Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Authors = Vaishali Aggarwal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 6251 KiB  
Article
Identifying Molecular Signatures of Distinct Modes of Collective Migration in Response to the Microenvironment Using Three-Dimensional Breast Cancer Models
by Diana Catalina Ardila, Vaishali Aggarwal, Manjulata Singh, Ansuman Chattopadhyay, Srilakshmi Chaparala and Shilpa Sant
Cancers 2021, 13(6), 1429; https://doi.org/10.3390/cancers13061429 - 20 Mar 2021
Cited by 8 | Viewed by 5017
Abstract
Collective cell migration is a key feature of transition of ductal carcinoma in situ (DCIS) to invasive ductal carcinoma (IDC) among many other cancers, yet the microenvironmental factors and underlying mechanisms that trigger collective migration remain poorly understood. Here, we investigated two microenvironmental [...] Read more.
Collective cell migration is a key feature of transition of ductal carcinoma in situ (DCIS) to invasive ductal carcinoma (IDC) among many other cancers, yet the microenvironmental factors and underlying mechanisms that trigger collective migration remain poorly understood. Here, we investigated two microenvironmental factors, tumor-intrinsic hypoxia and tumor-secreted factors (secretome), as triggers of collective migration using three-dimensional (3D) discrete-sized microtumor models that recapitulate hallmarks of DCIS-IDC transition. Interestingly, the two factors induced two distinct modes of collective migration: directional and radial migration in the 3D microtumors generated from the same breast cancer cell line model, T47D. Without external stimulus, large (600 µm) T47D microtumors exhibited tumor-intrinsic hypoxia and directional migration, while small (150 µm), non-hypoxic microtumors exhibited radial migration only when exposed to the secretome of large microtumors. To investigate the mechanisms underlying hypoxia- and secretome-induced directional vs. radial migration modes, we performed differential gene expression analysis of hypoxia- and secretome-induced migratory microtumors compared with non-hypoxic, non-migratory small microtumors as controls. We propose unique gene signature sets related to tumor-intrinsic hypoxia, hypoxia-induced epithelial-mesenchymal transition (EMT), as well as hypoxia-induced directional migration and secretome-induced radial migration. Gene Set Enrichment Analysis (GSEA) and protein-protein interaction (PPI) network analysis revealed enrichment and potential interaction between hypoxia, EMT, and migration gene signatures for the hypoxia-induced directional migration. In contrast, hypoxia and EMT were not enriched in the secretome-induced radial migration, suggesting that complete EMT may not be required for radial migration. Survival analysis identified unique genes associated with low survival rate and poor prognosis in TCGA-breast invasive carcinoma dataset from our tumor-intrinsic hypoxia gene signature (CXCR4, FOXO3, LDH, NDRG1), hypoxia-induced EMT gene signature (EFEMP2, MGP), and directional migration gene signature (MAP3K3, PI3K3R3). NOS3 was common between hypoxia and migration gene signature. Survival analysis from secretome-induced radial migration identified ATM, KCNMA1 (hypoxia gene signature), and KLF4, IFITM1, EFNA1, TGFBR1 (migration gene signature) to be associated with poor survival rate. In conclusion, our unique 3D cultures with controlled microenvironments respond to different microenvironmental factors, tumor-intrinsic hypoxia, and secretome by adopting distinct collective migration modes and their gene expression analysis highlights the phenotypic heterogeneity and plasticity of epithelial cancer cells. Full article
Show Figures

