Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = β-mannoside

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3746 KiB  
Article
Synthesis of the Pentasaccharide Unit of the Pseudomonas aeruginosa Exopolysaccharide Psl Conjugation with CRM197, and Evaluation of Antigenicity in a QS-21/Pam3CSK4-Liposomal Formulation
by Uzoamaka Clara Bokolo, Ravindika Dissanayake, Samir Ghosh, Shadia Nada, Babatunde S. Obadawo, Erin G. Prestwich, Katherine A. Wall and Steven J. Sucheck
Molecules 2025, 30(8), 1720; https://doi.org/10.3390/molecules30081720 - 11 Apr 2025
Viewed by 1290
Abstract
Oligosaccharides and glycoconjugates play essential roles in various biological processes such as cellular recognition and signaling, and thus have attracted tremendous attention in the synthetic and biological communities over the past few decades. Contributing to this field, we have achieved the synthesis of [...] Read more.
Oligosaccharides and glycoconjugates play essential roles in various biological processes such as cellular recognition and signaling, and thus have attracted tremendous attention in the synthetic and biological communities over the past few decades. Contributing to this field, we have achieved the synthesis of the aminoxyglycoside pentasaccharide subunit of Pseudomonas aeruginosa polysaccharide synthesis locus (Psl) exopolysaccharide through an efficient 23 step process. This pentasaccharide was designed with an aminooxy derivative at the reducing end, which was used in a 2-step oxime-based bioconjugation to the protein carrier CRM197, with an epitope ratio of 1:4. The conjugate vaccine could generate anti-Psl antibodies that could recognize P. aeruginosa PAO1 bacteria and initiate opsonophagocytic killing of the bacteria. In addition, the aminoxyglycoside could be conveniently conjugated to a bifunctional aldehyde-biotin reagent, which can be used for quantifying antibody titers in vaccination studies. Full article
(This article belongs to the Special Issue Glycomimetics: Design, Synthesis and Bioorganic Applications)
Show Figures

Graphical abstract

18 pages, 4115 KiB  
Review
ZnI2-Mediated cis-Glycosylations of Various Constrained Glycosyl Donors: Recent Advances in cis-Selective Glycosylations
by Akihiro Ishiwata, Xuemei Zhong, Katsunori Tanaka, Yukishige Ito and Feiqing Ding
Molecules 2024, 29(19), 4710; https://doi.org/10.3390/molecules29194710 - 4 Oct 2024
Viewed by 1891
Abstract
An efficient and versatile glycosylation methodology is crucial for the systematic synthesis of oligosaccharides and glycoconjugates. A direct intermolecular and an indirect intramolecular methodology have been developed, and the former can be applied to the synthesis of medium-to-long-chain glycans like that of nucleotides [...] Read more.
An efficient and versatile glycosylation methodology is crucial for the systematic synthesis of oligosaccharides and glycoconjugates. A direct intermolecular and an indirect intramolecular methodology have been developed, and the former can be applied to the synthesis of medium-to-long-chain glycans like that of nucleotides and peptides. The development of a generally applicable approach for the stereoselective construction of glycosidic bonds remains a major challenge, especially for the synthesis of 1,2-cis glycosides such as β-mannosides, β-L-rhamnosides, and β-D-arabinofuranosides with equatorial glycosidic bonds as well as α-D-glucosides with axial ones. This review introduces the direct formation of cis-glycosides using ZnI2-mediated cis-glycosylations of various constrained glycosyl donors, as well as the recent advances in the development of stereoselective cis-glycosylations. Full article
(This article belongs to the Collection Advances in Glycosciences)
Show Figures

