Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Authors = Thomas Baumgartl ORCID = 0000-0003-1613-7522

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 14755 KiB  
Article
Assessing the Post-Fire Recovery of Mined-Under Temperate Highland Peat Swamps on Sandstone
by Monia Anzooman, Phill B. McKenna, Natasha Ufer, Thomas Baumgartl, Neil McIntyre and Mandana Shaygan
Land 2024, 13(12), 2253; https://doi.org/10.3390/land13122253 - 23 Dec 2024
Viewed by 1241
Abstract
The Temperate Highland Peat Swamps on Sandstone (TPHSS) in the Sydney Basin of Australia provide critical ecological and hydrological services but are increasingly threatened by wildfires and human activities such as underground mining. The 2019–2020 wildfires severely impacted these swamps, raising concerns about [...] Read more.
The Temperate Highland Peat Swamps on Sandstone (TPHSS) in the Sydney Basin of Australia provide critical ecological and hydrological services but are increasingly threatened by wildfires and human activities such as underground mining. The 2019–2020 wildfires severely impacted these swamps, raising concerns about their resilience and recovery. This study assessed the post-fire recovery of swamps and evaluated the ability of remote sensing techniques to determine recovery patterns. Specifically, it investigated differences in post-fire recovery patterns between swamps where groundwater levels and soil moisture contents were impacted by underground mining and those unimpacted by mining. Two mined and one non-mined swamp were studied. Soil moisture contents were monitored at five sites, and previously performed vegetation field surveys (2016–2022) were utilized. Remote sensing indices, including the Normalized Difference Vegetation Index (NDVI) and Soil Moisture Index (SMI), were calculated and compared with ground data to map post-fire responses. The results showed that hydrological conditions directly affect post-fire recovery, with slower recovery in mined swamps compared to non-mined ones. This study demonstrated that NDVI and SMI indices can effectively determine recovery patterns in terms of vegetation and hydrology. However, evaluating the recovery pattern of specific vegetation species requires more frequent field surveys. Full article
Show Figures

Figure 1

20 pages, 4203 KiB  
Article
Impact of Inline Polyacrylamide Polymer Flocculation on the Mechanical and Hydrological Properties of Saline Tailings
by Bob Boshrouyeh, Mansour Edraki, Thomas Baumgartl, Allan Costine, Sebastian Quintero Olaya, Kateřina Lepková and Deepak Dwivedi
Minerals 2024, 14(11), 1180; https://doi.org/10.3390/min14111180 - 20 Nov 2024
Viewed by 1164
Abstract
This study examines the geotechnical and hydro-mechanical behaviour of a model slurry used in high-solids, high-salinity applications, both before and after inline flocculation with an anionic polyacrylamide. Initial evaluations showed untreated tailings (UT) with a water content of 107%, void ratio of 2.6, [...] Read more.
This study examines the geotechnical and hydro-mechanical behaviour of a model slurry used in high-solids, high-salinity applications, both before and after inline flocculation with an anionic polyacrylamide. Initial evaluations showed untreated tailings (UT) with a water content of 107%, void ratio of 2.6, and dry density of 0.711 t/m3, compared to polymer-amended tailings (PAT) with 53% water content, a void ratio of 1.6, and a dry density of 1.069 t/m3. Post-flocculation consolidometer tests revealed a distinct consolidation mode, with PAT showing 60% less settlement within the first 48 h and achieving 50% more free water drainage. Polymer treatment improved consolidation parameters, yielding a lower compressibility index (Cc of 0.74 vs. 1.05 for raw slurry), a higher coefficient of consolidation (Cv of 0.005 cm2/s for PAT vs. 0.0009 cm2/s for raw slurry), and an increased water retention capacity. Additionally, PAT demonstrated a final void ratio of 0.62 compared to 0.51 for the UT sample and an internal porosity characterised by discrete voids, supporting enhanced stability for long-term rehabilitation. These findings underscore the potential of inline flocculation to improve tailings management in saline conditions. Full article
Show Figures

