Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = α-, β- and γ-synuclein

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 490 KiB  
Article
The Impact of Probiotics on Clinical Symptoms and Peripheral Cytokines Levels in Parkinson’s Disease: Preliminary In Vivo Data
by Luca Magistrelli, Elena Contaldi, Annalisa Visciglia, Giovanni Deusebio, Marco Pane and Angela Amoruso
Brain Sci. 2024, 14(11), 1147; https://doi.org/10.3390/brainsci14111147 - 15 Nov 2024
Viewed by 1884
Abstract
Introduction. Previous studies have shown that probiotics have positive effects on both motor and non-motor symptoms in Parkinson’s disease (PD). Additionally, in preclinical settings, probiotics have demonstrated the ability to counteract neuronal loss and alpha-synuclein aggregation, important pathological hallmarks of PD. Notably, preliminary [...] Read more.
Introduction. Previous studies have shown that probiotics have positive effects on both motor and non-motor symptoms in Parkinson’s disease (PD). Additionally, in preclinical settings, probiotics have demonstrated the ability to counteract neuronal loss and alpha-synuclein aggregation, important pathological hallmarks of PD. Notably, preliminary in vitro studies have revealed the immunomodulatory properties of probiotics. This study aims to evaluate the impact of probiotics on symptoms and peripheral cytokines levels in PD patients compared to placebo. Methods. Patients were enrolled and blindly randomized to receive either active probiotics (comprising Bifidobacterium animalis subsp. lactis BS01 LMG P-21384, Bifidobacterium longum BL03 DSM 16603, Bifidobacterium adolescentis BA02 DSM 18351, Fructo-oligosaccharides and Maltodextrin-Group A) or placebo (Maltodextrin-Group B). Clinical evaluations and plasma levels cytokines (TNF-α, IFN-γ, IL-6, and TGF-β) were also assessed at enrollment and after 12 weeks. Anti-parkinsonian therapy remained stable throughout the study. Results. Forty PD patients were recruited. After 12 weeks, Group A showed significant improvement in motor symptoms (UPDRS III: 13.89 ± 4.08 vs. 12.74 ± 4.57, p = 0.028) and non-motor symptoms (NMSS: 34.32 ± 21.41 vs. 30.11 ± 19.89, p = 0.041), with notable improvement in the gastrointestinal sub-item (3.79 ± 4.14 vs. 1.89 ± 2.54, p = 0.021). A reduction of IFN-γ levels was observed in both groups, but group A also showed a significant decrease in IL-6 and a slight increase in the anti-inflammatory cytokine TGF-β. Conclusions. Our data suggest that probiotics may modulate peripheral cytokines levels and improve clinical symptoms in PD patients. Probiotics may, therefore, represent a valuable adjunctive therapy to conventional anti-parkinsonian drugs. Full article
Show Figures

Figure 1

14 pages, 2161 KiB  
Article
Brain Region-Specific Expression Levels of Synuclein Genes in an Acid Sphingomyelinase Knockout Mouse Model: Correlation with Depression-/Anxiety-Like Behavior and Locomotor Activity in the Absence of Genotypic Variation
by Razvan-Marius Brazdis, Iulia Zoicas, Johannes Kornhuber and Christiane Mühle
Int. J. Mol. Sci. 2024, 25(16), 8685; https://doi.org/10.3390/ijms25168685 - 9 Aug 2024
Cited by 1 | Viewed by 1797
Abstract
Accumulating evidence suggests an involvement of sphingolipids, vital components of cell membranes and regulators of cellular processes, in the pathophysiology of both Parkinson’s disease and major depressive disorder, indicating a potential common pathway in these neuropsychiatric conditions. Based on this interaction of sphingolipids [...] Read more.
Accumulating evidence suggests an involvement of sphingolipids, vital components of cell membranes and regulators of cellular processes, in the pathophysiology of both Parkinson’s disease and major depressive disorder, indicating a potential common pathway in these neuropsychiatric conditions. Based on this interaction of sphingolipids and synuclein proteins, we explored the gene expression patterns of α-, β-, and γ-synuclein in a knockout mouse model deficient for acid sphingomyelinase (ASM), an enzyme catalyzing the hydrolysis of sphingomyelin to ceramide, and studied associations with behavioral parameters. Normalized Snca, Sncb, and Sncg gene expression was determined by quantitative PCR in twelve brain regions of sex-mixed homozygous (ASM−/−, n = 7) and heterozygous (ASM+/−, n = 7) ASM-deficient mice, along with wild-type controls (ASM+/+, n = 5). The expression of all three synuclein genes was brain region-specific but independent of ASM genotype, with β-synuclein showing overall higher levels and the least variation. Moreover, we discovered correlations of gene expression levels between brain regions and depression- and anxiety-like behavior and locomotor activity, such as a positive association between Snca mRNA levels and locomotion. Our results suggest that the analysis of synuclein genes could be valuable in identifying biomarkers and comprehending the common pathological mechanisms underlying various neuropsychiatric disorders. Full article
Show Figures