Graphical abstract

17 pages, 1600 KiB  
Article
β-Mannosidase from Cellulomonas fimi: Immobilization Study and Application in the β-Mannoside Synthesis
by Marina S. Robescu, Sara Tengattini, Marco Rabuffetti, Giovanna Speranza, Marco Terreni and Teodora Bavaro
Catalysts 2023, 13(11), 1399; https://doi.org/10.3390/catal13111399 - 26 Oct 2023
Cited by 4 | Viewed by 1733
Abstract
The β-d-mannopyranoside linkage is found in a number of biological structures, in particular, in the core trisaccharide of N-linked glycoproteins, as well as within the antigenic polysaccharides of Salmonella, yeasts, and glycolipids. The construction of this glycosydic bond by [...] Read more.
The β-d-mannopyranoside linkage is found in a number of biological structures, in particular, in the core trisaccharide of N-linked glycoproteins, as well as within the antigenic polysaccharides of Salmonella, yeasts, and glycolipids. The construction of this glycosydic bond by chemical approach is very challenging and requires cumbersome protection and activation steps prior to glycosylation. In this context, β-mannosidase from Cellulomonas fimi (Cf-β-Man) was immobilized for the first time, and it was employed in the synthesis of β-mannosides. Cf-β-Man immobilized on IDA-Co2+-agarose allows the synthesis of the disaccharide, cyanomethyl β-d-mannopyranosyl-(1→6)-2-acetamido-2-deoxy-1-thio-β-d-glucopyranoside, with a higher conversion compared to the soluble enzyme (20% vs. 5%) after 6 h under best conditions. This explorative work opens new scenarios concerning the design of engineered Cf-β-Man mutants and their immobilization in order to obtain a robust and recyclable biocatalyst for applications in chemoenzymatic glycan synthesis. Full article
(This article belongs to the Special Issue New Advances in Chemoenzymatic Synthesis)
Show Figures

Figure 1

20 pages, 2433 KiB  
Article
Flexibility and Function of Distal Substrate-Binding Tryptophans in the Blue Mussel β-Mannanase MeMan5A and Their Role in Hydrolysis and Transglycosylation
by Simon Birgersson, Johan Morrill, Olof Stenström, Mathias Wiemann, Ulrich Weininger, Pär Söderhjelm, Mikael Akke and Henrik Stålbrand
Catalysts 2023, 13(9), 1281; https://doi.org/10.3390/catal13091281 - 7 Sep 2023
Cited by 3 | Viewed by 1674
Abstract
β-Mannanases hydrolyze β-mannans, important components of plant and microalgae cell walls. Retaining β-mannanases can also catalyze transglycosylation, forming new β-mannosidic bonds that are applicable for synthesis. This study focused on the blue mussel (Mytilus edulis) GH5_10 β-mannanase MeMan5A, which contains [...] Read more.
β-Mannanases hydrolyze β-mannans, important components of plant and microalgae cell walls. Retaining β-mannanases can also catalyze transglycosylation, forming new β-mannosidic bonds that are applicable for synthesis. This study focused on the blue mussel (Mytilus edulis) GH5_10 β-mannanase MeMan5A, which contains two semi-conserved tryptophans (W240 and W281) in the distal subsite +2 of its active site cleft. Variants of MeMan5A were generated by replacing one or both tryptophans with alanines. The substitutions reduced the enzyme’s catalytic efficiency (kcat/Km using galactomannan) by three-fold (W281A), five-fold (W240A), or 20-fold (W240A/W281A). Productive binding modes were analyzed by 18O labeling of hydrolysis products and mass spectrometry. Results show that the substitution of both tryptophans was required to shift away from the dominant binding mode of mannopentaose (spanning subsites −3 to +2), suggesting that both tryptophans contribute to glycan binding. NMR spectroscopy and molecular dynamics simulations were conducted to analyze protein flexibility and glycan binding. We suggest that W240 is rigid and contributes to +2 subsite mannosyl specificity, while W281 is flexible, which enables stacking interactions in the +2 subsite by loop movement to facilitate binding. The substitutions significantly reduced or eliminated transglycosylation with saccharides as glycosyl acceptors but had no significant effect on reactions with alcohols. Full article
(This article belongs to the Special Issue New Advances in Chemoenzymatic Synthesis)
Show Figures

