Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 8541 KiB  
Article
Preparation, Thermal Behavior, and Conformational Stability of HMX/Cyclopentanone Cocrystallization
by Yuting Tao, Shaohua Jin, Tongbin Wang, Chongchong She, Kun Chen, Junfeng Wang and Lijie Li
Crystals 2024, 14(8), 711; https://doi.org/10.3390/cryst14080711 - 8 Aug 2024
Cited by 1 | Viewed by 1249
Abstract
The cocrystallization of 1,3,5,7-tetranitro-1,3,5,7-tetrazolidine (HMX) with cyclopentanone was achieved via a controlled cooling method, followed by comprehensive characterization that confirmed the α-configuration of HMX within the cocrystal. The enthalpy of dissolution of HMX in cyclopentanone was assessed across a range of temperatures using [...] Read more.
The cocrystallization of 1,3,5,7-tetranitro-1,3,5,7-tetrazolidine (HMX) with cyclopentanone was achieved via a controlled cooling method, followed by comprehensive characterization that confirmed the α-configuration of HMX within the cocrystal. The enthalpy of dissolution of HMX in cyclopentanone was assessed across a range of temperatures using a C-80 Calvert microcalorimeter, revealing an endothermic dissolution process. Subsequently, the molar enthalpy of dissolution was determined, and kinetic equations describing the dissolution rate were derived for temperatures of 303.15, 308.15, 313.15, 318.15, and 323.15 K as follows: dα⁄dt = 10−2.46(1 − α)0.35, dα⁄dt = 10−2.19(1 − α)0.79, dα⁄dt = 10−1.76(1 − α)1.32, dα⁄dt = 10−1.86(1 − α)0.46, and dα⁄dt = 10−2.02(1 − α)0.70, respectively. Additionally, molecular dynamics (MD) simulations investigated the intermolecular interactions of the HMX/cyclopentanone cocrystallization process, demonstrating a transformation of HMX from β- to α-conformation within the cyclopentanone environment. Theoretical calculations performed at the ωB97XD/6-311G(d,p) level affirmed that α-HMX exhibited stronger binding affinity toward cyclopentanone compared to β-HMX, corroborating experimental findings. A comprehensive understanding of the dissolution behavior of HMX in cyclopentanone holds significant implications for crystal growth methodologies and cocrystallization processes. Such insights are pivotal for optimizing HMX dissolution processes and offer valuable perspectives for developing and designing advanced energetic materials. Full article
(This article belongs to the Special Issue Co-Crystals and Polymorphic Transition in Energetic Materials)
Show Figures

Graphical abstract

13 pages, 2294 KiB  
Article
Intermolecular Vibration Energy Transfer Process in Two CL-20-Based Cocrystals Theoretically Revealed by Two-Dimensional Infrared Spectra
by Hai-Chao Ren, Lin-Xiang Ji, Tu-Nan Chen, Xian-Zhen Jia, Rui-Peng Liu, Xiu-Qing Zhang, Dong-Qing Wei, Xiao-Feng Wang and Guang-Fu Ji
Molecules 2022, 27(7), 2153; https://doi.org/10.3390/molecules27072153 - 26 Mar 2022
Cited by 9 | Viewed by 3065
Abstract
Inspired by the recent cocrystallization and theory of energetic materials, we theoretically investigated the intermolecular vibrational energy transfer process and the non-covalent intermolecular interactions between explosive compounds. The intermolecular interactions between 2,4,6-trinitrotoluene (TNT) and 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) and between 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX) and CL-20 were [...] Read more.
Inspired by the recent cocrystallization and theory of energetic materials, we theoretically investigated the intermolecular vibrational energy transfer process and the non-covalent intermolecular interactions between explosive compounds. The intermolecular interactions between 2,4,6-trinitrotoluene (TNT) and 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) and between 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX) and CL-20 were studied using calculated two-dimensional infrared (2D IR) spectra and the independent gradient model based on the Hirshfeld partition (IGMH) method, respectively. Based on the comparison of the theoretical infrared spectra and optimized geometries with experimental results, the theoretical models can effectively reproduce the experimental geometries. By analyzing cross-peaks in the 2D IR spectra of TNT/CL-20, the intermolecular vibrational energy transfer process between TNT and CL-20 was calculated, and the conclusion was made that the vibrational energy transfer process between CL-20 and TNTII (TNTIII) is relatively slower than between CL-20 and TNTI. As the vibration energy transfer is the bridge of the intermolecular interactions, the weak intermolecular interactions were visualized using the IGMH method, and the results demonstrate that the intermolecular non-covalent interactions of TNT/CL-20 include van der Waals (vdW) interactions and hydrogen bonds, while the intermolecular non-covalent interactions of HMX/CL-20 are mainly comprised of vdW interactions. Further, we determined that the intermolecular interaction can stabilize the trigger bond in TNT/CL-20 and HMX/CL-20 based on Mayer bond order density, and stronger intermolecular interactions generally indicate lower impact sensitivity of energetic materials. We believe that the results obtained in this work are important for a better understanding of the cocrystal mechanism and its application in the field of energetic materials. Full article
Show Figures