Graphical abstract

69 pages, 20793 KiB  
Article
Exploring Intrinsic Disorder in Human Synucleins and Associated Proteins
by Sriya Reddy Venati and Vladimir N. Uversky
Int. J. Mol. Sci. 2024, 25(15), 8399; https://doi.org/10.3390/ijms25158399 - 1 Aug 2024
Cited by 1 | Viewed by 1865
Abstract
In this work, we explored the intrinsic disorder status of the three members of the synuclein family of proteins—α-, β-, and γ-synucleins—and showed that although all three human synucleins are highly disordered, the highest levels of disorder are observed in γ-synuclein. Our analysis [...] Read more.
In this work, we explored the intrinsic disorder status of the three members of the synuclein family of proteins—α-, β-, and γ-synucleins—and showed that although all three human synucleins are highly disordered, the highest levels of disorder are observed in γ-synuclein. Our analysis of the peculiarities of the amino acid sequences and modeled 3D structures of the human synuclein family members revealed that the pathological mutations A30P, E46K, H50Q, A53T, and A53E associated with the early onset of Parkinson’s disease caused some increase in the local disorder propensity of human α-synuclein. A comparative sequence-based analysis of the synuclein proteins from various evolutionary distant species and evaluation of their levels of intrinsic disorder using a set of commonly used bioinformatics tools revealed that, irrespective of their origin, all members of the synuclein family analyzed in this study were predicted to be highly disordered proteins, indicating that their intrinsically disordered nature represents an evolutionary conserved and therefore functionally important feature. A detailed functional disorder analysis of the proteins in the interactomes of the human synuclein family members utilizing a set of commonly used disorder analysis tools showed that the human α-synuclein interactome has relatively higher levels of intrinsic disorder as compared with the interactomes of human β- and γ- synucleins and revealed that, relative to the β- and γ-synuclein interactomes, α-synuclein interactors are involved in a much broader spectrum of highly diversified functional pathways. Although proteins interacting with three human synucleins were characterized by highly diversified functionalities, this analysis also revealed that the interactors of three human synucleins were involved in three common functional pathways, such as the synaptic vesicle cycle, serotonergic synapse, and retrograde endocannabinoid signaling. Taken together, these observations highlight the critical importance of the intrinsic disorder of human synucleins and their interactors in various neuronal processes. Full article
(This article belongs to the Special Issue Synucleins in Neurodegeneration)
Show Figures