Figure 1

17 pages, 6623 KiB  
Article
Impact of Hillslope Agriculture on Soil Compaction and Seasonal Water Dynamics in a Temperate Vineyard
by Jasmina Defterdarović, Lana Filipović, Gabrijel Ondrašek, Igor Bogunović, Ivan Dugan, Vinod Phogat, Hailong He, Mehran Rezaei Rashti, Ehsan Tavakkoli, Thomas Baumgartl, Abolfazl Baghbani, Timothy I. McLaren and Vilim Filipović
Land 2024, 13(5), 588; https://doi.org/10.3390/land13050588 - 28 Apr 2024
Cited by 2 | Viewed by 1965
Abstract
Major losses of agricultural production and soils are caused by erosion, which is especially pronounced on hillslopes due to specific hydrological processes and heterogeneity. Therefore, the aim of this study was to assess the impact of agricultural management on the compaction, infiltration, and [...] Read more.
Major losses of agricultural production and soils are caused by erosion, which is especially pronounced on hillslopes due to specific hydrological processes and heterogeneity. Therefore, the aim of this study was to assess the impact of agricultural management on the compaction, infiltration, and seasonal water content dynamics of the hillslope. Measurements were made at the hilltop and footslope, i.e., soil water content and potential were measured using sensors, wick lysimeters were used to quantify water flux, while a mini-disk infiltrometer was used to measure the infiltration rate and calculate the unsaturated hydraulic conductivity (K_unsat). Soil texture showed differences between hillslope positions, i.e., at the hilltop after 50 cm depth, the soil is classified as silty clay loam, and from 75 cm onward, the soil is silty clay, while at the footslope, the soil is silt loam even at the deeper depths. The results show a higher K_unsat at the footslope as well as higher average water volumes collected in wick lysimeters compared to the hilltop. Average water volumes showed a statistically significant difference at p < 0.01 between the hilltop and the footslope. The soil water content and water potential sensors showed higher values at the footslope at all depths, i.e., 8.0% at 15 cm, 8.4% at 30 cm, and 27.3% at 45 cm. The results show that, even though the vineyard is located in a relatively small area, soil heterogeneity is present, affecting the water flow along the hillslope. This suggests the importance of observing water movement in the soil, especially today when facing extreme weather (e.g., short-term high-intensity rainfall events) in order to protect soil and water resources. Full article
(This article belongs to the Special Issue Ecosystem Disturbances and Soil Properties)
Show Figures

Figure 1

16 pages, 12253 KiB  
Article
Soil–Water Dynamics Investigation at Agricultural Hillslope with High-Precision Weighing Lysimeters and Soil–Water Collection Systems
by Vedran Krevh, Jannis Groh, Lana Filipović, Horst H. Gerke, Jasmina Defterdarović, Sally Thompson, Mario Sraka, Igor Bogunović, Zoran Kovač, Nathan Robinson, Thomas Baumgartl and Vilim Filipović
Water 2023, 15(13), 2398; https://doi.org/10.3390/w15132398 - 28 Jun 2023
Cited by 4 | Viewed by 2416
Abstract
A quantitative understanding of actual evapotranspiration (ETa) and soil–water dynamics in a hillslope agroecosystem is vital for sustainable water resource management and soil conservation; however, the complexity of processes and conditions involving lateral subsurface flow (LSF) can be a limiting factor [...] Read more.
A quantitative understanding of actual evapotranspiration (ETa) and soil–water dynamics in a hillslope agroecosystem is vital for sustainable water resource management and soil conservation; however, the complexity of processes and conditions involving lateral subsurface flow (LSF) can be a limiting factor in the full comprehension of hillslope soil–water dynamics. The research was carried out at SUPREHILL CZO located on a hillslope agroecosystem (vineyard) over a period of two years (2021–2022) by combining soil characterization and field hydrological measurements, including weighing lysimeters, sensor measurements, and LSF collection system measurements. Lysimeters were placed on the hilltop and the footslope, both having a dynamic controlled bottom boundary, which corresponded to field pressure head measurements, to mimic field soil–water dynamics. Water balance components between the two positions on the slope were compared with the goal of identifying differences that might reveal hydrologically driven differences due to LSF paths across the hillslope. The usually considered limitations of these lysimeters, or the borders preventing LSF through the domain, acted as an aid within this installation setup, as the lack of LSF was compensated for through the pumping system at the footslope. The findings from lysimeters were compared with LSF collection system measurements. Weighing lysimeter data indicated that LSF controlled ETa rates. The results suggest that the onset of LSF contributes to the spatial crop productivity distribution in hillslopes. The present approach may be useful for investigating the impact of LSF on water balance components for similar hillslope sites and crops or other soil surface covers. Full article
Show Figures