Figure 1

15 pages, 3349 KiB  
Article
Exploring the Distinct Distribution of Archaeal Communities in Sites Contaminated with Explosives
by Yash Pal, Shanmugam Mayilraj and Srinivasan Krishnamurthi
Biomolecules 2022, 12(4), 489; https://doi.org/10.3390/biom12040489 - 23 Mar 2022
Cited by 7 | Viewed by 2586
Abstract
Most of the research on bioremediation and estimation of microbial diversity in waste contaminated sites is focused on the domain Bacteria, whereas details on the relevance of Archaea are still lacking. The present study examined the archaeal diversity and predicted metabolic pathways [...] Read more.
Most of the research on bioremediation and estimation of microbial diversity in waste contaminated sites is focused on the domain Bacteria, whereas details on the relevance of Archaea are still lacking. The present study examined the archaeal diversity and predicted metabolic pathways in two discrete sites (SITE1 and SITE2) contaminated with explosives (RDX and HMX) by amplicon-targeted sequencing of 16S rRNA genes. In total, 14 soil samples were processed, and 35,758 OTUs were observed, among which 981 OTUs were classified as Archaea, representing ~2.7% of the total microbial diversity in our samples. The majority of OTUs belonged to phyla Euryarchaeota (~49%), Crenarchaeota (~24%), and Thaumarchaeota (~23%), while the remaining (~4%) OTUs were affiliated to Candidatus Parvarchaeota, Candidatus Aenigmarchaeota, and Candidatus Diapherotrites. The comparative studies between explosives contaminated and agricultural soil samples (with no history of explosives contamination) displayed significant differences between the compositions of the archaeal communities. Further, the metabolic pathways pertaining to xenobiotic degradation were presumably more abundant in the contaminated sites. Our data provide a first comprehensive report of archaeal communities in explosives contaminated sites and their putative degradation role in such ecosystems which have been as yet unexplored. Full article
(This article belongs to the Collection Archaea: Diversity, Metabolism and Molecular Biology)
Show Figures

Figure 1

26 pages, 23730 KiB  
Review
Nanostructured Luminescent Micelles: Efficient “Functional Materials” for Sensing Nitroaromatic and Nitramine Explosives
by Shashikana Paria, Prasenjit Maity, Rafia Siddiqui, Ranjan Patra, Shubhra Bikash Maity and Atanu Jana
Photochem 2022, 2(1), 32-57; https://doi.org/10.3390/photochem2010004 - 10 Jan 2022
Cited by 11 | Viewed by 4361
Abstract
Luminescent micelles are extensively studied molecular scaffolds used in applied supramolecular chemistry. These are particularly important due to their uniquely organized supramolecular structure and chemically responsive physical and optical features. Various luminescent tags can be incorporated with these amphiphilic micelles to create efficient [...] Read more.
Luminescent micelles are extensively studied molecular scaffolds used in applied supramolecular chemistry. These are particularly important due to their uniquely organized supramolecular structure and chemically responsive physical and optical features. Various luminescent tags can be incorporated with these amphiphilic micelles to create efficient luminescent probes that can be utilized as “chemical noses” (sensors) for toxic and hazardous materials, bioimaging, drug delivery and transport, etc. Due to their amphiphilic nature and well-defined reorganized self-assembled geometry, these nano-constructs are desirable candidates for size and shape complementary guest binding or sensing a specific analyte. A large number of articles describing micellar fluorogenic probes are reported, which are used for cation/anion sensing, amino acid and protein sensing, drug delivery, and chemo-sensing. However, this particular review article critically summarizes the sensing application of nitroaromatic (e.g., trinitrotoluene (TNT), trinitrobenzene (TNB), trinitrophenol (TNP), dinitrobenzene (DNB), etc.) and nitramine explosives (e.g., 1,3,5-trinitro-1,3,5-triazinane, trivially named as “research department explosive” (RDX), 1,3,5,7-tetranitro-1,3,5,7-tetrazocane, commonly known as “high melting explosive” (HMX) etc.). A deeper understanding on these self-assembled luminescent “functional materials” and the physicochemical behavior in the presence of explosive analytes might be helpful to design the next generation of smart nanomaterials for forensic applications. This review article will also provide a “state-of-the-art” coverage of research involving micellar–explosive adducts demonstrating the intermolecular charge/electron transfer (CT/ET) process operating within the host–guest systems. Full article
Show Figures