Figure 1

18 pages, 6764 KiB  
Article
Rotenone and Its Derivative, Rotenoisin A, Induce Neurodegeneration Differentially in SH-SY5Y Cells
by Mahesh Ramalingam, Sujeong Jang, Seongryul Kim, Hyoungwoo Bai, Gyeonghan Jeong, Byeong C. Kim and Han-Seong Jeong
Biomedicines 2024, 12(8), 1703; https://doi.org/10.3390/biomedicines12081703 - 31 Jul 2024
Viewed by 2029
Abstract
Rotenone (ROT), the most significant rotenoid, which has shown anticancer activity, has also been reported to be toxic to normal cells, inducing Parkinson’s disease (PD)-like neuronal loss with aggregation of α-synuclein (α-syn). To reduce the adverse effects of ROT, its derivative, rotenoisin A [...] Read more.
Rotenone (ROT), the most significant rotenoid, which has shown anticancer activity, has also been reported to be toxic to normal cells, inducing Parkinson’s disease (PD)-like neuronal loss with aggregation of α-synuclein (α-syn). To reduce the adverse effects of ROT, its derivative, rotenoisin A (ROA), is obtained by directly irradiating a ROT solution in methanol using γ-rays, which has been reported for potential anticancer properties. However, its PD-inducing effects have not yet been researched or reported. This study sought to compare the activities of ROA and ROT on the aggregation of α-syn, apoptosis, and autophagy in SH-SY5Y cells. ROA decreased cell survival less when compared with ROT on SH-SY5Y cells at 48 h in a dose-dependent manner. ROT (0.5 and 1 μM) and ROA (4 and 5 μM) decreased the expression of tyrosine hydroxylase. Western blot analysis of the Triton X-100 insoluble fraction revealed that both ROT and ROA significantly increased the levels of oligomeric, dimeric, and monomeric phosphorylated Serine129 α-syn and total monomeric α-syn. Moreover, both compounds decreased the proportion of neuronal nuclei, the neurofilament-heavy chain, and β3-tubulin. The phosphorylation of ERK and SAPK were reduced, whereas ROA did not act on Akt. Additionally, the increased Bax/Bcl-2 ratio further activated the downstream caspases cascade. ROT promoted the LC3BII/I ratio and p62 levels; however, different ROA doses resulted in different effects on autophagy while inducing PD-like impairments in SH-SY5Y cells. Full article
(This article belongs to the Special Issue Pathophysiological Mechanisms of Parkinson's Disease)
Show Figures

Figure 1

6 pages, 204 KiB  
Editorial
Special Issue “Neurobiology of Protein Synuclein”
by Mattia Toni
Int. J. Mol. Sci. 2024, 25(6), 3223; https://doi.org/10.3390/ijms25063223 - 12 Mar 2024
Cited by 1 | Viewed by 1322
Abstract
Synucleins are a family of proteins consisting of α, β, and γ synuclein (syn) [...] Full article
(This article belongs to the Special Issue Neurobiology of Protein Synuclein)
17 pages, 1340 KiB  
Review
The Synucleins and the Astrocyte
by Abigail J. Myers, Ayat Brahimi, Imani J. Jenkins and Andrew O. Koob
Biology 2023, 12(2), 155; https://doi.org/10.3390/biology12020155 - 19 Jan 2023
Cited by 9 | Viewed by 2927
Abstract
Synucleins consist of three proteins exclusively expressed in vertebrates. α-Synuclein (αS) has been identified as the main proteinaceous aggregate in Lewy bodies, a pathological hallmark of many neurodegenerative diseases. Less is understood about β-synuclein (βS) and γ-synuclein (γS), although it is known βS [...] Read more.
Synucleins consist of three proteins exclusively expressed in vertebrates. α-Synuclein (αS) has been identified as the main proteinaceous aggregate in Lewy bodies, a pathological hallmark of many neurodegenerative diseases. Less is understood about β-synuclein (βS) and γ-synuclein (γS), although it is known βS can interact with αS in vivo to inhibit aggregation. Likewise, both γS and βS can inhibit αS’s propensity to aggregate in vitro. In the central nervous system, βS and αS, and to a lesser extent γS, are highly expressed in the neural presynaptic terminal, although they are not strictly located there, and emerging data have shown a more complex expression profile. Synapse loss and astrocyte atrophy are early aspects of degenerative diseases of the brain and correlate with disease progression. Synucleins appear to be involved in synaptic transmission, and astrocytes coordinate and organize synaptic function, with excess αS degraded by astrocytes and microglia adjacent to the synapse. βS and γS have also been observed in the astrocyte and may provide beneficial roles. The astrocytic responsibility for degradation of αS as well as emerging evidence on possible astrocytic functions of βS and γS, warrant closer inspection on astrocyte–synuclein interactions at the synapse. Full article
(This article belongs to the Section Neuroscience)
Show Figures

