Nanostructured Luminescent Micelles: Efficient “Functional Materials” for Sensing Nitroaromatic and Nitramine Explosives
Abstract
:1. Introduction
2. Luminescent Micellar Systems
2.1. Luminescent Micellar Systems for Metal Ion Sensing
2.2. Luminescent Micellar Systems for Anion Sensing
2.3. Luminescent Micellar Systems for Bio Sensing
2.4. Luminescent Micellar Systems for Explosive Sensing
2.4.1. Hydrophobic Organic Fluorophore Encapsulated Micellar Systems
2.4.2. Aggregation-Induced Emission (AIE)-Based Luminescent Micellar Systems for Explosive Sensing
2.4.3. Ratiometric Luminescence Sensing of Explosives by Micellar Structure Containing Two Luminophores
3. Conclusions and Future Scope
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mancin, F.; Scrimin, P.; Tecilla, P.; Tonellato, U. Amphiphilic metalloaggregates: Catalysis, transport, and sensing. Coord. Chem. Rev. 2009, 253, 2150–2165. [Google Scholar] [CrossRef]
- Mancin, F.; Rampazzo, E.; Tecilla, P.; Tonellato, U. Self-assembled fluorescent chemosensors. Chem. Eur. J. 2006, 12, 1844–1854. [Google Scholar] [CrossRef] [PubMed]
- Pallavicini, P.; Diaz-Fernandez, Y.A.; Pasotti, L. Micelles as nanosized containers for the self-assembly of multicomponent fluorescent sensors. Coord. Chem. Rev. 2009, 253, 2226–2240. [Google Scholar] [CrossRef]
- Dey, N.; Bhattacharya, S. A Glimpse of Our Journey into the Design of Optical Probes in Self-assembled Surfactant Aggregates. Chem. Rec. 2016, 16, 1934–1949. [Google Scholar] [CrossRef]
- Fan, J.; Ding, L.; Fang, Y. Surfactant aggregates encapsulating and modulating: An effective way to generate selective and discriminative fluorescent sensors. Langmuir 2019, 35, 326–341. [Google Scholar] [CrossRef]
- Kumar, R.; Sharma, A.; Singh, H.; Suating, P.; Kim, H.S.; Sunwoo, K.; Shim, I.; Gibb, B.C.; Kim, J.S. Revisiting Fluorescent Calixarenes: From Molecular Sensors to Smart Materials. Chem. Rev. 2019, 119, 9657–9721. [Google Scholar] [CrossRef] [PubMed]
- You, L.; Zha, D.; Anslyn, E.V. Recent Advances in Supramolecular Analytical Chemistry Using Optical Sensing. Chem. Rev. 2015, 115, 7840–7892. [Google Scholar] [CrossRef]
- Grandini, P.; Mancin, F.; Tecilla, P.; Scrimin, P.; Tonellato, U. Exploiting the Self-Assembly Strategy for the Design of Selective CuII Ion Chemosensors. Angew. Chem. Int. Ed. 1999, 38, 3061–3064. [Google Scholar] [CrossRef]
- Berton, M.; Mancin, F.; Stocchero, G.; Tecilla, P.; Tonellato, U. Self-Assembling in Surfactant Aggregates: An Alternative Way to the Realization of Fluorescence Chemosensors for Cu(II) Ions. Langmuir 2001, 17, 7521–7528. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Gulyani, A. First report of Zn2+ sensing exclusively at mesoscopic interfaces. Chem. Commun. 2003, 39, 1158–1159. [Google Scholar] [CrossRef]
- Gujar, V.; Sangale, V.; Ottoor, D. A Selective Turn off Fluorescence Sensor Based on Propranolol-SDS Assemblies for Fe3+ Detection. J. Fluoresc. 2019, 29, 91–100. [Google Scholar] [CrossRef]
- Qiao, M.; Fan, J.; Ding, L.; Fang, Y. Fluorescent Ensemble Sensors and Arrays Based on Surfactant Aggregates Encapsulating Pyrene-Derived Fluorophores for Differentiation Applications. ACS Appl. Mater. Interfaces 2021, 13, 18395–18412. [Google Scholar] [CrossRef] [PubMed]
