Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Authors = Sheldon S. Williamson

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1102 KB  
Article
Modeling, Analysis, Design, and Simulation of a Bidirectional DC-DC Converter with Integrated Snow Removal Functionality for Solar PV Electric Vehicle Charger Applications
by Sandra Aragon-Aviles, Arvind H. Kadam, Tarlochan Sidhu and Sheldon S. Williamson
Energies 2022, 15(8), 2961; https://doi.org/10.3390/en15082961 - 18 Apr 2022
Cited by 19 | Viewed by 6530
Abstract
Different factors affect solar photovoltaic (PV) systems by decreasing input energy and reducing the conversion efficiency of the system. One of these factors is the effect of snow cover on PV panels, a subject lacking sufficient academic research. This paper reviews and compares [...] Read more.
Different factors affect solar photovoltaic (PV) systems by decreasing input energy and reducing the conversion efficiency of the system. One of these factors is the effect of snow cover on PV panels, a subject lacking sufficient academic research. This paper reviews and compares current research for snow removal in solar PV modules. Additionally, this paper presents the design, analysis and modelling of a smart heating system for solar PV Electric Vehicle (EV) charging applications. The system is based on a bidirectional DC-DC converter that redirects the grid/EV-battery power into heating of the solar PV modules, thus removing snow cover, as well as providing the function of MPPT when required to charge the EV battery pack. A control scheme for each mode of operation was designed. Subsequently, a performance evaluation by simulating the system under various conditions is presented validating the usefulness of the proposed converter to be used in solar PV systems under extreme winter conditions. Full article
(This article belongs to the Special Issue Recent Advances in Renewable Energy)
Show Figures

Figure 1

25 pages, 2292 KB  
Review
A Comprehensive Review of Lithium-Ion Cell Temperature Estimation Techniques Applicable to Health-Conscious Fast Charging and Smart Battery Management Systems
by Akash Samanta and Sheldon S. Williamson
Energies 2021, 14(18), 5960; https://doi.org/10.3390/en14185960 - 20 Sep 2021
Cited by 49 | Viewed by 7532
Abstract
Highly nonlinear characteristics of lithium-ion batteries (LIBs) are significantly influenced by the external and internal temperature of the LIB cell. Moreover, a cell temperature beyond the manufacturer’s specified safe operating limit could lead to thermal runaway and even fire hazards and safety concerns [...] Read more.
Highly nonlinear characteristics of lithium-ion batteries (LIBs) are significantly influenced by the external and internal temperature of the LIB cell. Moreover, a cell temperature beyond the manufacturer’s specified safe operating limit could lead to thermal runaway and even fire hazards and safety concerns to operating personnel. Therefore, accurate information of cell internal and surface temperature of LIB is highly crucial for effective thermal management and proper operation of a battery management system (BMS). Accurate temperature information is also essential to BMS for the accurate estimation of various important states of LIB, such as state of charge, state of health and so on. High-capacity LIB packs, used in electric vehicles and grid-tied stationary energy storage system essentially consist of thousands of individual LIB cells. Therefore, installing a physical sensor at each cell, especially at the cell core, is not practically feasible from the solution cost, space and weight point of view. A solution is to develop a suitable estimation strategy which led scholars to propose different temperature estimation schemes aiming to establish a balance among accuracy, adaptability, modelling complexity and computational cost. This article presented an exhaustive review of these estimation strategies covering recent developments, current issues, major challenges, and future research recommendations. The prime intention is to provide a detailed guideline to researchers and industries towards developing a highly accurate, intelligent, adaptive, easy-to-implement and computationally efficient online temperature estimation strategy applicable to health-conscious fast charging and smart onboard BMS. Full article
(This article belongs to the Special Issue Power Electronics and Energy Management for Battery Storage Systems)
Show Figures