Graphical abstract

24 pages, 2452 KiB  
Review
Recent Progress in 1,2-cis glycosylation for Glucan Synthesis
by Akihiro Ishiwata, Katsunori Tanaka, Yukishige Ito, Hui Cai and Feiqing Ding
Molecules 2023, 28(15), 5644; https://doi.org/10.3390/molecules28155644 - 25 Jul 2023
Cited by 2 | Viewed by 3400
Abstract
Controlling the stereoselectivity of 1,2-cis glycosylation is one of the most challenging tasks in the chemical synthesis of glycans. There are various 1,2-cis glycosides in nature, such as α-glucoside and β-mannoside in glycoproteins, glycolipids, proteoglycans, microbial polysaccharides, and bioactive natural products. [...] Read more.
Controlling the stereoselectivity of 1,2-cis glycosylation is one of the most challenging tasks in the chemical synthesis of glycans. There are various 1,2-cis glycosides in nature, such as α-glucoside and β-mannoside in glycoproteins, glycolipids, proteoglycans, microbial polysaccharides, and bioactive natural products. In the structure of polysaccharides such as α-glucan, 1,2-cis α-glucosides were found to be the major linkage between the glucopyranosides. Various regioisomeric linkages, 1→3, 1→4, and 1→6 for the backbone structure, and 1→2/3/4/6 for branching in the polysaccharide as well as in the oligosaccharides were identified. To achieve highly stereoselective 1,2-cis glycosylation, including α-glucosylation, a number of strategies using inter- and intra-molecular methodologies have been explored. Recently, Zn salt-mediated cis glycosylation has been developed and applied to the synthesis of various 1,2-cis linkages, such as α-glucoside and β-mannoside, via the 1,2-cis glycosylation pathway and β-galactoside 1,4/6-cis induction. Furthermore, the synthesis of various structures of α-glucans has been achieved using the recent progressive stereoselective 1,2-cis glycosylation reactions. In this review, recent advances in stereoselective 1,2-cis glycosylation, particularly focused on α-glucosylation, and their applications in the construction of linear and branched α-glucans are summarized. Full article
(This article belongs to the Special Issue Polysaccharide-Based Biopolymer: Recent Development and Applications)
Show Figures

Figure 1

13 pages, 755 KiB  
Review
Antibodies as Models and Tools to Decipher Candida albicans Pathogenic Development: Review about a Unique Monoclonal Antibody Reacting with Immunomodulatory Adhesins
by Jordan Leroy, Karine Lecointe, Pauline Coulon, Boualem Sendid, Raymond Robert and Daniel Poulain
J. Fungi 2023, 9(6), 636; https://doi.org/10.3390/jof9060636 - 31 May 2023
Cited by 1 | Viewed by 2584
Abstract
Candidiasis, caused mainly by Candida albicans, a natural commensal of the human digestive tract and vagina, is the most common opportunistic fungal infection at the mucosal and systemic levels. Its high morbi–mortality rates have led to considerable research to identify the molecular [...] Read more.
Candidiasis, caused mainly by Candida albicans, a natural commensal of the human digestive tract and vagina, is the most common opportunistic fungal infection at the mucosal and systemic levels. Its high morbi–mortality rates have led to considerable research to identify the molecular mechanisms associated with the switch to pathogenic development and to diagnose this process as accurately as possible. Since the 1980s, the advent of monoclonal antibody (mAb) technology has led to significant progress in both interrelated fields. This linear review, intended to be didactic, was prompted by considering how, over several decades, a single mAb designated 5B2 contributed to the elucidation of the molecular mechanisms of pathogenesis based on β-1,2-linked oligomannoside expression in Candida species. These contributions starting from the structural identification of the minimal epitope as a di-mannoside from the β-1,2 series consisted then in the demonstration that it was shared by a large number of cell wall proteins differently anchored in the cell wall and the discovery of a cell wall glycoplipid shed by the yeast in contact of host cells, the phospholipomannan. Cytological analysis revealed an overall highly complex epitope expression at the cell surface concerning all growth phases and a patchy distribution resulting from the merging of cytoplasmic vesicles to plasmalema and further secretion through cell wall channels. On the host side, the mAb 5B2 led to identification of Galectin-3 as the human receptor dedicated to β-mannosides and signal transduction pathways leading to cytokine secretion directing host immune responses. Clinical applications concerned in vivo imaging of Candida infectious foci, direct examination of clinical samples and detection of circulating serum antigens that complement the Platelia Ag test for an increased sensitivity of diagnosis. Finally, the most interesting character of mAb 5B2 is probably its ability to reveal C. albicans pathogenic behaviour in reacting specifically with vaginal secretions from women infected versus colonized by this species as well as to display higher reactivity with strains isolated in pathogenic circumstances or even linked to an unfavourable prognosis for systemic candidiasis. Together with a detailed referenced description of these studies, the review provides a complementary reading frame by listing the wide range of technologies involving mAb 5B2 over time, evidencing a practical robustness and versatility unique so far in the Candida field. Finally, the basic and clinical perspectives opened up by these studies are briefly discussed with regard to prospects for future applications of mAb 5B2 in current research challenges. Full article
Show Figures