- Ábalos, T.; Royo, S.; Martínez-Máñez, R.; Sancenón, F.; Soto, J.; Costero, A.M.; Gil, S.; Parra, M. Surfactant-assisted chromogenic sensing of cyanide in water. New J. Chem. 2009, 33, 1641–1645. [Google Scholar] [CrossRef]
- Hu, R.; Feng, J.; Hu, D.; Wang, S.; Li, S.; Li, Y.; Yang, G. A Rapid Aqueous Fluoride Ion Sensor with Dual Output Modes. Angew. Chem. Int. Ed. 2010, 49, 4915–4918. [Google Scholar] [CrossRef] [PubMed]
- Riis-Johannessen, T.; Severin, K. A Micelle-Based Chemosensing Ensemble for the Fluorimetric Detection of Chloride in Water. Chem. Eur. J. 2010, 16, 8291–8295. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Qian, J.; Teng, Z.; Cao, T.; Gong, D.; Liu, W.; Cao, Y.; Qin, W.; Guo, H.; Iqbal, A. Self-Assembling Ratiometric Fluorescent Micelle Nanoprobe for Tyrosinase Detection in Living Cells. ACS Appl. Nano Mater. 2019, 2, 3819–3827. [Google Scholar] [CrossRef]
- Jang, Y.J.; Kim, B.; Roh, E.; Kim, H.; Lee, S.H. Micellization-induced amplified fluorescence response for highly sensitive detection of heparin in serum. Sci. Rep. 2020, 10, 9438. [Google Scholar] [CrossRef]
- Fan, J.; Ding, L.; Bo, Y.; Fang, Y. Fluorescent Ensemble Based on Bispyrene Fluorophore and Surfactant Assemblies: Sensing and Discriminating Proteins in Aqueous Solution. ACS Appl. Mater. Interfaces 2015, 7, 22487–22496. [Google Scholar] [CrossRef]
- Xu, Y.; Malkovskiy, A.; Wang, Q.; Pang, Y. Molecular assembly of a squaraine dye with cationic surfactant and nucleotides: Its impact on aggregation and fluorescence response. Org. Biomol. Chem. 2011, 9, 2878–2884. [Google Scholar] [CrossRef]
- Zhang, P.; Zhu, M.; Luo, H.; Zhang, Q.; Guo, L.; Li, Z.; Jiang, Y. Aggregation-Switching Strategy for Promoting Fluorescent Sensing of Biologically Relevant Species: A Simple Near-Infrared Cyanine Dye Highly Sensitive and Selective for ATP. Anal. Chem. 2017, 89, 6210–6215. [Google Scholar] [CrossRef]
- Hughes, A.D.; Glenn, I.C.; Patrick, A.D.; Ellington, A.; Anslyn, E.V. A Pattern Recognition Based Fluorescence Quenching Assay for the Detection and Identification of Nitrated Explosive Analytes. Chem. Eur. J. 2008, 14, 1822–1827. [Google Scholar] [CrossRef]
- Ding, L.; Bai, Y.; Cao, Y.; Ren, G.; Blanchard, G.J.; Fang, Y. Micelle-Induced Versatile Sensing Behavior of Bispyrene-Based Fluorescent Molecular Sensor for Picric Acid and PYX explosives. Langmuir 2014, 30, 7645–7653. [Google Scholar] [CrossRef] [PubMed]
- Maity, P.; Bhatt, A.; Agrawal, B.; Jana, A. Pt(II)C^N^N-Based Luminophore−Micelle Adducts for Sensing Nitroaromatic Explosives. Langmuir 2017, 33, 4291–4300. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.-H.; Choi, J.-H.; Cho, D.-G. Simple Pyrene Derivatives as Fluorescence Sensors for TNT and RDX in Micelles. Bull. Korean Chem. Soc. 2014, 35, 3158–3162. [Google Scholar] [CrossRef] [Green Version]
- Kovalev, I.S.; Taniya, O.S.; Slovesnova, N.V.; Kim, G.A.; Santra, S.; Zyryanov, G.V.; Kopchuk, D.S.; Majee, A.; Charushin, V.N.; Chupakhin, O.N. Fluorescent Detection of 2,4-DNT and 2,4,6-TNT in Aqueous Media by Using Simple Water-Soluble Pyrene Derivatives. Chem. Asian. J. 2016, 11, 775–781. [Google Scholar] [CrossRef]