Figure 1

12 pages, 7292 KB  
Review
A Survey of Wireless Battery Management System: Topology, Emerging Trends, and Challenges
by Akash Samanta and Sheldon S. Williamson
Electronics 2021, 10(18), 2193; https://doi.org/10.3390/electronics10182193 - 7 Sep 2021
Cited by 56 | Viewed by 11782
Abstract
An effective battery management system (BMS) is indispensable for any lithium-ion battery (LIB) powered systems such as electric vehicles (EVs) and stationary grid-tied energy storage systems. Massive wire harness, scalability issue, physical failure of wiring, and high implementation cost and weight are some [...] Read more.
An effective battery management system (BMS) is indispensable for any lithium-ion battery (LIB) powered systems such as electric vehicles (EVs) and stationary grid-tied energy storage systems. Massive wire harness, scalability issue, physical failure of wiring, and high implementation cost and weight are some of the major issues in conventional wired-BMS. One of the promising solutions researchers have come up with is the wireless BMS (WBMS) architecture. Despite research and development on WBMS getting momentum more than a decade ago, it is still in a preliminary stage. Significant further upgradation is required towards developing an industry-ready WBMS, especially for high-power LIB packs. Therefore, an in-depth survey exclusively on WBMS architectures is presented in this article. The aim is to provide a summary of the existing developments as well as to present an informative guide to the research community for future developments by highlighting the issues, emerging trends, and challenges. In-depth analysis of the existing WBMS topologies will not only help the researchers to understand the existing challenges and future research scopes clearly but at the same time enthuse them to focus their research inclination in the domain of WBMS. Full article
Show Figures

Figure 1

22 pages, 3015 KB  
Review
Comprehensive Review on Smart Techniques for Estimation of State of Health for Battery Management System Application
by Sumukh Surya, Vidya Rao and Sheldon S. Williamson
Energies 2021, 14(15), 4617; https://doi.org/10.3390/en14154617 - 30 Jul 2021
Cited by 32 | Viewed by 4880
Abstract
Electric Vehicles (EV) and Hybrid EV (HEV) use Lithium (Li) ion battery packs to drive them. These battery packs possess high specific density and low discharge rates. However, some of the limitations of such Li ion batteries are sensitivity to high temperature and [...] Read more.
Electric Vehicles (EV) and Hybrid EV (HEV) use Lithium (Li) ion battery packs to drive them. These battery packs possess high specific density and low discharge rates. However, some of the limitations of such Li ion batteries are sensitivity to high temperature and health degradation over long usage. The Battery Management System (BMS) protects the battery against overvoltage, overcurrent etc., and monitors the State of Charge (SOC) and the State of Health (SOH). SOH is a complex phenomenon dealing with the effects related to aging of the battery such as the increase in the internal resistance and decrease in the capacity due to unwanted side reactions. The battery life can be extended by estimating the SOH accurately. In this paper, an extensive review on the effects of aging of the battery on the electrodes, effects of Solid Electrolyte Interface (SEI) deposition layer on the battery and the various techniques used for estimation of SOH are presented. This would enable prospective researchers to address the estimation of SOH with greater accuracy and reliability. Full article
Show Figures

Figure 1

17 pages, 1450 KB  
Review
Machine Learning-Based Data-Driven Fault Detection/Diagnosis of Lithium-Ion Battery: A Critical Review
by Akash Samanta, Sumana Chowdhuri and Sheldon S. Williamson
Electronics 2021, 10(11), 1309; https://doi.org/10.3390/electronics10111309 - 30 May 2021
Cited by 188 | Viewed by 18356
Abstract
Fault detection/diagnosis has become a crucial function of the battery management system (BMS) due to the increasing application of lithium-ion batteries (LIBs) in highly sophisticated and high-power applications to ensure the safe and reliable operation of the system. The application of Machine Learning [...] Read more.
Fault detection/diagnosis has become a crucial function of the battery management system (BMS) due to the increasing application of lithium-ion batteries (LIBs) in highly sophisticated and high-power applications to ensure the safe and reliable operation of the system. The application of Machine Learning (ML) in the BMS of LIB has long been adopted for efficient, reliable, accurate prediction of several important states of LIB such as state of charge, state of health and remaining useful life. Inspired by some of the promising features of ML-based techniques over the conventional LIB fault detection/diagnosis methods such as model-based, knowledge-based and signal processing-based techniques, ML-based data-driven methods have been a prime research focus in the last few years. This paper provides a comprehensive review exclusively on the state-of-the-art ML-based data-driven fault detection/diagnosis techniques to provide a ready reference and direction to the research community aiming towards developing an accurate, reliable, adaptive and easy to implement fault diagnosis strategy for the LIB system. Current issues of existing strategies and future challenges of LIB fault diagnosis are also explained for better understanding and guidance. Full article
Show Figures