Figure 1

17 pages, 763 KiB  
Review
Synucleins: New Data on Misfolding, Aggregation and Role in Diseases
by Andrei Surguchov and Alexei Surguchev
Biomedicines 2022, 10(12), 3241; https://doi.org/10.3390/biomedicines10123241 - 13 Dec 2022
Cited by 46 | Viewed by 3224
Abstract
The synucleins are a family of natively unfolded (or intrinsically unstructured) proteins consisting of α-, β-, and γ-synuclein involved in neurodegenerative diseases and cancer. The current number of publications on synucleins has exceeded 16.000. They remain the subject of constant interest for over [...] Read more.
The synucleins are a family of natively unfolded (or intrinsically unstructured) proteins consisting of α-, β-, and γ-synuclein involved in neurodegenerative diseases and cancer. The current number of publications on synucleins has exceeded 16.000. They remain the subject of constant interest for over 35 years. Two reasons explain this unchanging attention: synuclein’s association with several severe human diseases and the lack of understanding of the functional roles under normal physiological conditions. We analyzed recent publications to look at the main trends and developments in synuclein research and discuss possible future directions. Traditional areas of peak research interest which still remain high among last year’s publications are comparative studies of structural features as well as functional research on of three members of the synuclein family. Another popular research topic in the area is a mechanism of α-synuclein accumulation, aggregation, and fibrillation. Exciting fast-growing area of recent research is α-synuclein and epigenetics. We do not present here a broad and comprehensive review of all directions of studies but summarize only the most significant recent findings relevant to these topics and outline potential future directions. Full article
Show Figures

Figure 1

21 pages, 3914 KiB  
Article
Oxidative Stress and Mitochondrial Complex I Dysfunction Correlate with Neurodegeneration in an α-Synucleinopathy Animal Model
by Adriana Morales-Martínez, Paola A. Martínez-Gómez, Daniel Martinez-Fong, Marcos M. Villegas-Rojas, Francisca Pérez-Severiano, Miguel A. Del Toro-Colín, Karen M. Delgado-Minjares, Víctor Manuel Blanco-Alvarez, Bertha Alicia Leon-Chavez, Omar Emiliano Aparicio-Trejo, Mauricio T. Baéz-Cortés, Maria-del-Carmen Cardenas-Aguayo, José Luna-Muñoz, Mar Pacheco-Herrero, Quetzalli D. Angeles-López, Irma A. Martínez-Dávila, Citlaltepetl Salinas-Lara, José Pablo Romero-López, Carlos Sánchez-Garibay, Adolfo R. Méndez-Cruz and Luis O. Soto-Rojasadd Show full author list remove Hide full author list
Int. J. Mol. Sci. 2022, 23(19), 11394; https://doi.org/10.3390/ijms231911394 - 27 Sep 2022
Cited by 29 | Viewed by 3871
Abstract
The α-synucleinopathies constitute a subset of neurodegenerative disorders, of which Parkinson’s disease (PD) is the most common worldwide, characterized by the accumulation of misfolded α-synuclein in the cytoplasm of neurons, which spreads in a prion-like manner to anatomically interconnected brain areas. However, it [...] Read more.
The α-synucleinopathies constitute a subset of neurodegenerative disorders, of which Parkinson’s disease (PD) is the most common worldwide, characterized by the accumulation of misfolded α-synuclein in the cytoplasm of neurons, which spreads in a prion-like manner to anatomically interconnected brain areas. However, it is not clear how α-synucleinopathy triggers neurodegeneration. We recently developed a rat model through a single intranigral administration of the neurotoxic β-sitosterol β-D-glucoside (BSSG), which produces α-synucleinopathy. In this model, we aimed to evaluate the temporal pattern of levels in oxidative and nitrosative stress and mitochondrial complex I (CI) dysfunction and how these biochemical parameters are associated with neurodegeneration in different brain areas with α-synucleinopathy (Substantia nigra pars compacta, the striatum, in the hippocampus and the olfactory bulb, where α-syn aggregation spreads). Interestingly, an increase in oxidative stress and mitochondrial CI dysfunction accompanied neurodegeneration in those brain regions. Furthermore, in silico analysis suggests a high-affinity binding site for BSSG with peroxisome proliferator-activated receptors (PPAR) alpha (PPAR-α) and gamma (PPAR-γ). These findings will contribute to elucidating the pathophysiological mechanisms associated with α-synucleinopathies and lead to the identification of new early biomarkers and therapeutic targets. Full article
Show Figures