Figure 1

17 pages, 4332 KiB  
Article
Identification of New L-Fucosyl and L-Galactosyl Amides as Glycomimetic Ligands of TNF Lectin Domain of BC2L-C from Burkholderia cenocepacia
by Sarah Mazzotta, Giulia Antonini, Francesca Vasile, Emilie Gillon, Jon Lundstrøm, Annabelle Varrot, Laura Belvisi and Anna Bernardi
Molecules 2023, 28(3), 1494; https://doi.org/10.3390/molecules28031494 - 3 Feb 2023
Cited by 6 | Viewed by 2693
Abstract
The inhibition of carbohydrate-lectin interactions is being explored as an efficient approach to anti adhesion therapy and biofilm destabilization, two alternative antimicrobial strategies that are being explored against resistant pathogens. BC2L-C is a new type of lectin from Burkholderia cenocepacia that binds (mammalian) fucosides [...] Read more.
The inhibition of carbohydrate-lectin interactions is being explored as an efficient approach to anti adhesion therapy and biofilm destabilization, two alternative antimicrobial strategies that are being explored against resistant pathogens. BC2L-C is a new type of lectin from Burkholderia cenocepacia that binds (mammalian) fucosides at the N-terminal domain and (bacterial) mannosides at the C-terminal domain. This double carbohydrate specificity allows the lectin to crosslink host cells and bacterial cells. We have recently reported the design and generation of the first glycomimetic antagonists of BC2L-C, β-C- or β-N-fucosides that target the fucose-specific N-terminal domain (BC2L-C-Nt). The low water solubility of the designed N-fucosides prevented a full examination of this promising series of ligands. In this work, we describe the synthesis and biophysical evaluation of new L-fucosyl and L-galactosyl amides, designed to be water soluble and to interact with BC2L-C-Nt. The protein–ligand interaction was investigated by Saturation Transfer Difference NMR, Isothermal Titration Calorimetry and crystallographic studies. STD-NMR experiments showed that both fucosyl and galactosyl amides compete with α-methyl fucoside for lectin binding. A new hit compound was identified with good water solubility and an affinity for BC2L-C-Nt of 159 μM (ITC), which represents a one order of magnitude gain over α-methyl fucoside. The x-ray structure of its complex with BC2L-C-Nt was solved at 1.55 Å resolution. Full article
(This article belongs to the Special Issue Carbohydrate Chemistry II)
Show Figures

Figure 1

13 pages, 2749 KiB  
Article
Hybrid Multivalent Jack Bean α-Mannosidase Inhibitors: The First Example of Gold Nanoparticles Decorated with Deoxynojirimycin Inhitopes
by Costanza Vanni, Anne Bodlenner, Marco Marradi, Jérémy P. Schneider, Maria de los Angeles Ramirez, Sergio Moya, Andrea Goti, Francesca Cardona, Philippe Compain and Camilla Matassini
Molecules 2021, 26(19), 5864; https://doi.org/10.3390/molecules26195864 - 27 Sep 2021
Cited by 10 | Viewed by 3837
Abstract
Among carbohydrate-processing enzymes, Jack bean α-mannosidase (JBα-man) is the glycosidase with the best responsiveness to the multivalent presentation of iminosugar inhitopes. We report, in this work, the preparation of water dispersible gold nanoparticles simultaneously coated with the iminosugar deoxynojirimycin (DNJ) inhitope and simple [...] Read more.
Among carbohydrate-processing enzymes, Jack bean α-mannosidase (JBα-man) is the glycosidase with the best responsiveness to the multivalent presentation of iminosugar inhitopes. We report, in this work, the preparation of water dispersible gold nanoparticles simultaneously coated with the iminosugar deoxynojirimycin (DNJ) inhitope and simple monosaccharides (β-d-gluco- or α-d-mannosides). The display of DNJ at the gold surface has been modulated (i) by using an amphiphilic linker longer than the aliphatic chain used for the monosaccharides and (ii) by presenting the inhitope, not only in monomeric form, but also in a trimeric fashion through combination of a dendron approach with glyconanotechnology. The latter strategy resulted in a strong enhancement of the inhibitory activity towards JBα-man, with a Ki in the nanomolar range (Ki = 84 nM), i.e., more than three orders of magnitude higher than the monovalent reference compound. Full article
(This article belongs to the Special Issue Women in Bioorganic Chemistry)
Show Figures

