Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline

Search Results (181)

Search Parameters:
Journal = Hydrology
Section = Surface Waters and Groundwaters

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2285 KiB  
Review
Aquatic Pollution in the Bay of Bengal: Impacts on Fisheries and Ecosystems
by Nowrin Akter Shaika, Saleha Khan, Sadiqul Awal, Md. Mahfuzul Haque, Abul Bashar and Halis Simsek
Hydrology 2025, 12(7), 191; https://doi.org/10.3390/hydrology12070191 - 11 Jul 2025
Viewed by 841
Abstract
Aquatic pollution in the Bay of Bengal has become a major environmental issue with long-term impacts on fisheries, biodiversity, and ecosystems. The review paper examines the major pathways, sources, and ecological consequences of aquatic pollution in the Bay of Bengal. Pollutants such as [...] Read more.
Aquatic pollution in the Bay of Bengal has become a major environmental issue with long-term impacts on fisheries, biodiversity, and ecosystems. The review paper examines the major pathways, sources, and ecological consequences of aquatic pollution in the Bay of Bengal. Pollutants such as heavy metals, pesticides, petroleum hydrocarbons, and microplastics have been reported at concerning levels in the soil and water in aquatic ecosystems. Rivers act as key routes, transporting pollutants from inland sources to the Bay of Bengal. These contaminants disrupt metabolic and physiological functions in fish and other aquatic species and pose serious threats to food safety and public health through bioaccumulation. Harmful algal blooms (HABs), caused by nutrient enrichment, further exacerbate ecosystem degradation in the Bay of Bengal. The review highlights the immediate need for strengthened pollution control regulations, real-time water quality monitoring, sustainable farming practices, and community-based policy interventions to preserve biodiversity and safeguard fisheries. Full article
(This article belongs to the Section Surface Waters and Groundwaters)
Show Figures

Figure 1

29 pages, 12574 KiB  
Article
Weathering Records from an Early Cretaceous Syn-Rift Lake
by Yaohua Li, Qianyou Wang and Richard H. Worden
Hydrology 2025, 12(7), 179; https://doi.org/10.3390/hydrology12070179 - 3 Jul 2025
Viewed by 318
Abstract
The Aptian–Albian interval represents a significant cooling phase within the Cretaceous “hothouse” climate, marked by dynamic climatic fluctuations. High-resolution continental records are essential for reconstructing terrestrial climate and ecosystem evolution during this period. This study examines a lacustrine-dominated succession of the Shahezi Formation [...] Read more.
The Aptian–Albian interval represents a significant cooling phase within the Cretaceous “hothouse” climate, marked by dynamic climatic fluctuations. High-resolution continental records are essential for reconstructing terrestrial climate and ecosystem evolution during this period. This study examines a lacustrine-dominated succession of the Shahezi Formation (Lishu Rift Depression, Songliao Basin, NE Asia) to access paleo-weathering intensity and paleoclimate variability between the Middle Aptian and Early Albian (c. 118.2–112.3 Ma). Multiple geochemical proxies, including the Chemical Index of Alteration (CIA), were applied within a sequence stratigraphic framework covering four stages of lake evolution. Our results indicate that a hot and humid subtropical climate predominated in the Lishu paleo-lake, punctuated by transient cooling and drying events. Periods of lake expansion corresponded to episodes of intense chemical weathering, while two distinct intervals of aridity and cooling coincided with phases of a reduced lake level and fan delta progradation. To address the impact of potassium enrichment on CIA values, we introduced a rectangular coordinate system on A(Al2O3)-CN(CaO* + Na2O)-K(K2O) ternary diagrams, enabling more accurate weathering trends and CIA corrections (CIAcorr). Uncertainties in CIA correction were evaluated by integrating geochemical and petrographic evidence from deposits affected by hydrothermal fluids and external potassium addition. Importantly, our results show that metasomatic potassium addition cannot be reliably inferred solely from deviations in A-CN-K diagrams or the presence of authigenic illite and altered plagioclase. Calculations of “excess K2O” and CIAcorr values should only be made when supported by robust geochemical and petrographic evidence for external potassium enrichment. This work advances lacustrine paleoclimate reconstruction methodology and highlights the need for careful interpretation of weathering proxies in complex sedimentary systems. Full article
(This article belongs to the Special Issue Lakes as Sensitive Indicators of Hydrology, Environment, and Climate)
Show Figures