Figure 1

17 pages, 11532 KiB  
Article
Using Dye and Bromide Tracers to Identify Preferential Water Flow in Agricultural Hillslope Soil under Controlled Conditions
by Jasmina Defterdarović, Vedran Krevh, Lana Filipović, Zoran Kovač, Vinod Phogat, Hailong He, Thomas Baumgartl and Vilim Filipović
Water 2023, 15(12), 2178; https://doi.org/10.3390/w15122178 - 9 Jun 2023
Cited by 1 | Viewed by 2500
Abstract
Processes in hillslope soils present a particular challenge for agricultural production and soil management due to their hydropedological specifics and high soil erosion risk. Soil heterogeneities can cause preferential and/or lateral flow on the entire hillslope resulting in the off-site movement of water, [...] Read more.
Processes in hillslope soils present a particular challenge for agricultural production and soil management due to their hydropedological specifics and high soil erosion risk. Soil heterogeneities can cause preferential and/or lateral flow on the entire hillslope resulting in the off-site movement of water, fertilizers and chemicals used in crop production. A study was conducted under controlled conditions in a laboratory with undisturbed soil cores (250 cm3), which were used to estimate the soil hydraulic properties (SHP) using HYPROP and WP4C devices, while undisturbed soil columns (diameter = 16 cm, length = 25 cm) were used for the evaluation of preferential flow pathways using potassium bromide and Brilliant Blue. Samples were excavated in triplicate from the hilltop, backslope and footslope regions within the inter-rows of a vineyard from a critical zone observatory, SUPREHILL, in Croatia in Dystric Luvic Stagnosol. The aim of this study was to determine if the erosion-affected hillslope position affected the physical, chemical and hydraulic properties of soil and to identify water flow and possible preferential flow using dye and bromide tracers. The results of the sensor measurements and estimated SHPs were in agreement, showing a faster leaching of the irrigated rainwater in the footslope column. The tracer experiments showed variability even in the columns taken from the same position on the hillslope, which can be linked to plant roots and soil fauna activity. Altogether, the results showed a deeper loose layer at the footslope as a consequence of the soil erosion, which then resulted in higher hydraulic conductivity and the leached mass of the bromide due to better soil structure and pore connectivity. Thus, due to significant differences in the leached mass of bromide, this research should be later expanded in field experiments to reveal the impact of surface runoff, subsurface preferential and lateral flow on a larger scale. Full article
Show Figures