Graphical abstract

19 pages, 3156 KiB  
Article
Structural Basis of Specific Glucoimidazole and Mannoimidazole Binding by Os3BGlu7
by Bodee Nutho, Salila Pengthaisong, Anupong Tankrathok, Vannajan Sanghiran Lee, James R. Ketudat Cairns, Thanyada Rungrotmongkol and Supot Hannongbua
Biomolecules 2020, 10(6), 907; https://doi.org/10.3390/biom10060907 - 15 Jun 2020
Cited by 19 | Viewed by 3844
Abstract
β-Glucosidases and β-mannosidases hydrolyze substrates that differ only in the epimer of the nonreducing terminal sugar moiety, but most such enzymes show a strong preference for one activity or the other. Rice Os3BGlu7 and Os7BGlu26 β-glycosidases show a less strong preference, but Os3BGlu7 [...] Read more.
β-Glucosidases and β-mannosidases hydrolyze substrates that differ only in the epimer of the nonreducing terminal sugar moiety, but most such enzymes show a strong preference for one activity or the other. Rice Os3BGlu7 and Os7BGlu26 β-glycosidases show a less strong preference, but Os3BGlu7 and Os7BGlu26 prefer glucosides and mannosides, respectively. Previous studies of crystal structures with glucoimidazole (GIm) and mannoimidazole (MIm) complexes and metadynamic simulations suggested that Os7BGlu26 hydrolyzes mannosides via the B2,5 transition state (TS) conformation preferred for mannosides and glucosides via their preferred 4H3/4E TS conformation. However, MIm is weakly bound by both enzymes. In the present study, we found that MIm was not bound in the active site of crystallized Os3BGlu7, but GIm was tightly bound in the −1 subsite in a 4H3/4E conformation via hydrogen bonds with the surrounding residues. One-microsecond molecular dynamics simulations showed that GIm was stably bound in the Os3BGlu7 active site and the glycone-binding site with little distortion. In contrast, MIm initialized in the B2,5 conformation rapidly relaxed to a E3/4H3 conformation and moved out into a position in the entrance of the active site, where it bound more stably despite making fewer interactions. The lack of MIm binding in the glycone site in protein crystals and simulations implies that the energy required to distort MIm to the B2,5 conformation for optimal active site residue interactions is sufficient to offset the energy of those interactions in Os3BGlu7. This balance between distortion and binding energy may also provide a rationale for glucosidase versus mannosidase specificity in plant β-glycosidases. Full article
Show Figures