Figure 1

21 pages, 3284 KiB  
Article
Significance of Spring Inflow to Great Salt Lake, Utah, U.S.A.
by Lauren E. Bunce, Tim K. Lowenstein, Elliot Jagniecki and David Collins
Hydrology 2025, 12(6), 159; https://doi.org/10.3390/hydrology12060159 - 19 Jun 2025
Viewed by 537
Abstract
Spring waters (n = 103) from locations surrounding Great Salt Lake (GSL) were mapped, collected, and analyzed to determine their chemical compositions. A ternary Ca-SO4-alkalinity plot was used to group these waters into compositional types based on the principle of chemical [...] Read more.
Spring waters (n = 103) from locations surrounding Great Salt Lake (GSL) were mapped, collected, and analyzed to determine their chemical compositions. A ternary Ca-SO4-alkalinity plot was used to group these waters into compositional types based on the principle of chemical divides. Different spring water types were mixed with Bear, Jordan, and Weber River waters to determine the amount of spring inflow needed to reproduce the chemical composition of GSL. The Pitzer-based computer program EQL/EVP was used to simulate evaporation of spring-river water mixtures. The goal was to find spring-river water mixtures that, when evaporated, reproduced the chemical composition of modern GSL. This approach yielded GSL brine composition from a starting mixture of 12% spring inflow and 88% river water, by volume. The calculated spring inflow–river water mixture contains, on a molar percentage basis, greater than 50% of the B, K, Li, Na, and Cl supplied by springs and greater than 50% of the Ba, Ca, Sr, SO4, and alkalinity derived from rivers. Understanding GSL spring inflow and brine evolution as lake elevation drops is critical to lake environments, ecosystems, and industrial brine shrimp harvesting and mineral extraction. Full article
(This article belongs to the Special Issue Lakes as Sensitive Indicators of Hydrology, Environment, and Climate)
Show Figures

Figure 1

26 pages, 27036 KiB  
Article
Managed Aquifer Recharge (MAR) in Semiarid Regions: Water Quality Evaluation and Dynamics from the Akrotiri MAR System, Cyprus
by Maria Achilleos, Ourania Tzoraki and Evangelos Akylas
Hydrology 2025, 12(5), 123; https://doi.org/10.3390/hydrology12050123 - 19 May 2025
Viewed by 955
Abstract
Managed Aquifer Recharge (MAR) is increasingly being adopted across Europe to enhance water security in semiarid regions, with over 230 operational sites. The Akrotiri MAR system in Limassol, Cyprus, comprises 17 recharge ponds operating since 2016 to counteract saltwater intrusion. This study evaluates [...] Read more.
Managed Aquifer Recharge (MAR) is increasingly being adopted across Europe to enhance water security in semiarid regions, with over 230 operational sites. The Akrotiri MAR system in Limassol, Cyprus, comprises 17 recharge ponds operating since 2016 to counteract saltwater intrusion. This study evaluates MAR effectiveness by analyzing spatial and temporal variations in water quality from 2016 to 2020. Parameters analyzed include nutrients, metals, pesticides, pharmaceuticals, fecal indicators, physicochemical characteristics, recharge and pumping volumes, and groundwater levels. The results show that soil aquifer treatment (SAT) generally improves groundwater quality but certain boreholes exhibited elevated nitrate (range 12.70–31 mg/L), electrical conductivity (range 936–10,420 μs/cm), and chloride concentrations (range 117–1631 mg/L), attributed to recharge water quality, seawater intrusion, and nearby agricultural activities. Tertiary treated wastewater used for recharge occasionally exceeds permissible limits, particularly in E. coli (up to 2420/100 mL), chloride (up to 385 mg/L), and nitrogen (up to 41 mg/L). Supplementing recharge with dam-supplied freshwater improves groundwater quality and raises water levels. These findings underline the importance of continuous monitoring and effective management, adopting sustainable farming practices, and the strict control of recharge water quality. The study offers valuable insights for optimizing MAR systems and supports integrating MAR into circular water management frameworks to mitigate pollution and seawater intrusion, enhancing long-term aquifer sustainability. Full article
Show Figures