Figure 1

25 pages, 6271 KB  
Review
Smart Power Electronics–Based Solutions to Interface Solar-Photovoltaics (PV), Smart Grid, and Electrified Transportation: State-of-the-Art and Future Prospects
by Sandra Aragon-Aviles, Ashutosh Trivedi and Sheldon S. Williamson
Appl. Sci. 2020, 10(14), 4988; https://doi.org/10.3390/app10144988 - 20 Jul 2020
Cited by 27 | Viewed by 5497
Abstract
The need to reduce the use of fossil fuels and greenhouse gas (GHG) emissions produced by the transport sector has generated a clear increasing trend in transportation electrification and the future of energy and mobility. This paper reviews the current research trends and [...] Read more.
The need to reduce the use of fossil fuels and greenhouse gas (GHG) emissions produced by the transport sector has generated a clear increasing trend in transportation electrification and the future of energy and mobility. This paper reviews the current research trends and future work for power electronics-based solutions that support the integration of photovoltaic (PV) energy sources and smart grid with charging systems for electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEV). A compressive overview of isolated and non-isolated DC–DC converters and AC–DC converter topologies used to interface the PV-grid charging facilities is presented. Furthermore, this paper reviews the modes of operation of the system currently used. Finally, this paper explores the future roadmap of research for power electronics solutions related to photovoltaic (PV) systems, smart grid, and transportation electrification. Full article
Show Figures

Figure 1

23 pages, 3533 KB  
Review
Overview and Comparative Assessment of Single-Phase Power Converter Topologies of Inductive Wireless Charging Systems
by Phuoc Sang Huynh, Deepak Ronanki, Deepa Vincent and Sheldon S. Williamson
Energies 2020, 13(9), 2150; https://doi.org/10.3390/en13092150 - 1 May 2020
Cited by 28 | Viewed by 5423
Abstract
The acquisition of inductive power transfer (IPT) technology in commercial electric vehicles (EVs) alleviates the inherent burdens of high cost, limited driving range, and long charging time. In EV wireless charging systems using IPT, power electronic converters play a vital role to reduce [...] Read more.
The acquisition of inductive power transfer (IPT) technology in commercial electric vehicles (EVs) alleviates the inherent burdens of high cost, limited driving range, and long charging time. In EV wireless charging systems using IPT, power electronic converters play a vital role to reduce the size and cost, as well as to maximize the efficiency of the overall system. Over the past years, significant research studies have been conducted by researchers to improve the performance of power conversion systems including the power converter topologies and control schemes. This paper aims to provide an overview of the existing state-of-the-art of power converter topologies for IPT systems in EV charging applications. In this paper, the widely adopted power conversion topologies for IPT systems are selected and their performance is compared in terms of input power factor, input current distortion, current stress, voltage stress, power losses on the converter, and cost. The single-stage matrix converter based IPT systems advantageously adopt the sinusoidal ripple current (SRC) charging technique to remove the intermediate DC-link capacitors, which improves system efficiency, power density and reduces cost. Finally, technical considerations and future opportunities of power converters in EV wireless charging applications are discussed. Full article
(This article belongs to the Special Issue Energy Storage Systems for Electric Vehicles)
Show Figures

Figure 1

17 pages, 1373 KB  
Review
Extreme Fast Charging Technology—Prospects to Enhance Sustainable Electric Transportation
by Deepak Ronanki, Apoorva Kelkar and Sheldon S. Williamson
Energies 2019, 12(19), 3721; https://doi.org/10.3390/en12193721 - 29 Sep 2019
Cited by 181 | Viewed by 19121
Abstract
With the growing fleet of a new generation electric vehicles (EVs), it is essential to develop an adequate high power charging infrastructure that can mimic conventional gasoline fuel stations. Therefore, much research attention must be focused on the development of off-board DC fast [...] Read more.
With the growing fleet of a new generation electric vehicles (EVs), it is essential to develop an adequate high power charging infrastructure that can mimic conventional gasoline fuel stations. Therefore, much research attention must be focused on the development of off-board DC fast chargers which can quickly replenish the charge in an EV battery. However, use of the service transformer in the existing fast charging architecture adds to the system cost, size and complicates the installation process while directly connected to medium-voltage (MV) line. With continual improvements in power electronics and magnetics, solid state transformer (SST) technology can be adopted to enhance power density and efficiency of the system. This paper aims to review the current state of the art architectures and challenges of fast charging infrastructure using SST technology while directly connected to the MV line. Finally, this paper discusses technical considerations, challenges and introduces future research possibilities. Full article
(This article belongs to the Special Issue Electric Vehicle Power Conversion Technologies)
Show Figures

Figure 1

Back to TopTop