Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = α-d-glucuronidase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2662 KiB  
Article
Effect-Directed Profiling of Akebia quinata and Clitoria ternatea via High-Performance Thin-Layer Chromatography, Planar Assays and High-Resolution Mass Spectrometry
by Hanna Nikolaichuk, Irena M. Choma and Gertrud E. Morlock
Molecules 2023, 28(7), 2893; https://doi.org/10.3390/molecules28072893 - 23 Mar 2023
Cited by 5 | Viewed by 3023
Abstract
Two herbal plants, Akebia quinata D. leaf/fruit and Clitoria ternatea L. flower, well-known in traditional medicine systems, were investigated using a non-target effect-directed profiling. High-performance thin-layer chromatography (HPTLC) was combined with 11 different effect-directed assays, including two multiplex bioassays, for assessing their bioactivity. [...] Read more.
Two herbal plants, Akebia quinata D. leaf/fruit and Clitoria ternatea L. flower, well-known in traditional medicine systems, were investigated using a non-target effect-directed profiling. High-performance thin-layer chromatography (HPTLC) was combined with 11 different effect-directed assays, including two multiplex bioassays, for assessing their bioactivity. Individual active zones were heart-cut eluted for separation via an orthogonal high-performance liquid chromatography column to heated electrospray ionization high-resolution mass spectrometry (HPLC–HESI-HRMS) for tentative assignment of molecular formulas according to literature data. The obtained effect-directed profiles provided information on 2,2-diphenyl-1-picrylhydrazyl scavenging, antibacterial (against Bacillus subtilis and Aliivibrio fischeri), enzyme inhibition (tyrosinase, α-amylase, β-glucuronidase, butyrylcholinesterase, and acetylcholinesterase), endocrine (agonists and antagonists), and genotoxic (SOS-Umu-C) activities. The main bioactive compound zones in A. quinata leaf were tentatively assigned to be syringin, vanilloloside, salidroside, α-hederin, cuneataside E, botulin, and oleanolic acid, while salidroside and quinatic acids were tentatively identified in the fruit. Taraxerol, kaempherol-3-rutinoside, kaempferol-3-glucoside, quercetin-3-rutinoside, and octadecenoic acid were tentatively found in the C. ternatea flower. This straightforward hyphenated technique made it possible to correlate the biological properties of the herbs with possible compounds. The meaningful bioactivity profiles contribute to a better understanding of the effects and to more efficient food control and food safety. Full article
(This article belongs to the Special Issue Chromatographic Screening of Natural Products)
Show Figures

Graphical abstract

23 pages, 11407 KiB  
Article
In-Silico Characterization of Estrogen Reactivating β-Glucuronidase Enzyme in GIT Associated Microbiota of Normal Human and Breast Cancer Patients
by Fatima Muccee, Shakira Ghazanfar, Wajya Ajmal and Majid Al-Zahrani
Genes 2022, 13(9), 1545; https://doi.org/10.3390/genes13091545 - 27 Aug 2022
Cited by 16 | Viewed by 4332
Abstract
Estrogen circulating in blood has been proved to be a strong biomarker for breast cancer. A β-glucuronidase enzyme (GUS) from human gastrointestinal tract (GIT) microbiota including probiotics has significant involvement in enhancing the estrogen concentration in blood through deconjugation of glucuronidated estrogens. The [...] Read more.
Estrogen circulating in blood has been proved to be a strong biomarker for breast cancer. A β-glucuronidase enzyme (GUS) from human gastrointestinal tract (GIT) microbiota including probiotics has significant involvement in enhancing the estrogen concentration in blood through deconjugation of glucuronidated estrogens. The present project has been designed to explore GIT microbiome-encoded GUS enzymes (GUSOME) repertoire in normal human and breast cancer patients. For this purpose, a total of nineteen GUS enzymes from human GIT microbes, i.e., seven from healthy and twelve from breast cancer patients have been focused on. Protein sequences of enzymes retrieved from UniProt database were subjected to ProtParam, CELLO2GO, SOPMA (secondary structure prediction method), PDBsum (Protein Database summaries), PHYRE2 (Protein Homology/AnalogY Recognition Engine), SAVES v6.0 (Structure Validation Server), MEME version 5.4.1 (Multiple Em for Motif Elicitation), Caver Web server v 1.1, Interproscan and Predicted Antigenic Peptides tool. Analysis revealed the number of amino acids, isoelectric point, extinction coefficient, instability index and aliphatic index of GUS enzymes in the range of 586–795, 4.91–8.92, 89,980–155,075, 25.88–40.93 and 71.01–88.10, respectively. Sub-cellular localization of enzyme was restricted to cytoplasm and inner-membrane in case of breast cancer patients’ bacteria as compared to periplasmic space, outer membrane and extracellular space in normal GIT bacteria. The 2-D structure analysis showed α helix, extended strand, β turn and random coil in the range of 27.42–22.66%, 22.04–25.91%, 5.39–8.30% and 41.75–47.70%, respectively. The druggability score was found to be 0.05–0.45 and 0.06–0.80 in normal and breast cancer patients GIT, respectively. The radius, length and curvature of catalytic sites were observed to be 1.1–2.8 Å, 1.4–15.9 Å and 0.65–1.4, respectively. Ten conserved protein motifs with p < 0.05 and width 25–50 were found. Antigenic propensity-associated sequences were 20–29. Present study findings hint about the use of the bacterial GUS enzymes against breast cancer tumors after modifications via site-directed mutagenesis of catalytic sites involved in the activation of estrogens and through destabilization of these enzymes. Full article
(This article belongs to the Section Bioinformatics)
Show Figures