Figure 1

26 pages, 3627 KiB  
Article
Improving Soil Stability with Alum Sludge: An AI-Enabled Approach for Accurate Prediction of California Bearing Ratio
by Abolfazl Baghbani, Minh Duc Nguyen, Ali Alnedawi, Nick Milne, Thomas Baumgartl and Hossam Abuel-Naga
Appl. Sci. 2023, 13(8), 4934; https://doi.org/10.3390/app13084934 - 14 Apr 2023
Cited by 17 | Viewed by 3302
Abstract
Alum sludge is a byproduct of water treatment plants, and its use as a soil stabilizer has gained increasing attention due to its economic and environmental benefits. Its application has been shown to improve the strength and stability of soil, making it suitable [...] Read more.
Alum sludge is a byproduct of water treatment plants, and its use as a soil stabilizer has gained increasing attention due to its economic and environmental benefits. Its application has been shown to improve the strength and stability of soil, making it suitable for various engineering applications. However, to go beyond just measuring the effects of alum sludge as a soil stabilizer, this study investigates the potential of artificial intelligence (AI) methods for predicting the California bearing ratio (CBR) of soils stabilized with alum sludge. Three AI methods, including two black box methods (artificial neural network and support vector machines) and one grey box method (genetic programming), were used to predict CBR, based on a database with nine input parameters. The results demonstrate the effectiveness of AI methods in predicting CBR with good accuracy (R2 values ranging from 0.94 to 0.99 and MAE values ranging from 0.30 to 0.51). Moreover, a novel approach, using genetic programming, produced an equation that accurately estimated CBR, incorporating seven inputs. The analysis of parameter sensitivity and importance, revealed that the number of hammer blows for compaction was the most important parameter, while the parameters for maximum dry density of soil and mixture were the least important. This study highlights the potential of AI methods as a useful tool for predicting the performance of alum sludge as a soil stabilizer. Full article
(This article belongs to the Section Environmental Sciences)
Show Figures

Figure 1

17 pages, 6467 KiB  
Article
Investigation of Hillslope Vineyard Soil Water Dynamics Using Field Measurements and Numerical Modeling
by Vedran Krevh, Jannis Groh, Lutz Weihermüller, Lana Filipović, Jasmina Defterdarović, Zoran Kovač, Ivan Magdić, Boris Lazarević, Thomas Baumgartl and Vilim Filipović
Water 2023, 15(4), 820; https://doi.org/10.3390/w15040820 - 20 Feb 2023
Cited by 4 | Viewed by 3572
Abstract
Soil heterogeneities can impact hillslope hydropedological processes (e.g., portioning between infiltration and runoff), creating a need for in-depth knowledge of processes governing water dynamics and redistribution. The presented study was conducted at the SUPREHILL Critical Zone Observatory (CZO) (hillslope vineyard) in 2021. A [...] Read more.
Soil heterogeneities can impact hillslope hydropedological processes (e.g., portioning between infiltration and runoff), creating a need for in-depth knowledge of processes governing water dynamics and redistribution. The presented study was conducted at the SUPREHILL Critical Zone Observatory (CZO) (hillslope vineyard) in 2021. A combination of field investigation (soil sampling and monitoring campaign) and numerical modeling with hydrological simulator HYDRUS-1D was used to explore the water dynamics in conjunction with data from a sensor network (soil water content (SWC) and soil-water potential (SWP) sensors), along the hillslope (hilltop, backslope, and footslope). Soil hydraulic properties (SHP) were estimated based on (i) pedotransfer functions (PTFs), (ii) undisturbed soil cores, and (iii) sensor network data, and tested in HYDRUS. Additionally, a model ensemble mean from HYDRUS simulations was calculated with PTFs. The highest agreement of simulated with observed SWC for 40 cm soil depth was found with the combination of laboratory and field data, with the lowest average MAE, RMSE and MAPE (0.02, 0.02, and 5.34%, respectively), and highest average R2 (0.93), while at 80 cm soil depth, PTF model ensemble performed better (MAE = 0.03, RMSE = 0.03, MAPE = 7.55%, R2 = 0.81) than other datasets. Field observations indicated that heterogeneity and spatial variability regarding soil parameters were present at the site. Over the hillslope, SWC acted in a heterogeneous manner, which was most pronounced during soil rewetting. Model results suggested that the incorporation of field data expands model performance and that the PTF model ensemble is a feasible option in the absence of laboratory data. Full article
Show Figures