Graphical abstract

29 pages, 8155 KiB  
Article
Time-Series Analysis of Monitoring Data from Springs to Assess the Hydrodynamic Characteristics of a Coastal Discharge Zone: Example of Jurjevska Žrnovnica Springs in Croatia
by Andrej Stroj, Jasmina Lukač Reberski, Louise D. Maurice and Ben P. Marchant
Hydrology 2025, 12(5), 118; https://doi.org/10.3390/hydrology12050118 - 13 May 2025
Viewed by 1314
Abstract
This study assesses the functioning of the karst aquifer system located on the Croatian coast of the Adriatic Sea, where saltwater intrusion often presents a major problem for freshwater supply. We use two years of sensor data collected from two coastal springs to [...] Read more.
This study assesses the functioning of the karst aquifer system located on the Croatian coast of the Adriatic Sea, where saltwater intrusion often presents a major problem for freshwater supply. We use two years of sensor data collected from two coastal springs to conduct a range of time-invariant and time-variant statistical analyses over various timescales. We perform separate analyses of the within-day and longer-term variation in the data as well as the interactions between the spring levels, salinity, rainfall, and sea levels. Such comprehensive analyses provide a greater understanding into the inner functioning of the intricate, heavily karstified aquifers. Time-invariant time-series analyses of the hourly data indicate that the spring levels and salinity are strongly controlled by sea levels. Furthermore, time-variant wavelet analyses demonstrate that the variation in spring levels in both springs has two modes defined by flow regime. Increases in the delay of the spring response to sea level indicate that aquifer diffusivity decreases in low flow conditions. Analyses facilitated the development of a conceptual model of the karst subsurface in the discharge zone. Using daily data, we constructed a linear mixed model of the spring levels. This model identified long-term sea level changes, rainfall from previous weeks, and seasonal recharge patterns as the primary factors influencing longer-term spring dynamics. Full article
Show Figures

Figure 1

22 pages, 7460 KiB  
Article
Surface and Subsurface Heatwaves in the Hypersaline Dead Sea Caused by Severe Dust Intrusion
by Pavel Kishcha, Isaac Gertman and Boris Starobinets
Hydrology 2025, 12(5), 114; https://doi.org/10.3390/hydrology12050114 - 6 May 2025
Viewed by 624
Abstract
The relationship between global warming and heatwaves contributes to environmental risks. We investigate lake heatwaves (LHWs) in the Eastern Mediterranean, where dust intrusions are frequently observed. The dust intrusions are characterized by the arrival of warm air masses containing dust pollution from the [...] Read more.
The relationship between global warming and heatwaves contributes to environmental risks. We investigate lake heatwaves (LHWs) in the Eastern Mediterranean, where dust intrusions are frequently observed. The dust intrusions are characterized by the arrival of warm air masses containing dust pollution from the desert. In saline lakes, LHWs caused by dust intrusions have not been investigated in previous studies. In our study we focus on this point. It was found for the first time that, in the hypersaline Dead Sea, a severe dust intrusion (aerosol optical depth of over 3) caused the formation of LHWs, as appeared in September 2015. At the water surface, the LHWs were represented by abnormally high daily maximal and minimal surface water temperature (SWT) in comparison with their seasonally varied 90th percentile thresholds for 10 consecutive days (7–17 September). The surface LHWs’ intensity was up to 3 °C. Satellite (MODIS-Terra and METEOSAT) SWT did not detect the LHWs. Surface LHWs were accompanied by subsurface LHWs down to a depth of 20 m. The subsurface LHWs lasted longer (16 days) than the surface LHWs (10 days). There was a 4-day delay between the first date of the surface LHWs (7 September) and the start date of the subsurface LHWs (11 September). The maximal intensity of the subsurface LHWs decreased with depth from 1 m (0.6 °C) down to 5 m (0.3 °C), followed by an increase (up to 0.6 °C) at the deeper layers (from 10 m to 20 m). Taking into account that, over the Eastern Mediterranean, desert dust has increased during the past several decades, one can expect frequent occurrence of dust-related intense persistent heatwaves in the Dead Sea in the coming years. This will contribute to additional water heating and further drying up of the Dead Sea. Full article
(This article belongs to the Special Issue Lakes as Sensitive Indicators of Hydrology, Environment, and Climate)
Show Figures