Graphical abstract

10 pages, 1754 KiB  
Communication
2-C-Alkynyl and 2-C-cis-Alkenyl β-Mannosides with Acetal Protected γ-Aldehyde Functionality via 2-Uloside Alkynylation and Lindlar Hydrogenation
by Daniel Borowski, Melchior Menzel and Thomas Ziegler
Molbank 2016, 2016(4), M916; https://doi.org/10.3390/M916 - 11 Nov 2016
Cited by 2 | Viewed by 4078
Abstract
Benzyl 3,4,6-tri-O-benzyl-β-d-arabino-hexos-2-ulo-1,5-pyranoside was subjected to manno-selective ketone alkynylation with propiolaldehyde dibenzyl acetal, resulting in the formation of a 2-C-alkynyl β-mannoside bearing a γ-dibenzyl acetal functionality. Subsequent transacetalization of the acetal moiety with methanol and [...] Read more.
Benzyl 3,4,6-tri-O-benzyl-β-d-arabino-hexos-2-ulo-1,5-pyranoside was subjected to manno-selective ketone alkynylation with propiolaldehyde dibenzyl acetal, resulting in the formation of a 2-C-alkynyl β-mannoside bearing a γ-dibenzyl acetal functionality. Subsequent transacetalization of the acetal moiety with methanol and 1,3-dihydroxypropane and acetylation of position 2, respectively, gave 4 different 2-C-alkynyl branched mannosides. Lindlar hydrogenation of the latter under optimized conditions in dimethylformamide afforded a series of 2-C-cis-alkenyl mannosides. X-ray molecular structures of benzyl 3,4,6-tri-O-benzyl-β-d-arabino-hexos-2-ulo-1,5-pyranoside and of the branched glycoside benzyl 3,4,6-tri-O-benzyl-2-C-((Z)-3,3-dibenzyloxyprop-1-en-1-yl)-β-d-mannopyranoside are reported. Full article
(This article belongs to the Section Organic Synthesis and Biosynthesis)
Show Figures

Graphical abstract

13 pages, 673 KiB  
Article
Glycolytic Activities in the Larval Digestive Tract of Trypoxylus dichotomus (Coleoptera: Scarabaeidae)
by Noriko Wada, Michio Sunairi, Hirosi Anzai, Ryûtarô Iwata, Akiomi Yamane and Mutsuyasu Nakajima
Insects 2014, 5(2), 351-363; https://doi.org/10.3390/insects5020351 - 5 May 2014
Cited by 17 | Viewed by 7291
Abstract
The larvae of the Japanese horned beetle, Trypoxylus dichotomus (Coleoptera: Scarabaeidae: Dynastinae), are an example of a saprophage insect. Generally, Scarabaeid larvae, such as T. dichotomus, eat dead plant matter that has been broken down by fungi, such as Basidiomycota. It is [...] Read more.
The larvae of the Japanese horned beetle, Trypoxylus dichotomus (Coleoptera: Scarabaeidae: Dynastinae), are an example of a saprophage insect. Generally, Scarabaeid larvae, such as T. dichotomus, eat dead plant matter that has been broken down by fungi, such as Basidiomycota. It is thought that β-1,3-glucan, a constituent polysaccharide in microbes, is abundant in decayed plant matter. Studies of the degradation mechanism of β-1,3-glucan under these circumstances are lacking. In the current study, we sought to clarify the relationship between the capacity to degrade polysaccharides and the food habits of the larvae. The total activities and optimum pH levels of several polysaccharide-degrading enzymes from the larvae were investigated. The foregut, midgut and hindgut of final instar larvae were used. Enzymatic activities were detected against five polysaccharides (soluble starch, β-1,4-xylan, β-1,3-glucan, pectin and carboxymethyl cellulose) and four glycosides (p-nitrophenyl (PNP)-β-N-acetylglucosaminide, PNP-β-mannoside, PNP-β-glucoside and PNP-β-xyloside). Our results indicate that the digestive tract of the larvae is equipped with a full enzymatic system for degrading β-1,3-glucan and β-1,4-xylan to monomers. This finding elucidates the role of the polysaccharide-digesting enzymes in the larvae, and it is suggested that the larvae use these enzymes to enact their decomposition ability in the forest environment. Full article
Show Figures