Figure 1

13 pages, 1089 KiB  
Article
Sex-Related Differences in Voluntary Alcohol Intake and mRNA Coding for Synucleins in the Brain of Adult Rats Prenatally Exposed to Alcohol
by Viktor S. Kokhan, Kirill Chaprov, Natalia N. Ninkina, Petr K. Anokhin, Ekaterina P. Pakhlova, Natalia Y. Sarycheva and Inna Y. Shamakina
Biomedicines 2022, 10(9), 2163; https://doi.org/10.3390/biomedicines10092163 - 2 Sep 2022
Cited by 5 | Viewed by 2312
Abstract
Maternal alcohol consumption is one of the strong predictive factors of alcohol use and consequent abuse; however, investigations of sex differences in response to prenatal alcohol exposure (PAE) are limited. Here we compared the effects of PAE throughout gestation on alcohol preference, state [...] Read more.
Maternal alcohol consumption is one of the strong predictive factors of alcohol use and consequent abuse; however, investigations of sex differences in response to prenatal alcohol exposure (PAE) are limited. Here we compared the effects of PAE throughout gestation on alcohol preference, state anxiety and mRNA expression of presynaptic proteins α-, β- and γ-synucleins in the brain of adult (PND60) male and female Wistar rats. Total RNA was isolated from the hippocampus, midbrain and hypothalamus and mRNA levels were assessed with quantitative RT-PCR. Compared with naïve males, naïve female rats consumed more alcohol in “free choice” paradigm (10% ethanol vs. water). At the same time, PAE produced significant increase in alcohol consumption and preference in males but not in females compared to male and female naïve groups, correspondingly. We found significantly lower α-synuclein mRNA levels in the hippocampus and midbrain of females compared to males and significant decrease in α-synuclein mRNA in these brain areas in PAE males, but not in females compared to the same sex controls. These findings indicate that the impact of PAE on transcriptional regulation of synucleins may be sex-dependent, and in males’ disruption in α-synuclein mRNA expression may contribute to increased vulnerability to alcohol-associated behavior. Full article
Show Figures

Figure 1

17 pages, 2106 KiB  
Article
Increased Expression of Alpha-, Beta-, and Gamma-Synucleins in Brainstem Regions of a Non-Human Primate Model of Parkinson’s Disease
by Sandra Duperrier, Analia Bortolozzi and Véronique Sgambato
Int. J. Mol. Sci. 2022, 23(15), 8586; https://doi.org/10.3390/ijms23158586 - 2 Aug 2022
Cited by 12 | Viewed by 2864
Abstract
Parkinson’s disease (PD) is characterized by cell loss in the substantia nigra and the presence of alpha-synuclein (α-syn)-containing neuronal Lewy bodies. While α-syn has received major interest in the pathogenesis of PD, the function of beta- and gamma-synucleins (β-syn and γ-syn, respectively) is [...] Read more.
Parkinson’s disease (PD) is characterized by cell loss in the substantia nigra and the presence of alpha-synuclein (α-syn)-containing neuronal Lewy bodies. While α-syn has received major interest in the pathogenesis of PD, the function of beta- and gamma-synucleins (β-syn and γ-syn, respectively) is not really known. Yet, these proteins are members of the same family and also concentrated in neuronal terminals. The current preclinical study investigated the expression levels of α-, β-, and γ-synucleins in brainstem regions involved in PD physiopathology. We analyzed synuclein expression in the substantia nigra, raphe nuclei, pedunculopontine nucleus, and locus coeruleus from control and parkinsonian (by MPTP) macaques. MPTP-intoxicated monkeys developed a more or less severe parkinsonian score and were sacrificed after a variable post-MPTP period ranging from 1 to 20 months. The expression of the three synucleins was increased in the substantia nigra after MPTP, and this increase correlates positively, although not very strongly, with cell loss and motor score and not with the time elapsed after intoxication. In the dorsal raphe nucleus, the expression of the three synucleins was also increased, but only α- and γ-Syn are linked to the motor score and associated cell loss. Finally, although no change in synuclein expression was demonstrated in the locus coeruleus after MPTP, we found increased expression levels of γ-Syn, which are only correlated with cell loss in the pedunculopontine nucleus. Altogether, our data suggest that these proteins may play a key role in brainstem regions and mesencephalic tegmentum. Given the involvement of these brain regions in non-motor symptoms of PD, these data also strengthen the relevance of the MPTP macaque model of PD, which exhibits pathological changes beyond nigral DA cell loss and α-synucleinopathy. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