Figure 1

32 pages, 3423 KiB  
Article
Investigation of Sediment Characteristics and Nutrient Content in Relation to Pilot Dredging at Kis-Balaton Water Protection System (Hungary)
by Hilda Hernádi, András Makó, Zsófia Lovász, Sándor Szoboszlay, Péter Harkai, Judit Háhn, Mihály Kocsis, Eszter Schöphen, Zoltán Tóth, András Bidló, Márk Rékási, Árpád Ferincz, Gábor Csitári and Gyöngyi Barna
Hydrology 2025, 12(5), 112; https://doi.org/10.3390/hydrology12050112 - 6 May 2025
Viewed by 844
Abstract
The internal nutrient load of natural and artificial lakes is a worldwide problem. To minimize its potential risks, the dredging of the highly eutrophic shallow first reservoir of Kis-Balaton (Lake Hídvégi) is planned in the near future. Our study aimed to evaluate the [...] Read more.
The internal nutrient load of natural and artificial lakes is a worldwide problem. To minimize its potential risks, the dredging of the highly eutrophic shallow first reservoir of Kis-Balaton (Lake Hídvégi) is planned in the near future. Our study aimed to evaluate the potential effects of dredging and desiccation on water and sediment quality. Experimental dredging was carried out in the northernmost part of Lake Hídvégi (2023). The physical and chemical characteristics of the sediment and nutrient loss during desiccation were examined in a column experiment. The relationships between the properties of leachate and sediment were identified using principal component analysis (SPSS). Spatial variations in sediment particle size distribution, nutrient content, and other chemical parameters (e.g., organic matter) suggest that deeper core sampling than the depth of preliminary dredging is necessary for a more comprehensive assessment of potential impacts. We found that spatiotemporally varying the dominance of chemical and biological processes affects the amount of and changes in phosphorus fractions under lake-/sediment-specific conditions. The readily available calcium- and iron-bound phosphorus, texture, and organic matter content of the sediment play an important role in phosphorus fixation/release. Based on our results, dredging and desiccation are feasible within the intended operating parameters. The sediment’s composition does not preclude potential agricultural disposal. Full article
(This article belongs to the Section Surface Waters and Groundwaters)
Show Figures

Figure 1

20 pages, 10040 KiB  
Article
Challenges and Future Opportunities of Groundwater Resources for Drinking Water Use: A Case Study of Slatina nad Bebravou (Slovakia)
by Marek Illes, Peter Lukac, Peter Halaj, Andrej Valek, Vera Hubacikova and Tatiana Kaletova
Hydrology 2025, 12(5), 111; https://doi.org/10.3390/hydrology12050111 - 6 May 2025
Viewed by 750
Abstract
The interlinked issues of climate change and increasing water demand are creating high pressure on water resources. In Slovakia, groundwater is a principal resource for human consumption. Consequently, an analysis was conducted of the current water yields of three springs, river discharges and [...] Read more.
The interlinked issues of climate change and increasing water demand are creating high pressure on water resources. In Slovakia, groundwater is a principal resource for human consumption. Consequently, an analysis was conducted of the current water yields of three springs, river discharges and precipitation trends, from several points of view. As a case study, we selected the area around Slatina nad Bebravou (Slovakia), which has the most relevant database. Descriptive statistics, the Mann–Kendall test and Sen’s slope were used for the trend analysis. The findings indicate that the current capacity of springs is sufficient to meet the present needs of water users. However, the downward trend in abundance, the increasing trend in water withdrawal, and the current poor state of infrastructure point to an early tipping point. Data analysis revealed a problem with the yield of springs, especially in the summer and autumn months. Full article
(This article belongs to the Section Surface Waters and Groundwaters)
Show Figures