- Kovalev, I.S.; Taniya, O.S.; Kopchuk, D.S.; Giri, K.; Mukherjee, A.; Santra, S.; Majee, A.; Rahman, M.; Zyryanov, G.V.; Bakulev, V.A.; et al. 1-Hydroxypyrene-based micelle-forming sensors for the visual detection of RDX/TNG/PETN-based bomb plots in water. New J. Chem. 2018, 42, 19864–19871. [Google Scholar] [CrossRef]
- Li, W.; Zhou, H.; Nawaz, M.A.H.; Niu, N.; Yang, N.; Ren, J.; Yu, C. A perylene monoimide probe based fluorescent micelle sensor for the selective and sensitive detection of picric acid. Anal. Methods 2020, 12, 5353–5359. [Google Scholar] [CrossRef]
- Shanmugaraju, S.; Mukherjee, P.S. π-electron rich small molecule sensors for the recognition of nitroaromatics. Chem. Commun. 2015, 51, 16014–16032. [Google Scholar] [CrossRef] [PubMed]
- To, K.C.; Ben-Jaber, S.; Parkin, I.P. Recent Developments in the Field of Explosive Trace Detection. ACS Nano. 2020, 14, 10804–10833. [Google Scholar] [CrossRef]
- Clarke, S. The Hydrophobic Effect: Formation of Micelles and Biological Membranes, 2nd edition (Charles, T.J.). J. Chem. Educ. 1981, 58, A246. [Google Scholar] [CrossRef] [Green Version]
- Ramanathan, M.; Shrestha, L.K.; Mori, T.; Ji, Q.; Hill, J.P.; Ariga, K. Amphiphile Nanoarchitectonics: From Basic Physical Chemistry to Advanced Applications. Phys. Chem. Chem. Phys. 2013, 15, 10580–10611. [Google Scholar] [CrossRef]
- Peng, H.Q.; Niu, L.Y.; Chen, Y.Z.; Wu, L.Z.; Tung, C.H.; Yang, Q.Z. Biological Applications of Supramolecular Assemblies Designed for Excitation Energy Transfer. Chem. Rev. 2015, 115, 7502–7542. [Google Scholar] [CrossRef]
- Fernandez, Y.D.; Gramatges, A.P.; Amendola, V.; Foti, F.; Mangano, C.; Pallavicini, P.; Patroni, S. Using micelles for a new approach to fluorescent sensors for metal cations. Chem. Commun. 2004, 40, 1650–1651. [Google Scholar] [CrossRef]
- Nakahara, Y.; Kida, T.; Nakatsuji, Y.; Akashi, M. Fluorometric sensing of alkali metal and alkaline earth metal cations by novel photosensitive monoazacryptand derivatives in aqueous micellar solutions. Org. Biomol. Chem. 2005, 3, 1787–1794. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhong, Z. Detection of Hg2+ in Aqueous Solutions with a Foldamer-Based Fluorescent Sensor Modulated by Surfactant Micelles. Org. Lett. 2006, 8, 4715–4717. [Google Scholar] [CrossRef] [Green Version]
- Mallick, A.; Mandal, M.C.; Haldar, B.; Chakrabarty, A.; Das, P.; Chattopadhyay, N. Surfactant-Induced Modulation of Fluorosensor Activity: A Simple Way to Maximize the Sensor Efficiency. J. Am. Chem. Soc. 2006, 128, 3126–3127. [Google Scholar] [CrossRef] [PubMed]
- Pallavicini, P.; Diaz-Fernandez, Y.A.; Foti, F.; Mangano, C.; Patroni, S. Fluorescent Sensors for Hg2+ in Micelles: A New Approach that Transforms an ON–OFF into an OFF–ON Response as a Function of the Lipophilicity of the Receptor. Chem. Eur. J. 2007, 13, 178–187. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Qian, X.; Qian, J.; Xu, Y. Micelle-Induced Versatile Performance of Amphiphilic Intramolecular Charge-Transfer Fluorescent Molecular Sensors. Chem. Eur. J. 2007, 13, 7543–7552. [Google Scholar] [CrossRef] [PubMed]
- Avirah, R.R.; Jyothish, K.; Ramaiah, D. Dual-Mode Semisquaraine-Based Sensor for Selective Detection of Hg2+ in a Micellar Medium. Org. Lett. 2007, 9, 121–124. [Google Scholar] [CrossRef]