18 pages, 2885 KiB  
Article
Synuclein Analysis in Adult Xenopus laevis
by Maria Carmela Bonaccorsi di Patti, Elisa Angiulli, Arianna Casini, Rosa Vaccaro, Carla Cioni and Mattia Toni
Int. J. Mol. Sci. 2022, 23(11), 6058; https://doi.org/10.3390/ijms23116058 - 27 May 2022
Cited by 6 | Viewed by 2505
Abstract
The α-, β- and γ-synucleins are small soluble proteins expressed in the nervous system of mammals and evolutionary conserved in vertebrates. After being discovered in the cartilaginous fish Torpedo californica, synucleins have been sequenced in all vertebrates, showing differences in the number [...] Read more.
The α-, β- and γ-synucleins are small soluble proteins expressed in the nervous system of mammals and evolutionary conserved in vertebrates. After being discovered in the cartilaginous fish Torpedo californica, synucleins have been sequenced in all vertebrates, showing differences in the number of genes and splicing isoforms in different taxa. Although α-, β- and γ-synucleins share high homology in the N-terminal sequence, suggesting their evolution from a common ancestor, the three isoforms also differ in molecular characteristics, expression levels and tissue distribution. Moreover, their functions have yet to be fully understood. Great scientific interest on synucleins mainly derives from the involvement of α-synuclein in human neurodegenerative diseases, collectively named synucleinopathies, which involve the accumulation of amyloidogenic α-synuclein inclusions in neurons and glia cells. Studies on synucleinopathies can take advantage of the development of new vertebrate models other than mammals. Moreover, synuclein expression in non-mammalian vertebrates contribute to clarify the physiological role of these proteins in the evolutionary perspective. In this paper, gene expression levels of α-, β- and γ-synucleins have been analysed in the main organs of adult Xenopus laevis by qRT-PCR. Moreover, recombinant α-, β- and γ-synucleins were produced to test the specificity of commercial antibodies against α-synuclein used in Western blot and immunohistochemistry. Finally, the secondary structure of Xenopus synucleins was evaluated by circular dichroism analysis. Results indicate Xenopus as a good model for studying synucleinopathies, and provide a useful background for future studies on synuclein functions and their evolution in vertebrates. Full article
(This article belongs to the Special Issue Neurobiology of Protein Synuclein)
Show Figures

