. We present six unrelated Korean families, among which identical 16p11.2 microdeletions resulted in diverse developmental trajectories and discordant phenotypes. The clinical variability and incomplete penetrance observed in individuals with 16p11.2 microdeletions remain unclear, posing challenges to accurate clinical interpretation and diagnosis. Full article
Show Figures

Figure 1

14 pages, 1409 KB  
Article
Expanding Genotype/Phenotype Correlation in 2p11.2-p12 Microdeletion Syndrome
by Alessandra Ferrario, Nijas Aliu, Claudine Rieubland, Sébastian Vuilleumier, Hilary M. Grabe and Pascal Escher
Genes 2023, 14(12), 2222; https://doi.org/10.3390/genes14122222 - 16 Dec 2023
Cited by 1 | Viewed by 2422
Abstract
Chromosomal abnormalities on the short arm of chromosome 2 in the region p11.2 have been associated with developmental delay, intellectual disability, facial anomalies, abnormal ears, skeletal and genital malformations. Here we describe a patient with a de novo interstitial heterozygous microdeletion on the [...] Read more.
Chromosomal abnormalities on the short arm of chromosome 2 in the region p11.2 have been associated with developmental delay, intellectual disability, facial anomalies, abnormal ears, skeletal and genital malformations. Here we describe a patient with a de novo interstitial heterozygous microdeletion on the short arm of chromosome 2 in the region p11.2-p12. He presents with facial dysmorphism characterized by a broad and low root of the nose and low-set protruding ears. Clinical examinations during follow-up visits revealed congenital pendular nystagmus, decreased visual acuity and psychomotor development disorder including intellectual disability. The heterozygous 5 Mb-microdeletion was characterized by an array CGH (Comparative Genomic Hybridization) analysis. In the past two decades, nine patients with microdeletions in this region have been identified by array CGH analysis and were reported in the literature. All these patients show psychomotor development disorder and outer and/or inner ear anomalies. In addition, most of the patients have mild to severe intellectual disability and show facial malformations. We reviewed the literature on PubMed and OMIM using the gene/loci names as search terms in an attempt to identify correlations between genes located within the heterozygous microdeletion and the clinical phenotype of the patient, in order to define a recognizable phenotype for the 2p11.2p12 microdeletion syndrome. We discuss additional symptoms that are not systematically present in all patients and contribute to a heterogeneous clinical presentation of this microdeletion syndrome. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

10 pages, 1346 KB  
Case Report
Unusual Trisomy X Phenotype Associated with a Concurrent Heterozygous 16p11.2 Deletion: Importance of an Integral Approach for Proper Diagnosis
by Ariadna González-del Angel, Miguel Angel Alcántara-Ortigoza, Sandra Ramos, Carolina Algara-Ramírez, Marco Antonio Hernández-Hernández and Lorenza Saenger-Rivas
Int. J. Mol. Sci. 2023, 24(19), 14643; https://doi.org/10.3390/ijms241914643 - 27 Sep 2023
Cited by 1 | Viewed by 3436
Abstract
Trisomy X is the most frequent sex chromosome anomaly in women, but it is often underdiagnosed postnatally because most patients do not show any clinical manifestation. It is estimated that only 10% of patients with trisomy X are diagnosed by clinical findings. Thus, [...] Read more.
Trisomy X is the most frequent sex chromosome anomaly in women, but it is often underdiagnosed postnatally because most patients do not show any clinical manifestation. It is estimated that only 10% of patients with trisomy X are diagnosed by clinical findings. Thus, it has been proposed that the clinical spectrum is not yet fully delimited, and additional uncommon or atypical clinical manifestations could be related to this entity. The present report describes a female carrying trisomy X but presenting atypical manifestations, including severe intellectual disability, short stature, thymus hypoplasia, and congenital hypothyroidism (CH). These clinical findings were initially attributed to trisomy X. However, chromosome microarray analysis (CMA) subsequently revealed that the patient also bears a heterozygous 304-kb deletion at 16p11.2. This pathogenic copy-number variant (CNV) encompasses 13 genes, including TUFM. Some authors recommend that when a phenotype differs from that described for an identified microdeletion, the presence of pathogenic variants in the non-deleted allele should be considered to assess for an autosomal recessive disorder; thus, we used a panel of 697 genes to rule out a pathogenic variant in the non-deleted TUFM allele. We discuss the possible phenotypic modifications that might be related to an additional CNV in individuals with sex chromosome aneuploidy (SCA), as seen in our patient. The presence of karyotype-demonstrated trisomy X and CMA-identified 16p11.2 deletion highlights the importance of always correlating a patient’s clinical phenotype with the results of genetic studies. When the phenotype includes unusual manifestations and/or exhibits discrepancies with that described in the literature, as exemplified by our patient, a more extensive analysis should be undertaken to enable a correct diagnosis that will support proper management, genetic counseling, and medical follow-up. Full article
(This article belongs to the Special Issue Advances in Human Hereditary Diseases: Genetics and Genomics Research)
Show Figures

Figure 1

Back to TopTop