- Pallavicini, P.; Pasotti, L.; Patroni, S. Residual and exploitable fluorescence in micellar self-assembled ON-OFF sensors for copper(II). Dalton Trans. 2007, 36, 5670–5677. [Google Scholar] [CrossRef]
- Das, P.; Mallick, A.; Sarkar, D.; Chattopadhyay, N. Application of anionic micelle for dramatic enhancement in the quenching-based metal ion fluorosensing. J. Collo. Inter. Sci. 2008, 320, 9–14. [Google Scholar] [CrossRef]
- Ding, L.; Wang, S.; Liu, Y.; Cao, J.; Fang, Y. Bispyrene/surfactant assemblies as fluorescent sensor platform: Detection and identification of Cu2+ and Co2+ in aqueous solution. J. Mater. Chem. A 2013, 1, 8866–8875. [Google Scholar] [CrossRef]
- Kumari, N.; Dey, N.; Jha, S.; Bhattacharya, S. Ratiometric, Reversible, and Parts per Billion Level Detection of Multiple Toxic Transition Metal Ions Using a Single Probe in Micellar Media. ACS Appl. Mater. Interfaces 2013, 5, 2438–2445. [Google Scholar] [CrossRef] [PubMed]
- Sahu, S.; Mishra, A.; Krishnamoorthy, G. Specific site binding of metal ions on the intramolecular charge transfer fluorophore in micelles. Analyst 2013, 138, 5942–5948. [Google Scholar] [CrossRef] [PubMed]
- Kumari, N.; Jha, S.; Misra, S.K.; Bhattacharya, S. A Probe for the Selective and Parts-per-Billion-Level Detection of Copper(II) and Mercury(II) using a Micellar Medium and Its Utility in Cell Imaging. ChemPlusChem 2014, 79, 1059–1064. [Google Scholar] [CrossRef]
- Cao, Y.; Ding, L.; Hu, W.; Peng, J.; Fang, Y. A surfactant-modulated fluorescent sensor with pattern recognition capability: Sensing and discriminating multiple heavy metal ions in aqueous solution. J. Mater. Chem. A 2014, 2, 18488–18496. [Google Scholar] [CrossRef]
- Wang, S.; Ding, L.; Fan, J.; Wang, Z.; Fang, Y. Bispyrene/Surfactant-Assembly-Based Fluorescent Sensor Array for Discriminating Lanthanide Ions in Aqueous Solution. ACS Appl. Mater. Interfaces 2014, 6, 16156–16165. [Google Scholar] [CrossRef] [PubMed]
- Dwivedi, A.K.; Pandeeswar, M.; Govindaraju, T. Assembly Modulation of PDI Derivative as a Supramolecular Fluorescence Switching Probe for Detection of Cationic Surfactant and Metal Ions in Aqueous Media. ACS Appl. Mater. Interfaces 2014, 6, 21369–21379. [Google Scholar] [CrossRef]
- Bhowmick, R.; Alam, R.; Mistri, T.; Bhattacharya, D.; Karmakar, P.; Ali, M. Morphology-Directing Synthesis of Rhodamine-Based Fluorophore Microstructures and Application toward Extra- and Intracellular Detection of Hg2+. ACS Appl. Mater. Interfaces 2015, 7, 7476–7485. [Google Scholar] [CrossRef]
- Niikura, K.; Anslyn, E.V. Triton X-100 Enhances Ion-Pair-Driven Molecular Recognition in Aqueous Media. Further Work on a Chemosensor for Inositol Trisphosphate. J. Org. Chem. 2003, 68, 10156–10157. [Google Scholar]
- Jamkratoke, M.; Tumcharern, G.; Tuntulani, T.; Tomapatanaget, B. A Selective Spectrofluorometric Determination of Micromolar Level of Cyanide in Water Using Naphthoquinone Imidazole Boronic-Based Sensors and a Surfactant Cationic CTAB Micellar System. J. Fluoresc. 2011, 21, 1179–1187. [Google Scholar] [CrossRef] [PubMed]
- Calderón-Ortiz, L.K.; Täuscher, E.; Leite Bastos, E.; Görls, H.; Weiß, D.; Beckert, R. Hydroxythiazole-Based Fluorescent Probes for Fluoride Ion Detection. Eur. J. Org. Chem. 2012, 2535–2541. [Google Scholar] [CrossRef]