Figure 1

30 pages, 6041 KiB  
Review
Global Perspectives on Groundwater Decontamination: Advances and Challenges of the Role of Permeable Reactive Barriers
by Graciela Cecilia Sánchez Hidalgo, Jessie Ábrego-Bonilla, Euclides Deago and Maria De Los Angeles Ortega Del Rosario
Hydrology 2025, 12(4), 98; https://doi.org/10.3390/hydrology12040098 - 21 Apr 2025
Cited by 1 | Viewed by 1047
Abstract
Ensuring access to clean water for drinking, agriculture, and recreational activities remains a global challenge. Groundwater, supplying approximately 50% of domestic water and 40% of agricultural irrigation, faces increasing threats from climate change, population growth, and unsustainable agricultural practices. These factors contribute to [...] Read more.
Ensuring access to clean water for drinking, agriculture, and recreational activities remains a global challenge. Groundwater, supplying approximately 50% of domestic water and 40% of agricultural irrigation, faces increasing threats from climate change, population growth, and unsustainable agricultural practices. These factors contribute to groundwater contamination, notably nitrate pollution resulting from excessive fertilizer use, which poses risks to water quality and public health. Addressing this issue demands innovative, efficient, and sustainable remediation technologies. Permeable reactive barriers (PRBs) have emerged as promising solutions for in situ groundwater treatment, using reactive media to transform contaminants into less toxic forms. PRBs offer advantages like low energy consumption and minimal maintenance. This study uses bibliometric analysis to explore the scientific production of PRBs for nitrate remediation, revealing research trends, key focus areas, and significant contributions. It included 141 articles published from 1975 to 2023. Early research focused on basic mechanisms and materials like zero-valent iron (ZVI), while recent studies emphasize sustainability and cost-effectiveness using low-cost materials such as agricultural byproducts. The findings highlight a growing focus on the circular economy and the need for more in situ studies to assess PRB performance under varying conditions. PRBs show significant potential for enhancing groundwater management and long-term water quality in agricultural contexts. Full article
Show Figures

Figure 1

19 pages, 12753 KiB  
Article
Impact Assessment of Floating Photovoltaic Systems on the Water Quality of Kremasta Lake, Greece
by Angeliki Mentzafou, Elias Dimitriou, Ioannis Karaouzas and Stamatis Zogaris
Hydrology 2025, 12(4), 92; https://doi.org/10.3390/hydrology12040092 - 16 Apr 2025
Viewed by 1007
Abstract
Floating photovoltaic systems (FPV) are one of the emerging technologies that are able to support the “green” energy transition. In Greece, the environmental impact assessment of such projects is still under early development. The scope of the present study was to provide insights [...] Read more.
Floating photovoltaic systems (FPV) are one of the emerging technologies that are able to support the “green” energy transition. In Greece, the environmental impact assessment of such projects is still under early development. The scope of the present study was to provide insights into the potential impacts of a small-scale FPV system on the water quality of the oligotrophic Kremasta Lake, an artificial reservoir. For this reason, a hydrodynamic and water quality model was employed. The results showed that the water quality parameter variations were insignificant and limited only in the immediate area of the FPV construction and gradually disappeared toward the shoreline. Likewise, this variation was restricted to the first few meters of depth of the water column and was eliminated onwards. The water temperature slightly decreased only in the area of close proximity to the installation. Average annual dissolved oxygen, chlorophyll-a, and nutrient concentrations were predicted not to change considerably after the panels’ construction. FPV systems can provide an attractive alternative for energy production in artificial reservoirs, especially in regions of land use conflicts that are associated with land allocation for alternative energy development. Given the limited data on the long-term impact of such projects, robust monitoring programs are essential. These initiatives rely on public support, making collaboration between stakeholders and the local community crucial. Full article
Show Figures

Figure 1

23 pages, 2956 KiB  
Article
Combining Hydro-Geochemistry and Environmental Isotope Methods to Evaluate Groundwater Quality and Health Risk (Middle Nile Delta, Egypt)
by Atef M. Abu Khatita, Robert van Geldern, Abdullah O. Bamousa, Dimitrios E. Alexakis, Esam Ismail, Wael R. Abdellah and Ibrahim A. A. Babikir
Hydrology 2025, 12(4), 72; https://doi.org/10.3390/hydrology12040072 - 27 Mar 2025
Cited by 4 | Viewed by 899
Abstract
This study aims to assess the vulnerability of groundwater in the Nile Delta to contamination and evaluate its suitability for drinking and irrigation. A total of 28 groundwater wells (ranging from 23 to 120 m in depth) and two Nile surface water samples [...] Read more.
This study aims to assess the vulnerability of groundwater in the Nile Delta to contamination and evaluate its suitability for drinking and irrigation. A total of 28 groundwater wells (ranging from 23 to 120 m in depth) and two Nile surface water samples were analyzed for total dissolved solids (TDS), heavy metals, groundwater quality index (GWQI), and hazard quotient (HQ). The findings reveal that deep groundwater (60–120 m) displays paleo-water characteristics, with low TDS, total hardness, and minimal heavy metal contamination. In contrast, shallow groundwater (<60 m) is categorized into three groups: paleo-water-like, recent Nile water with elevated TDS and heavy metals, and mixed water. Most groundwater samples (64%) are of the Ca-HCO3 type, while 28% are Na-HCO3, and 8% are Na-Cl, the latter associated with sewage infiltration. Most groundwater samples were deemed suitable for irrigation, but drinking water quality varied significantly—4% were classified as “excellent”, 64% as “good”, and 32% as “poor”. HQ analysis identified manganese as a significant health risk, with 56% of shallow groundwater samples exceeding safe levels. These findings highlight the varying groundwater quality in the Nile Delta, emphasizing concerns regarding health risks from heavy metals, particularly manganese, and the need for improved monitoring and management. Full article
(This article belongs to the Special Issue Novel Approaches in Contaminant Hydrology and Groundwater Remediation)
Show Figures