Graphical abstract

21 pages, 6466 KiB  
Article
Degradation of High Energy Materials Using Biological Reduction: A Rational Way to Reach Bioremediation
by Stephanie Aguero and Raphaël Terreux
Int. J. Mol. Sci. 2019, 20(22), 5556; https://doi.org/10.3390/ijms20225556 - 7 Nov 2019
Cited by 6 | Viewed by 3634
Abstract
Explosives molecules have been widely used since World War II, leading to considerable contamination of soil and groundwater. Recently, bioremediation has emerged as an environmentally friendly approach to solve such contamination issues. However, the 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX) explosive, which has very low solubility in [...] Read more.
Explosives molecules have been widely used since World War II, leading to considerable contamination of soil and groundwater. Recently, bioremediation has emerged as an environmentally friendly approach to solve such contamination issues. However, the 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX) explosive, which has very low solubility in water, does not provide satisfying results with this approach. In this study, we used a rational design strategy for improving the specificity of the nitroreductase from E. Cloacae (PDB ID 5J8G) toward HMX. We used the Coupled Moves algorithm from Rosetta to redesign the active site around HMX. Molecular Dynamics (MD) simulations and affinity calculations allowed us to study the newly designed protein. Five mutations were performed. The designed nitroreductase has a better fit with HMX. We observed more H-bonds, which productively stabilized the HMX molecule for the mutant than for the wild type enzyme. Thus, HMX’s nitro groups are close enough to the reductive cofactor to enable a hydride transfer. Also, the HMX affinity for the designed enzyme is better than for the wild type. These results are encouraging. However, the total reduction reaction implies numerous HMX derivatives, and each of them has to be tested to check how far the reaction can’ go. Full article
Show Figures

Graphical abstract

14 pages, 2628 KiB  
Article
Core-Shell Structured HMX@Polydopamine Energetic Microspheres: Synergistically Enhanced Mechanical, Thermal, and Safety Performances
by Congmei Lin, Feiyan Gong, Zhijian Yang, Xu Zhao, Yubin Li, Chengcheng Zeng, Jiang Li and Shaoyun Guo
Polymers 2019, 11(3), 568; https://doi.org/10.3390/polym11030568 - 26 Mar 2019
Cited by 74 | Viewed by 6627
Abstract
The solid–solid phase transition, poor mechanical properties, and high sensitivity has impeded further practical applications of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX) based polymer bonded explosives (PBXs). To address these issues together, a facile and effective route was employed to achieve a coating of polydopamine (PDA) on [...] Read more.
The solid–solid phase transition, poor mechanical properties, and high sensitivity has impeded further practical applications of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX) based polymer bonded explosives (PBXs). To address these issues together, a facile and effective route was employed to achieve a coating of polydopamine (PDA) on the surface of explosive crystals via in situ polymerization of dopamine. Additionally, PBXs based on HMX@PDA microcapsules were prepared with a fluoropolymer as polymer binder. Improved storage modulus, static mechanical strength and toughness, and creep resistance has been achieved in as-prepared PDA modified PBXs. The β-δ phase transition temperature of as-obtained PBXs based on conventional HMX (C-HMX)@PDA was improved by 16.3 °C. The friction sensitivity of the C-HMX based PBXs showed a dramatic drop after the PDA coating. A favorable balance proposed in this paper among thermal stability, mechanical properties, and sensitivity was achieved for C-HMX based PBXs with the incorporation of PDA. Full article
(This article belongs to the Special Issue Bio-Based Polymers for Engineered Green Materials)
Show Figures

Figure 1

11 pages, 2663 KiB  
Article
Nanoporous Silica-Dye Microspheres for Enhanced Colorimetric Detection of Cyclohexanone
by Zheng Li
Chemosensors 2018, 6(3), 34; https://doi.org/10.3390/chemosensors6030034 - 13 Aug 2018
Cited by 11 | Viewed by 5061
Abstract
Forensic detection of non-volatile nitro explosives poses a difficult analytical challenge. A colorimetric sensor comprising of ultrasonically prepared silica-dye microspheres was developed for the sensitive gas detection of cyclohexanone, a volatile marker of explosives 1,3,5-trinitro-1,3,5-triazinane (RDX) and 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX). The silica-dye composites were [...] Read more.
Forensic detection of non-volatile nitro explosives poses a difficult analytical challenge. A colorimetric sensor comprising of ultrasonically prepared silica-dye microspheres was developed for the sensitive gas detection of cyclohexanone, a volatile marker of explosives 1,3,5-trinitro-1,3,5-triazinane (RDX) and 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX). The silica-dye composites were synthesized from the hydrolysis of ultrasonically sprayed organosiloxanes under mild heating conditions (150 °C), which yielded microspherical, nanoporous structures with high surface area (~300 m2/g) for gas exposure. The sensor inks were deposited on cellulose paper and given sensitive colorimetric responses to trace the amount of cyclohexanone vapors even at sub-ppm levels, with a detection limit down to ~150 ppb. The sensor showed high chemical specificity towards cyclohexanone against humidity and other classes of common solvents, including ethanol, acetonitrile, ether, ethyl acetate, and ammonia. Paper-based colorimetric sensors with hierarchical nanostructures could represent an alternative sensing material for practical applications in the detection of explosives. Full article
(This article belongs to the Special Issue Hierarchical Nanostructures for Gas Sensors)
Show Figures

Figure 1

Back to TopTop