- Kumari, N.; Jha, S.; Bhattacharya, S. A Chemodosimetric Probe Based on a Conjugated Oxidized Bis-Indolyl System for Selective Naked-Eye Sensing of Cyanide Ions in Water. Chem. Asian J. 2012, 7, 2805–2812. [Google Scholar] [CrossRef] [PubMed]
- Dhar, S.; Rana, D.K.; Bhattacharya, S.C. Fluorescence Turn-on of a Naphthalimide Derivative by Anions in Cationic Micellar Network: An Overture towards a Simple Chemosensing Platform. Sens. Actuators B 2013, 176, 467–474. [Google Scholar] [CrossRef]
- Kumari, N.; Jha, S.; Bhattacharya, S. An Efficient Probe for Rapid Detection of Cyanide in Water at Parts per Billion Levels and Naked-Eye Detection of Endogenous Cyanide. Chem. Asian J. 2014, 9, 830–837. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Guo, C.; Chen, W.; Long, L.; Zhang, G.; Khashab, N.M.; Sessler, J.L. Removal of Anions from Aqueous Media by Means of a Thermoresponsive Calix[4]pyrrole Amphiphilic Polymer. Chem. Eur. J. 2018, 24, 15791–15795. [Google Scholar] [CrossRef]
- Turner, A.P.F. Biosensors: Sense and sensibility. Chem. Soc. Rev. 2013, 42, 3184–3196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Chen, G.; Jiang, H.; Li, Z.; Wang, X. Advances in nano-scaled biosensors for biomedical applications. Analyst 2013, 138, 4427–4435. [Google Scholar] [CrossRef]
- de Silva, A.P.; Gunaratne, H.Q.N.; Gunnlaugsson, T.; Huxley, A.J.M.; McCoy, C.P.; Rademacher, J.T.; Rice, T.E. Signaling Recognition Events with Fluorescent Sensors and Switches. Chem. Rev. 1997, 97, 1515–1566. [Google Scholar] [CrossRef]
- Suzuki, Y.; Yokoyama, K. Design and Synthesis of Intramolecular Charge Transfer-Based Fluorescent Reagents for the Highly-Sensitive Detection of Proteins. J. Am. Chem. Soc. 2005, 127, 17799–17802. [Google Scholar] [CrossRef]
- Royer, C.A. Probing Protein Folding and Conformational Transitions with Fluorescence. Chem. Rev. 2006, 106, 1769–1784. [Google Scholar] [CrossRef]
- Maiti, S.; Fortunati, I.; Ferrante, C.; Scrimin, P.; Prins, L.J. Dissipative self-assembly of vesicular nanoreactors. Nat. Chem. 2016, 8, 725–731. [Google Scholar] [CrossRef]
- Yan, H.; He, L.; Zhao, W.; Li, J.; Xiao, Y.; Yang, R.; Tan, W. Poly β-Cyclodextrin/TPdye Nanomicelle-based Two-Photon Nanoprobe for Caspase-3 Activation Imaging in Live Cells and Tissues. Anal. Chem. 2014, 86, 11440–11450. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.K.; Bandyopadhyay, P. A simple strategy for charge selective biopolymer sensing. Chem. Commun. 2011, 47, 8937–8939. [Google Scholar] [CrossRef] [PubMed]
- Green, A.M.; Abelt, C.J. Dual-Sensor Fluorescent Probes of Surfactant-Induced Unfolding of Human Serum Albumin. J. Phys. Chem. B 2015, 119, 3912–3919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, J.; Ding, L.; Hu, W.; Chen, X.; Chen, X.; Fang, Y. Ternary System Based on Fluorophore–Surfactant Assemblies—Cu2+ for Highly Sensitive and Selective Detection of Arginine in Aqueous Solution. Langmuir 2014, 30, 15364–15372. [Google Scholar] [CrossRef]
- Jiang, B.P.; Guo, D.S.; Liu, Y. Self-Assembly of Amphiphilic Perylene−Cyclodextrin Conjugate and Vapor Sensing for Organic Amines. J. Org. Chem. 2010, 75, 7258–7264. [Google Scholar] [CrossRef] [PubMed]