Graphical abstract

13 pages, 662 KiB  
Article
Purification, Partial Characterization and Immobilization of a Mannose-Specific Lectin from Seeds of Dioclea lasiophylla Mart.
by Vanir Reis Pinto-Júnior, Mayara Queiroz De Santiago, Vinícius José da Silva Osterne, Jorge Luis Almeida Correia, Francisco Nascimento Pereira-Júnior, João Batista Cajazeiras, Mayron Alves De Vasconcelos, Edson Holanda Teixeira, Antônia Sâmia Fernandes Do Nascimento, Thaiz Batista Azevedo Rangel Miguel, Emilio De Castro Miguel, Alexandre Holanda Sampaio, Kyria Santiago Do Nascimento, Celso Shiniti Nagano and Benildo Sousa Cavada
Molecules 2013, 18(9), 10857-10869; https://doi.org/10.3390/molecules180910857 - 4 Sep 2013
Cited by 20 | Viewed by 6648
Abstract
Lectin from the seeds of Dioclea lasiophylla (DlyL) was purified in a single step by affinity chromatography on a Sephadex® G-50 column. DlyL strongly agglutinated rabbit erythrocytes and was inhibited by monosaccharides (D-mannose and α-methyl-D-mannoside) and glycoproteins (ovalbumin and fetuin). [...] Read more.
Lectin from the seeds of Dioclea lasiophylla (DlyL) was purified in a single step by affinity chromatography on a Sephadex® G-50 column. DlyL strongly agglutinated rabbit erythrocytes and was inhibited by monosaccharides (D-mannose and α-methyl-D-mannoside) and glycoproteins (ovalbumin and fetuin). Similar to other Diocleinae lectins, DlyL has three chains, α, β and γ, with mass of 25,569 ± 2, 12,998 ± 1 and 12,588 ± 1 Da, respectively, and has no disulfide bonds. The hemagglutinating activity of DlyL was optimal in pH 8.0, stable at a temperature of 70 °C and decreased in EDTA solution, indicating that lectin activity is dependent on divalent metals. DlyL exhibited low toxicity on Artemia sp. nauplii, but this effect was dependent on the concentration of lectin in solution. DlyL immobilized on cyanogen bromide-activated Sepharose® 4B bound 0.917 mg of ovalbumin per cycle, showing the ability to become a tool for glycoproteomics studies. Full article
Show Figures

Figure 1

12 pages, 936 KiB  
Article
The Binding Affinity and Molecular Basis of the Structure-Binding Relationship between Urinary Tamm-Horsfall Glycoprotein and Tumor Necrosis Factor-α
by Cheng-Han Wu, Ko-Jen Li, Sue-Cien Siao, Yu-Hsuan Chen, Tsai-Hung Wu, Chang-Youh Tsai and Chia-Li Yu
Molecules 2012, 17(10), 11978-11989; https://doi.org/10.3390/molecules171011978 - 11 Oct 2012
Cited by 9 | Viewed by 7552
Abstract
In a previous study we noted significant THP binding to TNF-α, but did not explore the molecular basis of the structure-binding relationship. In this study, we used lectin-binding ELISA to assess the carbohydrate compositions of THP, BSA, IgG, TNF-α, and IFN-g. We identified [...] Read more.
In a previous study we noted significant THP binding to TNF-α, but did not explore the molecular basis of the structure-binding relationship. In this study, we used lectin-binding ELISA to assess the carbohydrate compositions of THP, BSA, IgG, TNF-α, and IFN-g. We identified β(1,4)-N-acetylglucosamine oligomers (GlcNAc) and GlcNAc/branched mannose in BSA, IgG, TNF-α, and THP, but not in IFN-g. These carbohydrate moieties mediated binding with THP. Small amounts of Siaα(2,3)Gal/ GalNAc, Sia(2,6)Gal/GalNAc, and mannose residues were also present in THP and TNF-α. Binding affinity (Kd) between THP and TNF-α by Scatchard plot analysis was 1.4–1.7 × 10−6 M, lower than antigen-antibody or ligand-receptor binding affinities. To elucidate the structure-binding relationship of THP-TNF-α, THP was digested with neuraminidase, β-galactosidase, O-sialoglycoprotein endopeptidase, carboxypeptidase Y, or proteinase K. β-galactosidase increased binding capacity of THP for TNF-α. Monosaccharide inhibition suggested that α-methyl-D-mannoside, GlcNAc, and GalNAc, but not sialic acid, suppress THP-TNF-α binding as detected by ELISA. We conclude that sugar-lectin and sugar-protein interactions between cognate sites in THP and TNF-α mediate their binding. Full article
(This article belongs to the Special Issue Advances in Carbohydrate Chemistry 2012)
Show Figures

Figure 1

Back to TopTop