Graphical abstract

16 pages, 391 KiB  
Review
Biomarker of Neuroinflammation in Parkinson’s Disease
by Tsai-Wei Liu, Chiung-Mei Chen and Kuo-Hsuan Chang
Int. J. Mol. Sci. 2022, 23(8), 4148; https://doi.org/10.3390/ijms23084148 - 8 Apr 2022
Cited by 145 | Viewed by 12626
Abstract
Parkinson’s disease (PD) is caused by abnormal accumulation of α-synuclein in dopaminergic neurons of the substantia nigra, which subsequently causes motor symptoms. Neuroinflammation plays a vital role in the pathogenesis of neurodegeneration in PD. This neuroinflammatory neurodegeneration involves the activation of microglia, upregulation [...] Read more.
Parkinson’s disease (PD) is caused by abnormal accumulation of α-synuclein in dopaminergic neurons of the substantia nigra, which subsequently causes motor symptoms. Neuroinflammation plays a vital role in the pathogenesis of neurodegeneration in PD. This neuroinflammatory neurodegeneration involves the activation of microglia, upregulation of proinflammatory factors, and gut microbiota. In this review, we summarized the recent findings on detection of PD by using inflammatory biomarkers, such as interleukin (IL)-1β, IL-2, IL-6, IL-10, tumor necrosis factor (TNF)-α; regulated upon activation, normal T cell expressed and presumably secreted (RANTES) and high-sensitivity c-reactive protein (hsCRP); and radiotracers such as [11C]PK11195 and [18F]-FEPPA, as well as by monitoring disease progression and the treatment response. Many PD-causing mutations in SNCA, LRRK2, PRKN, PINK1, and DJ-1 are also associated with neuroinflammation. Several anti-inflammatory medications, including nonsteroidal anti-inflammatory drugs (NSAID), inhibitors of TNF-α and NLR family pyrin domain containing 3 (NLRP3), agonists of nuclear factor erythroid 2-related factor 2 (NRF2), peroxisome proliferator-activated receptor gamma (PPAR-γ), and steroids, have demonstrated neuroprotective effects in in vivo or in vitro PD models. Clinical trials applying objective biomarkers are required to investigate the therapeutic potential of anti-inflammatory medications for PD. Full article
34 pages, 10296 KiB  
Article
Occurrence of Total and Proteinase K-Resistant Alpha-Synuclein in Glioblastoma Cells Depends on mTOR Activity
by Larisa Ryskalin, Rosangela Ferese, Gabriele Morucci, Francesca Biagioni, Carla L. Busceti, Fabrizio Michetti, Paola Lenzi, Alessandro Frati and Francesco Fornai
Cancers 2022, 14(6), 1382; https://doi.org/10.3390/cancers14061382 - 8 Mar 2022
Cited by 5 | Viewed by 2995
Abstract
Alpha-synuclein (α-syn) is a protein considered to be detrimental in a number of degenerative disorders (synucleinopathies) of which α-syn aggregates are considered a pathological hallmark. The clearance of α-syn strongly depends on autophagy, which can be stimulated by inhibiting the mechanistic target of [...] Read more.
Alpha-synuclein (α-syn) is a protein considered to be detrimental in a number of degenerative disorders (synucleinopathies) of which α-syn aggregates are considered a pathological hallmark. The clearance of α-syn strongly depends on autophagy, which can be stimulated by inhibiting the mechanistic target of rapamycin (mTOR). Thus, the overexpression of mTOR and severe autophagy suppression may produce α-syn accumulation, including the proteinase K-resistant protein isoform. Glioblastoma multiforme (GBM) is a lethal brain tumor that features mTOR overexpression and severe autophagy inhibition. Cell pathology in GBM is reminiscent of a fast, progressive degenerative disorder. Therefore, the present work questions whether, as is analogous to neurons during degenerative disorders, an overexpression of α-syn occurs within GBM cells. A high amount of α-syn was documented in GBM cells via real-time PCR (RT-PCR), Western blotting, immunohistochemistry, immuno-fluorescence, and ultrastructural stoichiometry, compared with the amount of β- and γ-synucleins and compared with the amount of α-syn counted within astrocytes. The present study indicates that (i) α-syn is overexpressed in GBM cells, (ii) α-syn expression includes a proteinase-K resistant isoform, (iii) α-syn is dispersed from autophagy-like vacuoles to the cytosol, (iv) α-syn overexpression and cytosol dispersion are mitigated by rapamycin, and (v) the α-syn-related GBM-like phenotype is mitigated by silencing the SNCA gene. Full article
(This article belongs to the Special Issue Feature Paper from Journal Reviewers)
Show Figures

Figure 1

24 pages, 4810 KiB  
Article
Up and Down γ-Synuclein Transcription in Dopamine Neurons Translates into Changes in Dopamine Neurotransmission and Behavioral Performance in Mice
by Rubén Pavia-Collado, Raquel Rodríguez-Aller, Diana Alarcón-Arís, Lluís Miquel-Rio, Esther Ruiz-Bronchal, Verónica Paz, Leticia Campa, Mireia Galofré, Véronique Sgambato and Analia Bortolozzi
Int. J. Mol. Sci. 2022, 23(3), 1807; https://doi.org/10.3390/ijms23031807 - 4 Feb 2022
Cited by 11 | Viewed by 3678
Abstract
The synuclein family consists of α-, β-, and γ-Synuclein (α-Syn, β-Syn, and γ-Syn) expressed in the neurons and concentrated in synaptic terminals. While α-Syn is at the center of interest due to its implication in the pathogenesis of Parkinson’s disease (PD) and other [...] Read more.
The synuclein family consists of α-, β-, and γ-Synuclein (α-Syn, β-Syn, and γ-Syn) expressed in the neurons and concentrated in synaptic terminals. While α-Syn is at the center of interest due to its implication in the pathogenesis of Parkinson’s disease (PD) and other synucleinopathies, limited information exists on the other members. The current study aimed at investigating the biological role of γ-Syn controlling the midbrain dopamine (DA) function. We generated two different mouse models with: (i) γ-Syn overexpression induced by an adeno-associated viral vector and (ii) γ-Syn knockdown induced by a ligand-conjugated antisense oligonucleotide, in order to modify the endogenous γ-Syn transcription levels in midbrain DA neurons. The progressive overexpression of γ-Syn decreased DA neurotransmission in the nigrostriatal and mesocortical pathways. In parallel, mice evoked motor deficits in the rotarod and impaired cognitive performance as assessed by novel object recognition, passive avoidance, and Morris water maze tests. Conversely, acute γ-Syn knockdown selectively in DA neurons facilitated forebrain DA neurotransmission. Importantly, modifications in γ-Syn expression did not induce the loss of DA neurons or changes in α-Syn expression. Collectively, our data strongly suggest that DA release/re-uptake processes in the nigrostriatal and mesocortical pathways are partially dependent on substantia nigra pars compacta /ventral tegmental area (SNc/VTA) γ-Syn transcription levels, and are linked to modulation of DA transporter function, similar to α-Syn. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