Figure 1

14 pages, 2014 KiB  
Article
Unraveling Synergism between Various GH Family Xylanases and Debranching Enzymes during Hetero-Xylan Degradation
by Samkelo Malgas, Mpho S. Mafa, Brian N. Mathibe and Brett I. Pletschke
Molecules 2021, 26(22), 6770; https://doi.org/10.3390/molecules26226770 - 9 Nov 2021
Cited by 13 | Viewed by 3370
Abstract
Enzymes classified with the same Enzyme Commission (EC) that are allotted in different glycoside hydrolase (GH) families can display different mechanisms of action and substrate specificities. Therefore, the combination of different enzyme classes may not yield synergism during biomass hydrolysis, as the GH [...] Read more.
Enzymes classified with the same Enzyme Commission (EC) that are allotted in different glycoside hydrolase (GH) families can display different mechanisms of action and substrate specificities. Therefore, the combination of different enzyme classes may not yield synergism during biomass hydrolysis, as the GH family allocation of the enzymes influences their behavior. As a result, it is important to understand which GH family combinations are compatible to gain knowledge on how to efficiently depolymerize biomass into fermentable sugars. We evaluated GH10 (Xyn10D and XT6) and GH11 (XynA and Xyn2A) β-xylanase performance alone and in combination with various GH family α-l-arabinofuranosidases (GH43 AXH-d and GH51 Abf51A) and α-d-glucuronidases (GH4 Agu4B and GH67 AguA) during xylan depolymerization. No synergistic enhancement in reducing sugar, xylose and glucuronic acid released from beechwood xylan was observed when xylanases were supplemented with either one of the glucuronidases, except between Xyn2A and AguA (1.1-fold reducing sugar increase). However, overall sugar release was significantly improved (≥1.1-fold reducing sugar increase) when xylanases were supplemented with either one of the arabinofuranosidases during wheat arabinoxylan degradation. Synergism appeared to result from the xylanases liberating xylo-oligomers, which are the preferred substrates of the terminal arabinofuranosyl-substituent debranching enzyme, Abf51A, allowing the exolytic β-xylosidase, SXA, to have access to the generated unbranched xylo-oligomers. Here, it was shown that arabinofuranosidases are key enzymes in the efficient saccharification of hetero-xylan into xylose. This study demonstrated that consideration of GH family affiliations of the carbohydrate-active enzymes (CAZymes) used to formulate synergistic enzyme cocktails is crucial for achieving efficient biomass saccharification. Full article
(This article belongs to the Special Issue Novel Enzymes for Natural Polymer Degradation)
Show Figures

Figure 1

17 pages, 2031 KiB  
Article
Proteomic Analysis of 3T3-L1 Adipocytes Treated with Insulin and TNF-α
by Hayley Chan, Ketaki P. Bhide, Aditya Vaidyam, Victoria Hedrick, Tiago Jose Paschoal Sobreira, Thomas G. Sors, Ryan W. Grant and Uma K. Aryal
Proteomes 2019, 7(4), 35; https://doi.org/10.3390/proteomes7040035 - 20 Oct 2019
Cited by 6 | Viewed by 5590
Abstract
Insulin resistance is an indication of early stage Type 2 diabetes (T2D). Insulin resistant adipose tissues contain higher levels of insulin than the physiological level, as well as higher amounts of intracellular tumor necrosis factor-α (TNF-α) and other cytokines. However, the mechanism of [...] Read more.
Insulin resistance is an indication of early stage Type 2 diabetes (T2D). Insulin resistant adipose tissues contain higher levels of insulin than the physiological level, as well as higher amounts of intracellular tumor necrosis factor-α (TNF-α) and other cytokines. However, the mechanism of insulin resistance remains poorly understood. To better understand the roles played by insulin and TNF-α in insulin resistance, we performed proteomic analysis of differentiated 3T3-L1 adipocytes treated with insulin (Ins), TNF-α (TNF), and both (Ins + TNF). Out of the 693 proteins identified, the abundances of 78 proteins were significantly different (p < 0.05). Carnitine parmitoyltransferase-2 (CPT2), acetyl CoA carboxylase 1 (ACCAC-1), ethylmalonyl CoA decarboxylase (ECHD1), and methylmalonyl CoA isomerase (MCEE), enzymes required for fatty acid β-oxidation and respiratory electron transport, and β-glucuronidase, an enzyme responsible for the breakdown of complex carbohydrates, were down-regulated in all the treatment groups, compared to the control group. In contrast, superoxide dismutase 2 (SOD2), protein disulfide isomerase (PDI), and glutathione reductase, which are the proteins responsible for cytoskeletal structure, protein folding, degradation, and oxidative stress responses, were up-regulated. This suggests higher oxidative stress in cells treated with Ins, TNF, or both. We proposed a conceptual metabolic pathway impacted by the treatments and their possible link to insulin resistance or T2D. Full article
Show Figures