Graphical abstract

13 pages, 2040 KiB  
Article
Leached Copper Correlation with Dissolved Organic Carbon in Sloped Vineyard Soil
by Lana Filipović, Jasmina Defterdarović, Rui Chen, Vedran Krevh, Horst H. Gerke, Thomas Baumgartl, Zoran Kovač, Gabrijel Ondrašek, Stanko Ružičić, Hailong He, Jaromir Dusek and Vilim Filipović
Water 2023, 15(4), 800; https://doi.org/10.3390/w15040800 - 17 Feb 2023
Cited by 11 | Viewed by 2895
Abstract
The solubility and mobility of copper (Cu) in soil is strongly influenced by the presence of dissolved organic carbon (DOC); however, the interactions between Cu and DOC are complex and not yet fully understood. In this study, Cu and DOC concentrations were measured [...] Read more.
The solubility and mobility of copper (Cu) in soil is strongly influenced by the presence of dissolved organic carbon (DOC); however, the interactions between Cu and DOC are complex and not yet fully understood. In this study, Cu and DOC concentrations were measured monthly for two years in leachates from self-constructed lysimeters installed at inter- and intra-row vineyard hilltop, backslope, and footslope areas at the SUPREHILL Critical Zone Observatory, Croatia. The aim was to quantify Cu and DOC leaching from the hilltop towards the backslope and the footslope. The assumed strong relationship between Cu and DOC in the leachates was statistically analyzed and explained using chemical equilibrium software. Leachates were analyzed for pH, EC, DOC, Cu, and major ion concentrations. The highest Cu concentrations found in leachates from the intra-row footslope suggested Cu downhill transport. Although not strong, a significant positive correlation between Cu and DOC in footslope leachates confirmed the relevance of Cu complexation by DOC. Speciation confirmed that more than 99.9% of total Cu in leachates was found as a Cu-DOC complex. Data implied the role of soil water flow pathways in explaining Cu downhill transport. Critical timing for applying Cu fungicides at sloped vineyards was highlighted. Full article
Show Figures

Figure 1

12 pages, 2266 KiB  
Article
Quantification of Intra- vs. Inter-Row Leaching of Major Plant Nutrients in Sloping Vineyard Soils
by Lana Filipović, Vedran Krevh, Rui Chen, Jasmina Defterdarović, Zoran Kovač, Ivan Mustać, Igor Bogunović, Hailong He, Thomas Baumgartl, Horst H. Gerke, Gurpal S. Toor and Vilim Filipović
Water 2023, 15(4), 759; https://doi.org/10.3390/w15040759 - 14 Feb 2023
Cited by 4 | Viewed by 3069
Abstract
Nutrient leaching from agricultural soils presents an economic loss for farmers and can degrade the quality of the surrounding environment. Thus, leachates from 18 in situ wick lysimeters, installed at 40 cm soil depth at the vineyard hilltop, backslope, and footslope intra- and [...] Read more.
Nutrient leaching from agricultural soils presents an economic loss for farmers and can degrade the quality of the surrounding environment. Thus, leachates from 18 in situ wick lysimeters, installed at 40 cm soil depth at the vineyard hilltop, backslope, and footslope intra- and inter-row area (SUPREHILL Critical Zone Observatory, Croatia) were collected monthly over two years and analyzed for major plant nutrient ions. Our objectives were to quantify nutrient losses via leaching from the hilltop towards the backslope and to the footslope, and to compare leaching from vine plant rows (intra-row) with grassed areas between vine rows (inter-row). We found that the concentrations of nitrate, orthophosphate, and potassium were significantly higher in leachates collected at the footslope as compared to the hilltop and backslope only at intra- and not at inter-row positions, while ammonium was independent of the slope and row positions. The vineyard intra-row is identified as the probable spatial origin of nutrient leaching along the slope, thus confirming spatially different contributions of overall hillslope to major plant nutrients leaching. The experimental field scheme used in this study, which separately analyses vineyard intra- and inter-row, was confirmed to be an adequate approach for optimizing vineyard management practices. Full article
Show Figures