Figure 1

15 pages, 1869 KiB  
Article
Molecular Composition of Stream Dissolved Organic Matter in Cool-Temperate Forest Headwaters with Landslides, Northern Japan
by Jun’ichiro Ide, Kenta Hara, Yohei Arata, Izuki Endo, Mizue Ohashi, Hiroshi Nishimura and Takashi Gomi
Hydrology 2025, 12(3), 63; https://doi.org/10.3390/hydrology12030063 - 19 Mar 2025
Viewed by 615
Abstract
Vegetation and subsequent ecosystem services can recover over time in forest headwaters devastated by massive disasters. However, in cold regions, their recovery rates are typically slow and often imperceptible, which makes it difficult to evaluate how much ecosystem services have recovered. This study [...] Read more.
Vegetation and subsequent ecosystem services can recover over time in forest headwaters devastated by massive disasters. However, in cold regions, their recovery rates are typically slow and often imperceptible, which makes it difficult to evaluate how much ecosystem services have recovered. This study targeted dissolved organic matter (DOM), which plays a central role in biogeochemical processes in forest ecosystems, and aimed to examine whether vegetation conditions affect the quality of stream DOM from cool-temperate forest headwaters in northern Japan. To achieve this, hydrological observations and stream water sampling were conducted monthly from May to December 2021 in three small forest catchments with different landslide coverage. Dissolved organic carbon (DOC) concentration in stream water was measured, and the molecular composition of DOM was analyzed using ultrahigh-resolution mass spectrometry and compared among the three catchments. The peak-intensity-weighted average aromaticity index (AIwa) increased with DOC concentration. We found that AIwa was the highest in the undisturbed catchment, followed by the catchments with landslide coverages of 16% and 52% at a given DOC level. These results indicate that the quality of DOM could dramatically change depending not only on DOC concentration but also on vegetation disturbance in cool-temperate forest headwaters. Full article
(This article belongs to the Section Surface Waters and Groundwaters)
Show Figures

Figure 1

19 pages, 3029 KiB  
Article
Statistical Model Development for Estimating Soil Hydraulic Conductivity Through On-Site Investigations
by Muhammad Waleed, Muhammad Azhar Inam, Raffaele Albano, Abdul Samad, Hafiz Umar Farid, Muhammad Shoaib and Muhammad Usman Ali
Hydrology 2025, 12(3), 55; https://doi.org/10.3390/hydrology12030055 - 10 Mar 2025
Viewed by 1549
Abstract
In arid regions, irrigated agriculture is mainly dependent on groundwater. In Pakistan, 73% of agricultural land is directly or indirectly irrigated through groundwater. In Punjab (Pakistan), 1.2 million private tube wells are operating, mainly extracting 90% of the country’s groundwater. Most of these [...] Read more.
In arid regions, irrigated agriculture is mainly dependent on groundwater. In Pakistan, 73% of agricultural land is directly or indirectly irrigated through groundwater. In Punjab (Pakistan), 1.2 million private tube wells are operating, mainly extracting 90% of the country’s groundwater. Most of these wells are poorly designed due to improper site investigations and poor estimations of the aquifer’s hydraulic parameters. As a result, most wells become dry, causing considerable financial losses to farmers. Hence, optimizing the well-designed parameters through proper soil investigations is essential. This research aims to develop a statistical model for estimating the hydraulic conductivity of soil through on-site investigation: five sites were selected in Multan (Pakistan), and seven samples were collected at each location from 3, 6, 9,12,15,18, and 21 m depth. For hydraulic conductivity, soil texture, and porosity, soil laboratory tests were carried out. Finally, a statistical model was developed using hydrological parameters such as average grain size distribution (D50), uniformity coefficient (U), and porosity (n). Statistically computed hydraulic conductivity was verified with experimentally measured and empirically derived hydraulic conductivity. Statistically measured hydraulic conductivity showed closer agreement with experimentally measured hydraulic conductivity than the empirically measured hydraulic conductivity: root mean square error (RMSE), correlation coefficient (Cc), and mean absolute error (MAE) are, respectively, equal to 0.013, 0.93, and 0.011. Full article
Show Figures