23 pages, 8089 KiB  
Article
Pathomechanism Characterization and Potential Therapeutics Identification for Parkinson’s Disease Targeting Neuroinflammation
by Chiung-Mei Chen, Chien-Yu Yen, Wan-Ling Chen, Chih-Hsin Lin, Yih-Ru Wu, Kuo-Hsuan Chang and Guey-Jen Lee-Chen
Int. J. Mol. Sci. 2021, 22(3), 1062; https://doi.org/10.3390/ijms22031062 - 21 Jan 2021
Cited by 27 | Viewed by 5015
Abstract
Parkinson’s disease (PD) is a common neurodegenerative disorder characterized by the loss of dopaminergic (DAergic) neurons and the presence of α-synuclein-containing Lewy bodies. The unstructured α-synuclein forms insoluble fibrils and aggregates that result in increased reactive oxygen species (ROS) and cellular toxicity in [...] Read more.
Parkinson’s disease (PD) is a common neurodegenerative disorder characterized by the loss of dopaminergic (DAergic) neurons and the presence of α-synuclein-containing Lewy bodies. The unstructured α-synuclein forms insoluble fibrils and aggregates that result in increased reactive oxygen species (ROS) and cellular toxicity in PD. Neuroinflammation engaged by microglia actively contributes to the pathogenesis of PD. In this study, we showed that VB-037 (a quinoline compound), glycyrrhetic acid (a pentacyclic triterpenoid), Glycyrrhiza inflata (G. inflata, a Chinese herbal medicine), and Shaoyao Gancao Tang (SG-Tang, a formulated Chinese medicine) suppressed the nitric oxide (NO) production and interleukin (IL)-1β maturation in α-synuclein-stimulated BV-2 cells. Mouse inflammation antibody array further revealed increased IL-1α, IL-1β, tumor necrosis factor (TNF)-α, interferon (IFN)-γ, IL-6, granulocyte-macrophage colony-stimulating factor (GM-CSF) and granulocyte colony-stimulating factor (G-CSF) expression in α-synuclein-inflamed BV-2 cells and compound pretreatment effectively reduced the expression and release of these pro-inflammatory mediators. The test compounds and herbal medicines further reduced α-synuclein aggregation and associated oxidative stress, and protected cells against α-synuclein-induced neurotoxicity by downregulating NLR family pyrin domain containing 1 (NLRP1) and 3 (NLRP3), caspase 1, IL-1β, IL-6, and associated nuclear factor (NF)-κB inhibitor alpha (IκBα)/NF-κB P65 subunit (P65), c-Jun N-terminal kinase (JNK)/proto-oncogene c-Jun (JUN), mitogen-activated protein kinase 14 (P38)/signal transducer and activator of transcription 1 (STAT1) and Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) pathways in dopaminergic neurons derived from α-synuclein-expressing SH-SY5Y cells. Our findings indicate the potential of VB-037, glycyrrhetic acid, G. inflata, and SG-Tang through mitigating α-synuclein-stimulated neuroinflammation in PD, as new drug candidates for PD treatment. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

Back to TopTop