Figure 1

17 pages, 2579 KiB  
Review
Reclamation of Salt-Affected Land: A Review
by Mandana Shaygan and Thomas Baumgartl
Soil Syst. 2022, 6(3), 61; https://doi.org/10.3390/soilsystems6030061 - 13 Jul 2022
Cited by 46 | Viewed by 16154
Abstract
Reclamation of salt-affected soil has been identified by the FAO as being critical to meet the needs to increase agricultural productivity. This paper reviews commonly used reclamation methods for salt-affected soils, and provides critical identifiers for an effective reclamation practice of salt-affected soil. [...] Read more.
Reclamation of salt-affected soil has been identified by the FAO as being critical to meet the needs to increase agricultural productivity. This paper reviews commonly used reclamation methods for salt-affected soils, and provides critical identifiers for an effective reclamation practice of salt-affected soil. There are widely used methods to reduce salinity and sodicity of salt-affected soils, including salt leaching, addition of amendments, revegetation using halophytes and salt scrapping. Not all reclamation techniques are suitable for salt-affected land. The reclamation strategy must be tailored to the site, and based on understanding the soil, plant and climate interactions. On some occasions, a combination of techniques may be required for reclamation. This can include salt scrapping to remove salts from the surface soil, the addition of physical amendments to improve soil pore systems and enhance salt leaching, followed by amelioration of soil by chemical amendments to preserve soil physical conditions, and then halophyte establishment to expand the desalinization zone. This study reveals that soil hydro-geochemical models are effective predictive tools to ascertain the best reclamation practice tailored to salt-affected land. However, models need to be calibrated and validated to the conditions of the land before being applied as a tool to combat soil salinity. Full article
(This article belongs to the Special Issue Advances in the Prediction and Remediation of Soil Salinization)
Show Figures

Figure 1

18 pages, 4198 KiB  
Article
Investigation of the Attenuation and Release of Cu2+ Ions by Polymer-Treated Tailings
by Mohammad Boshrouyeh Ghandashtani, Mansour Edraki, Thomas Baumgartl, Allan Costine and Samar Amari
Minerals 2022, 12(7), 846; https://doi.org/10.3390/min12070846 - 1 Jul 2022
Cited by 3 | Viewed by 2551
Abstract
This study investigated the attenuation and release behaviour of copper ions using a standard kaolin-silt slurry as the synthetic tailings in a high solids/high salinity application before and after inline flocculation. A homogenous, synthetic tailings slurry was prepared in a 0.6 M NaCl [...] Read more.
This study investigated the attenuation and release behaviour of copper ions using a standard kaolin-silt slurry as the synthetic tailings in a high solids/high salinity application before and after inline flocculation. A homogenous, synthetic tailings slurry was prepared in a 0.6 M NaCl solution and treated in a low-shear mixer by adding Magnafloc® 336 flocculant. Following the evaluation of morphological properties of both the untreated (UT) and polymer-treated tailings (PT), identical equilibrium tests were performed via the bottle-point method constant concentration technique. The maximum copper ions uptake capacity of polymer-treated tailings was 25% more than the untreated slurry at the equilibrium state in a chemisorption process in which the ions had the capability of binding onto one location on the sorbent, which could be influencing other binding sites on the same sorbent. Polymer treatment resulted in a highly porous structure that exhibited an increased capacity to adsorb and retain copper ions compared to the UT materials. This behaviour indicates the strong binding between the copper ions and active site of the treated tailings particles with greater capability of this material for preserving heavy metal ions within their structure across a wide pH range (2–10) compared to the UT materials. The results advance the fundamental understanding of how inline flocculation can considerably improve the sorption capacity of high solids/high salinity tailings favouring potential long-term rehabilitation purposes at mine closure and the role of sorption and desorption of heavy metal ions’ behaviour play to achieve this goal. Full article
Show Figures