- Köstereli, Z.; Scopelliti, R.; Severin, K. Pattern-based sensing of aminoglycosides with fluorescent amphiphiles. Chem. Sci. 2014, 5, 2456–2460. [Google Scholar] [CrossRef]
- Lopez, F.; Cuomo, F.; Ceglie, A.; Ambrosone, L.; Palazzo, G. Quenching and Dequenching of Pyrene Fluorescence by Nucleotide Monophosphates in Cationic Micelles. J. Phys. Chem. B 2008, 112, 7338–7344. [Google Scholar] [CrossRef]
- Xu, Y.; Li, B.; Xiao, L.; Li, W.; Zhang, C.; Sun, S.; Pang, Y. The sphere-to-rod transition of squaraine-embedded micelles: A self-assembly platform displays a distinct response to cysteine and homocysteine. Chem. Commun. 2013, 49, 7732–7734. [Google Scholar] [CrossRef]
- Hu, W.; Ding, L.; Cao, J.; Liu, L.; Wei, Y.; Fang, Y. Protein Binding-Induced Surfactant Aggregation Variation: A New Strategy of Developing Fluorescent Aqueous Sensor for Proteins. ACS Appl. Mater. Interfaces 2015, 7, 4728–4736. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Zheng, D.; Huang, X.; Ding, L.; Xin, Y.; Fang, Y. A Single, Discriminative Sensor Based on Supramolecular Self-Assemblies of an Amphiphilic Cholic Acid-Modified Fluorophore for Identifying Multiple Proteins. Sens. Actuators B 2018, 263, 336–346. [Google Scholar] [CrossRef]
- Zhang, Y.; Cao, J.; Ding, L. Fluorescent Ensemble Based on Dansyl derivative/SDS Assemblies as Selective Sensor for Asp and Glu in Aqueous Solution. J. Photochem. Photobiol. A 2017, 333, 56–62. [Google Scholar] [CrossRef]
- Wang, H.; Zhuang, J.; Raghupathi, K.R.; Thayumanavan, S. A Supramolecular Dissociation Strategy for Protein Sensing. Chem. Commun. 2015, 51, 17265–17268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, W.; Smarsly, E.; Han, J.; Bender, M.; Seehafer, K.; Wacker, I.; Schröder, R.R.; Bunz, U.H.F. Truxene-Based Hyperbranched Conjugated Polymers: Fluorescent Micelles Detect Explosives in Water. ACS Appl. Mater. Interfaces 2017, 9, 3068–3074. [Google Scholar] [CrossRef]
- Yang, J.-S.; Swager, T.M. Porous Shape Persistent Fluorescent Polymer Films: An Approach to TNT Sensory Materials. J. Am. Chem. Soc. 1998, 120, 5321–5322. [Google Scholar] [CrossRef]
- Yang, J.-S.; Swager, T.M. Fluorescent Porous Polymer Films as TNT Chemosensors: Electronic and Structural Effects. J. Am. Chem. Soc. 1998, 120, 11864–11873. [Google Scholar] [CrossRef]
- Wang, X.; Guo, Y.; Li, D.; Chen, H.; Sun, R. Fluorescent amphiphilic cellulose nanoaggregates for sensing trace explosives in aqueous solution. Chem. Commun. 2012, 48, 5569–5571. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Chen, H.; Wang, X.; Sun, R. F127/conjugated polymers fluorescent micelles for trace detection of nitroaromatic explosives. Dye. Pigment. 2016, 125, 367–374. [Google Scholar] [CrossRef]
- Dey, N.; Samanta, S.K.; Bhattacharya, S. Selective and Efficient Detection of Nitro-Aromatic Explosives in Multiple Media including Water, Micelles, Organogel and Solid Support. ACS Appl. Mater. Interfaces 2013, 5, 8394–8400. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, C.; Zhou, J.; Kondo, T. Fluorescent micelles based on hydrophobically modified cationic cellulose for sensing trace explosives in aqueous solutions. J. Mater. Chem. C 2013, 1, 5756–5764. [Google Scholar] [CrossRef]