Graphical abstract

18 pages, 3047 KiB  
Article
Whey Protein Concentrate WPC-80 Intensifies Glycoconjugate Catabolism and Induces Oxidative Stress in the Liver of Rats
by Marta Żebrowska-Gamdzyk, Mateusz Maciejczyk, Anna Zalewska, Katarzyna Guzińska-Ustymowicz, Anna Tokajuk and Halina Car
Nutrients 2018, 10(9), 1178; https://doi.org/10.3390/nu10091178 - 28 Aug 2018
Cited by 15 | Viewed by 5381
Abstract
The aim of this study was to evaluate the effect of whey protein concentrate (WPC-80) on glycoconjugate catabolism, selected markers of oxidative stress and liver inflammation. The experiment was conducted on male Wistar rats (n = 63). The animals from the study [...] Read more.
The aim of this study was to evaluate the effect of whey protein concentrate (WPC-80) on glycoconjugate catabolism, selected markers of oxidative stress and liver inflammation. The experiment was conducted on male Wistar rats (n = 63). The animals from the study group were administered WPC-80 at a dose of 0.3 or 0.5 g/kg body weight for 7, 14 or 21 days, while rats from the control group received only 0.9% NaCl. In liver homogenates, we assayed the activity of N-acetyl-β-D-hexosaminidase (HEX), β-glucuronidase (GLU), β-galactosidase (GAL), α-mannosidase (MAN), α-fucosidase (FUC), as well as the level of reduced glutathione (GSH), malondialdehyde (MDA), interleukin-1β (IL-1β) and transforming growth factor-β1 (TGF-β1). A significantly higher activity of HEX, GLU, MAN and FUC were found in the livers of rats receiving WPC-80 compared to controls. Serum ALT and AST were significantly higher in the animals supplemented with WPC-80 at a dose of 0.5 g/kg body weight for 21 days. In the same group of animals, enhanced level of GSH, MDA, IL-1β and TGF-β1 were also observed. WPC-80 is responsible for intensive remodelling of liver tissue and induction of oxidative stress especially at a dose of 0.5 g/kg body weight. Full article
(This article belongs to the Special Issue Impact of Bioactive Peptides on Human Health)
Show Figures

Figure 1

11 pages, 347 KiB  
Article
Synthesis of Thieno[2,3-b]thiophene Containing Bis-Heterocycles-Novel Pharmacophores
by Yahia Nasser Mabkhot, Assem Barakat, Abdullah Mohammed Al-Majid and Muhammad Iqbal Choudhary
Int. J. Mol. Sci. 2013, 14(3), 5712-5722; https://doi.org/10.3390/ijms14035712 - 12 Mar 2013
Cited by 27 | Viewed by 7097
Abstract
Thioenethiophene derivatives represent an important class of compounds with diverse biological activities. We describe here the synthesis of a new series of thieno[2,3-b]thiophene containing bis-heterocyclic compounds 37. All the compounds were evaluated for their in vitro antioxidant [...] Read more.
Thioenethiophene derivatives represent an important class of compounds with diverse biological activities. We describe here the synthesis of a new series of thieno[2,3-b]thiophene containing bis-heterocyclic compounds 37. All the compounds were evaluated for their in vitro antioxidant potential, α-glucosidase and β-glucuronidase inhibiton and anticancer activity against PC-3 cell lines. Compounds 2b (IC50 = 1.3 ± 0.2 μM), 5a (IC50 = 2.3 ± 0.4 μM) and 5b (IC50 = 8.7 ± 0.1 μM) showed a potent inhibition of β-glucuronidase enzyme, more active than the standard d-saccharic acid 1,4-lactone (IC50 = 45.8 ± 2.5 μM). Compounds 5a (IC50 = 22.0 ± 0.3 μM) and 5b (IC50 = 58.4 ± 1.2 μM) were also found to be potent α-glucosidase inhibitors as compared to standard drug (acarbose, IC50 = 841 ± 1.7 μM). Full article
Show Figures

Graphical abstract

Back to TopTop