Figure 1

25 pages, 10057 KiB  
Article
Machine Learning Analysis of Hydrological and Hydrochemical Data from the Abelar Pilot Basin in Abegondo (Coruña, Spain)
by Javier Samper-Pilar, Javier Samper-Calvete, Alba Mon, Bruno Pisani and Antonio Paz-González
Hydrology 2025, 12(3), 49; https://doi.org/10.3390/hydrology12030049 - 6 Mar 2025
Cited by 1 | Viewed by 1387
Abstract
The Abelar pilot basin in Coruña (northwestern Spain) has been monitored for hydrological and hydrochemical data to assess the effects of eucalyptus plantation and manure applications on water resources, water quality, and nitrate contamination. Here, we report the machine learning analysis of hydrological [...] Read more.
The Abelar pilot basin in Coruña (northwestern Spain) has been monitored for hydrological and hydrochemical data to assess the effects of eucalyptus plantation and manure applications on water resources, water quality, and nitrate contamination. Here, we report the machine learning analysis of hydrological and hydrochemical data from the Abelar basin. K-means cluster analysis (CA) is used to relate nitrate concentrations at the outlet of the basin with daily interflows and groundwater flows calculated with a hydrological balance. CA identifies three linearly separable clusters. Times series Gaussian process regression (TS-GPR) is employed to predict surface water nitrate concentration by incorporating hydrological variables as additional input parameters using a time series shifting. TS-GPR allows modelling nitrate concentrations based on shifted interflows and groundwater flows and chemical concentrations with R2 = 0.82 and 0.80 for training and testing, respectively. Groundwater flow from five days prior to the current date, Qg5, is the most important input parameter of the TS-GPR model. Interaction effects between the variables are found. TS-GPR validation with recent data provides results consistent with those of testing (R2 = 0.85). Model inspection by permutation feature importance and partial dependence plots shows interactions between Qg5 and Cl, and between Ca and Mg. Full article
Show Figures

Graphical abstract

18 pages, 3793 KiB  
Article
Continuous Simulations for Predicting Green Roof Hydrologic Performance for Future Climate Scenarios
by Komal Jabeen, Giovanna Grossi, Michele Turco, Arianna Dada, Stefania A. Palermo, Behrouz Pirouz, Patrizia Piro, Ilaria Gnecco and Anna Palla
Hydrology 2025, 12(2), 41; https://doi.org/10.3390/hydrology12020041 - 19 Feb 2025
Cited by 2 | Viewed by 814
Abstract
Urban green spaces, including green roofs (GRs), are vital infrastructure for climate resilience, retaining water in city landscapes and supporting ecohydrological processes. Quantifying the hydrologic performance of GRs in the urban environment for future climate scenarios is the original contribution of this research [...] Read more.
Urban green spaces, including green roofs (GRs), are vital infrastructure for climate resilience, retaining water in city landscapes and supporting ecohydrological processes. Quantifying the hydrologic performance of GRs in the urban environment for future climate scenarios is the original contribution of this research developed within the URCA! project. For this purpose, a continuous modelling approach is undertaken to evaluate the hydrological performance of GRs expressed by means of the runoff volume and peak flow reduction at the event scale for long data series (at least 20 years). To investigate the prediction of GRs performance in future climates, a simple methodological approach is proposed, using monthly projection factors for the definition of future rainfall and temperature time series, and transferring the system parametrization of the current model to the future one. The proposed approach is tested for experimental GR sites in Genoa and Rende, located in Northern and Southern Italy, respectively. Referring to both the Genoa and Rende experimental sites, simulation results are analysed to demonstrate how the GR performance varies with respect to rainfall event characteristics, including total depth, maximum rainfall intensity and ADWP for current and future scenarios. Full article
Show Figures

Graphical abstract

Back to TopTop