Figure 1

19 pages, 2834 KiB  
Article
Lead Mobilization and Speciation in Mining Waste: Experiments and Modeling
by Clémentine Drapeau, Rabei Argane, Cécile Delolme, Denise Blanc, Mostafa Benzaazoua, Rachid Hakkou, Thomas Baumgartl, Mansour Edraki and Laurent Lassabatere
Minerals 2021, 11(6), 606; https://doi.org/10.3390/min11060606 - 5 Jun 2021
Cited by 9 | Viewed by 3831
Abstract
Mining produces significant amounts of solid mineral waste. Mine waste storage facilities are often challenging to manage and may cause environmental problems. Mining waste is often linked to contaminated mine drainage, including acidic waters with more or less elevated concentrations of trace metals [...] Read more.
Mining produces significant amounts of solid mineral waste. Mine waste storage facilities are often challenging to manage and may cause environmental problems. Mining waste is often linked to contaminated mine drainage, including acidic waters with more or less elevated concentrations of trace metals such as lead. This work presents a study on the mobilization of lead from waste from two typical mining sites: Zeida and Mibladen, two now-closed former Pb–Zn mines in the Moulouya region of Morocco. Our research investigates the mobilization potential of Pb from the waste of these mines. The study involved acid–base neutralization capacity tests (ANC–BNC) combined with geochemical modeling. Experimental data allowed for the quantification of the buffering capacity of the samples and the mobilization rates of lead as a function of pH. The geochemical model was fitted to experimental results with thermodynamic considerations. The geochemical model allowed for the identification of the mineral phases involved in providing the buffering capacity of carbonated mining waste (Mibladen) and the meager buffering capacity of the silicate mining waste (Zeida). These cases are representative of contaminated neutral drainage (CND) and acid mine drainage (AMD), respectively. The results highlight the consistency between the ANC–BNC experimental data and the associated modeling in terms of geochemical behavior, validating the approach and identifying the main mechanisms involved. The modeling approach identifies the dissolution of the main solid phases, which impact the pH and the speciation of lead as a function of the pH. This innovative approach, combining ANC–BNC experiments and geochemical modeling, allowed for the accurate identification of mineral phases and surface complexation phenomena, which control the release of lead and its speciation in drainage solutions, as well as within solid phases, as a function of pH. Full article
(This article belongs to the Special Issue Pollutants in Acid Mine Drainage)
Show Figures

Figure 1

20 pages, 3844 KiB  
Article
An Empirical Analysis of Sediment Export Dynamics from a Constructed Landform in the Wet Tropics
by Shahla Yavari, Neil McIntyre and Thomas Baumgartl
Water 2021, 13(8), 1087; https://doi.org/10.3390/w13081087 - 15 Apr 2021
Cited by 1 | Viewed by 2775
Abstract
Although plot-scale erosion experiments are numerous, there are few studies on constructed landforms. This limits the understanding of their long-term stability, which is especially important for planning mined land rehabilitation. The objective of this study was to gain insight into the erosion processes [...] Read more.
Although plot-scale erosion experiments are numerous, there are few studies on constructed landforms. This limits the understanding of their long-term stability, which is especially important for planning mined land rehabilitation. The objective of this study was to gain insight into the erosion processes in a 30 × 30 m trial plot on a mine waste rock dump in tropical northern Australia. The relationships between rainfall, runoff and suspended and bedload sediment export were assessed at annual, seasonal, inter-event and intra-event timescales. During a five-year study period, 231 rainfall–runoff–sediment export events were examined. The measured bedload and suspended sediments (mainly represented in nephelometric turbidity units (NTU)) showed the dominance of the wet season and heavy rainfall events. The bedload dominated the total mass, although the annual bedload diminished by approximately 75% over the five years, with greater flow energy required over time to mobilise the same bedload. The suspended load was more sustained, though it also exhibited an exhaustion process, with equal rainfall and runoff volumes and intensities, leading to lower NTU values over time. Intra-event NTU dynamics, including runoff-NTU time lags and hysteretic behaviours, were somewhat random from one event to the next, indicating the influence of the antecedent distribution of mobilisable sediments. The value of the results for supporting predictive modelling is discussed. Full article
(This article belongs to the Section Water Erosion and Sediment Transport)
Show Figures