- Mei, J.; Leung, N.L.C.; Kwok, R.T.K.; Lam, J.W.Y.; Tang, B.Z. Aggregation-Induced Emission: Together We Shine, United We Soar! Chem. Rev. 2015, 115, 11718–11940. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhang, L.; Gao, H.; Zhu, F.; Ge, M.; Liang, G. Rapid detection of aromatic pollutants in water using swellable micelles of fluorescent polymers. Sens. Actuators B Chem. 2019, 283, 415–425. [Google Scholar] [CrossRef]
- Nabeel, F.; Rasheed, T.; Mahmood, M.F.; Khan, S.U.D. Hyperbranched copolymer based photoluminescent vesicular probe conjugated with tetraphenylethene: Synthesis, aggregation-induced emission and explosive detection. J. Mol. Liq. 2020, 308, 113034. [Google Scholar] [CrossRef]
- Sathish, V.; Ramdass, A.; Lu, Z.Z.; Velayudham, M.; Thanasekaran, P.; Lu, K.L.; Rajagopal, S. Aggregation-Induced Emission Enhancement in Alkoxy-Bridged Binuclear Rhenium(I) Complexes: Application as Sensor for Explosives and Interaction with Microheterogeneous Media. J. Phys. Chem. B 2013, 117, 14358–14366. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.H.; Kim, J.S.; Sessler, J.L. Small molecule-based ratiometric fluorescence probes for cations, anions, and biomolecules. Chem. Soc. Rev. 2015, 44, 4185–4191. [Google Scholar] [CrossRef] [Green Version]
- Dave, P.; Bhagat, B.; Agrawal, B.; Maity, P. A supramolecular strategy for ratiometric luminescence sensing of nitroaromatic explosives in water. Indian J. Chem. Sec. A 2020, 59, 1814–1821. [Google Scholar]
Analytes | HCP-1 [mol/L] | HCP-2 [mol/L] | HCP-1-M [mol/L] | HCP-2-M [mol/L] |
---|---|---|---|---|
NB | 6.8 × 10−5 | 1.2 × 10−4 | 2.4 × 10−6 | 8.3 × 10−6 |
3NA | 4.1 × 10−5 | 1.3 × 10−4 | 1.4 × 10−6 | 8.4 × 10−6 |
DNT | 8.6 × 10−6 | 1.7 × 10−5 | 9.5 × 10−7 | 4.2 × 10−6 |
DNB | 3.3 × 10−6 | 1.3 × 10−5 | 5.5 × 10−7 | 1.7 × 10−6 |
TNT | 2.8 × 10−6 | 9.4 × 10−6 | 5.3 × 10−7 | 1.6 × 10−6 |
NP | 2.2 × 10−6 | 5.1 × 10−6 | 5.2 × 10−7 | 1.5 × 10−6 |
PA | 1.2 × 10−6 | 2.4 × 10−6 | 2.8 × 10−7 | 9.0 × 10−7 |
2NA | 5.0 × 10−7 | 1.3 × 10−6 | 1.8 × 10−7 | 9.0 × 10−7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paria, S.; Maity, P.; Siddiqui, R.; Patra, R.; Maity, S.B.; Jana, A. Nanostructured Luminescent Micelles: Efficient “Functional Materials” for Sensing Nitroaromatic and Nitramine Explosives. Photochem 2022, 2, 32-57. https://doi.org/10.3390/photochem2010004
Paria S, Maity P, Siddiqui R, Patra R, Maity SB, Jana A. Nanostructured Luminescent Micelles: Efficient “Functional Materials” for Sensing Nitroaromatic and Nitramine Explosives. Photochem. 2022; 2(1):32-57. https://doi.org/10.3390/photochem2010004
Chicago/Turabian StyleParia, Shashikana, Prasenjit Maity, Rafia Siddiqui, Ranjan Patra, Shubhra Bikash Maity, and Atanu Jana. 2022. "Nanostructured Luminescent Micelles: Efficient “Functional Materials” for Sensing Nitroaromatic and Nitramine Explosives" Photochem 2, no. 1: 32-57. https://doi.org/10.3390/photochem2010004
APA StyleParia, S., Maity, P., Siddiqui, R., Patra, R., Maity, S. B., & Jana, A. (2022). Nanostructured Luminescent Micelles: Efficient “Functional Materials” for Sensing Nitroaromatic and Nitramine Explosives. Photochem, 2(1), 32-57. https://doi.org/10.3390/photochem2010004