Graphical abstract

22 pages, 2565 KiB  
Review
Garcinol Exhibits Anti-Neoplastic Effects by Targeting Diverse Oncogenic Factors in Tumor Cells
by Vaishali Aggarwal, Hardeep Singh Tuli, Jagjit Kaur, Diwakar Aggarwal, Gaurav Parashar, Nidarshana Chaturvedi Parashar, Samruddhi Kulkarni, Ginpreet Kaur, Katrin Sak, Manoj Kumar and Kwang Seok Ahn
Biomedicines 2020, 8(5), 103; https://doi.org/10.3390/biomedicines8050103 - 30 Apr 2020
Cited by 74 | Viewed by 6838
Abstract
Garcinol, a polyisoprenylated benzophenone, is the medicinal component obtained from fruits and leaves of Garcinia indica (G. indica) and has traditionally been extensively used for its antioxidant and anti-inflammatory properties. In addition, it has been also been experimentally illustrated to elicit [...] Read more.
Garcinol, a polyisoprenylated benzophenone, is the medicinal component obtained from fruits and leaves of Garcinia indica (G. indica) and has traditionally been extensively used for its antioxidant and anti-inflammatory properties. In addition, it has been also been experimentally illustrated to elicit anti-cancer properties. Several in vitro and in vivo studies have illustrated the potential therapeutic efficiency of garcinol in management of different malignancies. It mainly acts as an inhibitor of cellular processes via regulation of transcription factors NF-κB and JAK/STAT3 in tumor cells and have been demonstrated to effectively inhibit growth of malignant cell population. Numerous studies have highlighted the anti-neoplastic potential of garcinol in different oncological transformations including colon cancer, breast cancer, prostate cancer, head and neck cancer, hepatocellular carcinoma, etc. However, use of garcinol is still in its pre-clinical stage and this is mainly attributed to the limitations of conclusive evaluation of pharmacological parameters. This necessitates evaluation of garcinol pharmacokinetics to precisely identify an appropriate dose and route of administration, tolerability, and potency under physiological conditions along with characterization of a therapeutic index. Hence, the research is presently ongoing in the dimension of exploring the precise metabolic mechanism of garcinol. Despite various lacunae, garcinol has presented with promising anti-cancer effects. Hence, this review is motivated by the constantly emerging and promising positive anti-cancerous effects of garcinol. This review is the first effort to summarize the mechanism of action of garcinol in modulation of anti-cancer effect via regulation of different cellular processes. Full article
Show Figures

Figure 1

26 pages, 2934 KiB  
Review
Role of Reactive Oxygen Species in Cancer Progression: Molecular Mechanisms and Recent Advancements
by Vaishali Aggarwal, Hardeep Singh Tuli, Ayşegül Varol, Falak Thakral, Mukerrem Betul Yerer, Katrin Sak, Mehmet Varol, Aklank Jain, Md. Asaduzzaman Khan and Gautam Sethi
Biomolecules 2019, 9(11), 735; https://doi.org/10.3390/biom9110735 - 13 Nov 2019
Cited by 962 | Viewed by 27066
Abstract
Reactive oxygen species (ROS) play a pivotal role in biological processes and continuous ROS production in normal cells is controlled by the appropriate regulation between the silver lining of low and high ROS concentration mediated effects. Interestingly, ROS also dynamically influences the tumor [...] Read more.
Reactive oxygen species (ROS) play a pivotal role in biological processes and continuous ROS production in normal cells is controlled by the appropriate regulation between the silver lining of low and high ROS concentration mediated effects. Interestingly, ROS also dynamically influences the tumor microenvironment and is known to initiate cancer angiogenesis, metastasis, and survival at different concentrations. At moderate concentration, ROS activates the cancer cell survival signaling cascade involving mitogen-activated protein kinase/extracellular signal-regulated protein kinases 1/2 (MAPK/ERK1/2), p38, c-Jun N-terminal kinase (JNK), and phosphoinositide-3-kinase/ protein kinase B (PI3K/Akt), which in turn activate the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), matrix metalloproteinases (MMPs), and vascular endothelial growth factor (VEGF). At high concentrations, ROS can cause cancer cell apoptosis. Hence, it critically depends upon the ROS levels, to either augment tumorigenesis or lead to apoptosis. The major issue is targeting the dual actions of ROS effectively with respect to the concentration bias, which needs to be monitored carefully to impede tumor angiogenesis and metastasis for ROS to serve as potential therapeutic targets exogenously/endogenously. Overall, additional research is required to comprehend the potential of ROS as an effective anti-tumor modality and therapeutic target for treating malignancies. Full article
(This article belongs to the Special Issue Antitumor Agents from Natural Sources)
Show Figures