Figure 1

16 pages, 2871 KiB  
Article
ANC–BNC Titrations and Geochemical Modeling for Characterizing Calcareous and Siliceous Mining Waste
by Clémentine Drapeau, Cécile Delolme, Clément Vézin, Denise Blanc, Thomas Baumgartl, Mansour Edraki and Laurent Lassabatere
Minerals 2021, 11(3), 257; https://doi.org/10.3390/min11030257 - 28 Feb 2021
Cited by 3 | Viewed by 3429
Abstract
Pyrite and calcite are mineral phases that play a major role in acid and neutral mine drainage processes. However, the prediction of acid mine drainage (AMD) or contaminated neutral drainage (CND) requires knowledge of the mineral composition of mining waste and the related [...] Read more.
Pyrite and calcite are mineral phases that play a major role in acid and neutral mine drainage processes. However, the prediction of acid mine drainage (AMD) or contaminated neutral drainage (CND) requires knowledge of the mineral composition of mining waste and the related potential for element release. This paper studies the combination of acid–base neutralizing capacity (ANC–BNC) with geochemical modeling for the characterization of mining waste and prediction of AMD and CND. The proposed approach is validated with three synthetic mineral assemblages: (1) siliceous sand with pyrite only, representing mining waste responsible for AMD, (2) siliceous sand with calcite and pyrite, representing calcareous waste responsible for CND, and (3) siliceous sand with calcite only, simulating calcareous matrices without any pyrite. The geochemical modeling approach using PHREEQC software was used to model pH evolution and main element release as a function of the added amount of acid or base over the entire pH range: 1 < pH < 13. For calcareous matrices (sand with calcite), the results are typical of a carbonated environment, the geochemistry of which is well known. For matrices containing pyrite, the results identify different pH values favoring the dissolution of pyrite: pH = 2 in a pyrite-only environment and pH = 6 where pyrite coexists with calcite. The neutral conditions can be explained by the buffering capacity of calcite, which allows iron oxyhydroxide precipitation. Major element release is then related to the dissolution and precipitation of the mineral assemblages. The geochemical modeling allows the prediction of element speciation in the solid and liquid phases. Our findings clearly prove the potential of combined ANC–BNC experiments along with geochemical modeling for the characterization of mining waste and the assessment of risk of AMD and CND. Full article
(This article belongs to the Special Issue Pollutants in Acid Mine Drainage)
Show Figures

Figure 1

17 pages, 4335 KiB  
Article
Modelling Hydrological Performance of a Bauxite Residue Profile for Deposition Management of a Storage Facility
by Mandana Shaygan, Brent Usher and Thomas Baumgartl
Water 2020, 12(7), 1988; https://doi.org/10.3390/w12071988 - 14 Jul 2020
Cited by 3 | Viewed by 2945
Abstract
Accurate scheduling of bauxite residue (red mud) deposition time is required in order to prevent the risk of storage facility failure. This study was conducted to precisely determine the hydraulic parameters of bauxite residue and investigate the capability of HYDRUS to accurately estimate [...] Read more.
Accurate scheduling of bauxite residue (red mud) deposition time is required in order to prevent the risk of storage facility failure. This study was conducted to precisely determine the hydraulic parameters of bauxite residue and investigate the capability of HYDRUS to accurately estimate the residue moisture profile and the timing for its deposition. The hydraulic properties of the bauxite residue profile were determined by solving an inverse problem. A one-dimensional hydrological model (HYDRUS-1D) was validated using a 300 mm long column filled with bauxite residue and exposed to a dynamic lower boundary condition. After numerical validation, the model was used to simulate the moisture profile of bauxite residue under the climatic conditions of an alumina refinery site in Queensland, Australia, as well as other scenarios (i.e., high (300 mm) and small (1.7 mm) rainfall events of the site). This study showed that the HYDRUS model can be used as a predictive tool to precisely estimate the moisture profile of the bauxite residue and that the timing for the re-deposition of the bauxite residue can be estimated by understanding the moisture profile and desired shear strength of the residue. This study revealed that the examined bauxite residue approaches field capacity (water potential −10 kPa) after three days from a low rainfall event (<1.7 mm) and after eight days from an intense rainfall event (300 mm) at the time of disposal. This suggests that the bauxite residue can be deposited every four days after low rainfall events (as low as 1.7 mm) and every nine days after high rainfall events (as high as 300 mm) at the time of deposition, if bauxite residue experiences an initial drying period following deposition. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

Back to TopTop