Figure 1

22 pages, 1299 KiB  
Review
Fisetin and Quercetin: Promising Flavonoids with Chemopreventive Potential
by Dharambir Kashyap, Vivek Kumar Garg, Hardeep Singh Tuli, Mukerrem Betul Yerer, Katrin Sak, Anil Kumar Sharma, Manoj Kumar, Vaishali Aggarwal and Sardul Singh Sandhu
Biomolecules 2019, 9(5), 174; https://doi.org/10.3390/biom9050174 - 6 May 2019
Cited by 225 | Viewed by 22943
Abstract
Despite advancements in healthcare facilities for diagnosis and treatment, cancer remains the leading cause of death worldwide. As prevention is always better than cure, efficient strategies are needed in order to deal with the menace of cancer. The use of phytochemicals as adjuvant [...] Read more.
Despite advancements in healthcare facilities for diagnosis and treatment, cancer remains the leading cause of death worldwide. As prevention is always better than cure, efficient strategies are needed in order to deal with the menace of cancer. The use of phytochemicals as adjuvant chemotherapeutic agents in heterogeneous human carcinomas like breast, colon, lung, ovary, and prostate cancers has shown an upward trend during the last decade or so. Flavonoids are well-known products of plant derivatives that are reportedly documented to be therapeutically active phytochemicals against many diseases encompassing malignancies, inflammatory disorders (cardiovascular disease, neurodegenerative disorder), and oxidative stress. The current review focuses on two key flavonols, fisetin and quercetin, known for their potential pharmacological relevance. Also, efforts have been made to bring together most of the concrete studies pertaining to the bioactive potential of fisetin and quercetin, especially in the modulation of a range of cancer signaling pathways. Further emphasis has also been made to highlight the molecular action of quercetin and fisetin so that one could explore cancer initiation pathways and progression, which could be helpful in designing effective treatment strategies. Full article
(This article belongs to the Special Issue Antitumor Agents from Natural Sources)
Show Figures

Figure 1

18 pages, 2685 KiB  
Review
Molecular Mechanisms of Action of Tocotrienols in Cancer: Recent Trends and Advancements
by Vaishali Aggarwal, Dharambir Kashyap, Katrin Sak, Hardeep Singh Tuli, Aklank Jain, Ashun Chaudhary, Vivek Kumar Garg, Gautam Sethi and Mukerrem Betul Yerer
Int. J. Mol. Sci. 2019, 20(3), 656; https://doi.org/10.3390/ijms20030656 - 2 Feb 2019
Cited by 98 | Viewed by 11957
Abstract
Tocotrienols, found in several natural sources such as rice bran, annatto seeds, and palm oil have been reported to exert various beneficial health promoting properties especially against chronic diseases, including cancer. The incidence of cancer is rapidly increasing around the world not only [...] Read more.
Tocotrienols, found in several natural sources such as rice bran, annatto seeds, and palm oil have been reported to exert various beneficial health promoting properties especially against chronic diseases, including cancer. The incidence of cancer is rapidly increasing around the world not only because of continual aging and growth in global population, but also due to the adaptation of Western lifestyle behaviours, including intake of high fat diets and low physical activity. Tocotrienols can suppress the growth of different malignancies, including those of breast, lung, ovary, prostate, liver, brain, colon, myeloma, and pancreas. These findings, together with the reported safety profile of tocotrienols in healthy human volunteers, encourage further studies on the potential application of these compounds in cancer prevention and treatment. In the current article, detailed information about the potential molecular mechanisms of actions of tocotrienols in different cancer models has been presented and the possible effects of these vitamin E analogues on various important cancer hallmarks, i.e., cellular proliferation, apoptosis, angiogenesis, metastasis, and inflammation have been briefly analyzed. Full article
Show Figures

Figure 1

Back to TopTop