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Abstract: The acquisition of inductive power transfer (IPT) technology in commercial electric vehicles
(EVs) alleviates the inherent burdens of high cost, limited driving range, and long charging time.
In EV wireless charging systems using IPT, power electronic converters play a vital role to reduce
the size and cost, as well as to maximize the efficiency of the overall system. Over the past years,
significant research studies have been conducted by researchers to improve the performance of
power conversion systems including the power converter topologies and control schemes. This paper
aims to provide an overview of the existing state-of-the-art of power converter topologies for IPT
systems in EV charging applications. In this paper, the widely adopted power conversion topologies
for IPT systems are selected and their performance is compared in terms of input power factor,
input current distortion, current stress, voltage stress, power losses on the converter, and cost. The
single-stage matrix converter based IPT systems advantageously adopt the sinusoidal ripple current
(SRC) charging technique to remove the intermediate DC-link capacitors, which improves system
efficiency, power density and reduces cost. Finally, technical considerations and future opportunities
of power converters in EV wireless charging applications are discussed.

Keywords: AC–AC converters; battery chargers; electric vehicles; power conversion harmonics;
wireless power transmission

1. Introduction

The electrification of transportation has been considered as a promising solution to tackle
greenhouse gas emissions and fossil fuel depletion. To boost the market share of electric vehicles
(EVs), their inherent issues such as limited driving range, long charging time, and costly and
cumbersome energy storage systems should be resolved. Wireless charging technology can mitigate
the aforementioned issues [1–10]. Wireless power transfer (WPT) enabling transferring energy from a
source to a load without electrical contact has been extensively studied and successfully demonstrated
using various techniques, namely, acoustic power transfer (APT) [11,12], radio frequency power
transfer (RFPT) [13,14], optical power transfer (OPT) [15,16], capacitive power transfer (CPT) [17], and
inductive power transfer (IPT) [18]. However, it is well demonstrated from the literature that the IPT
technology is the most suitable for EV charging applications where the power requirement is form
few to several kW, and the air gap varies from a few centimeters to a few meters [5]. Particularly,
researchers and engineers have fitted the outcomes of the IPT to EV battery charging applications with
various commercial products and standards [19]. The IPT chargers offer with several benefits such as
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safety, convenience, flexibility, weather immunity, and the possibility of range extension and battery
volume reduction [1,8,10,20,21]. The wireless chargers can be deployed in residential garages, and
office/service/shopping center parking lots for static wireless charging [22], or they can be placed at
bus stops, taxi ranks, and traffic lights to implement quasi-dynamic wireless charging [23]. Moreover,
dynamic wireless charging systems can be installed on the roads to constantly charge the EVs, in turn,
to extend the driving range and reduce the battery volume of the vehicles [24–26].

Essentially, an IPT charging system comprises an inductive coupling coil pair, compensation
networks, primary converters to generate high-frequency inputs, and a secondary rectifier to convert
AC to DC current to charge the battery. In the IPT charging systems, power electronic converters make
a significant contribution to the size and cost, and efficiency of the overall system. Typically, dual-stage
conversion (AC–DC–AC) systems have been employed to excite the IPT systems, as shown in Figure 1a.
The dual-stage converter topologies are intensively studied and widely used in industry [27–29]. The
main advantage of these topologies is that each conversion stage can be separately designed and
controlled to optimize specific performance indices. However, the presence of multiple conversion
stages and a bulk DC-link capacitor increases the cost, size, and weight of the system. In recent years,
the use of matrix converters (MCs) for feeding the IPT systems has drawn increasing attention [30–38].
MCs enable direct conversion of low-frequency AC inputs (50–60 Hz) to high-frequency outputs (up to
85 kHz) without any intermediate conversion stage; therefore, they enhance the system performance
in terms of power density, reliability, and cost [32,39]. The single-phase matrix converter-based
IPT systems remove the DC-link energy storage elements in the primary side to absorb double line
frequency ripple, thus it appears on the battery side. Sinusoidal ripple current (SRC) charging technique
reported in [40–45] allows batteries to be charged by double line frequency (100 or 120 Hz) current
with minor side effects on their performance. Therefore, matrix converter-based IPT systems can use
the sinusoidal charging technique advantageously and remove the intermediate DC-link capacitor.
The single-stage EV IPT charging system using MCs is illustrated in Figure 1b.
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Figure 1. Configuration of electric vehicle (EV) inductive power transfer (IPT) systems with (a)
dual-stage power conversion and (b) single-stage power conversion. PFC, power factor correction;
EMI, electromagnetic interference.

This paper aims to provide an extensive overview of single-phase power conversion topologies
employed in static wireless charging. Then, a comprehensive performance comparison between the
conventional dual-stage (power factor correction (PFC) and full-bridge voltage source inverter (VSI))
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and single-stage topologies including the buck-derived full-bridge (FB)MC and boost-derived FBMC
in the IPT EV charging application is presented. The comparison involves the input power factor,
input current distortion, power losses, switching stress, and normalized cost, while taking into account
the requirements of Standard J2954 [19] established by the Society of Automotive Engineers (SAE).
The Standard SAE J2954 defines acceptable criteria for interoperability, electromagnetic compatibility,
electromagnetic field (EMF), minimum performance, safety, and testing for wireless charging of
light-duty electric vehicles. Table 1 shows the power classes, operating frequency, and efficiency
performance targets of the WPT systems defined in the SAE J2954. As can been seen, four wireless
power transfer (WPT) classes are defined based on the maximum input volt-amp (VA) drawn from the
grid by the primary side or ground assembly (GA) electronics. The input real power depends on the
input power factor, while the output power depends on the efficiency of the system. The SAE J2954
specifies that WPT systems should be operated at a single nominal frequency of 85 kHz. However, for
WPT systems using frequency control to compensate operating variations, their operating frequency
must be tuned in the band of 81.38 to 90.00 kHz. Finally, the improvement opportunities for each of
the IPT charging topologies are discussed in this paper.

Table 1. Wireless power transfer (WPT) power classification for light-duty electric vehicles—SAE J2954.

WPT Levels 1 2 3 4

Maximum AC input power (kVA) 3.7 7.7 11 22
Minimum target efficiency at nominal alignment (%) >85 >85 >85 To be defined (TBD)

Minimum target efficiency at offset position (%) >80 >80 >80 TBD
Operating frequency (kHz) 81.38–90 (typical 85)

2. Power Converter Topologies for Inductive Wireless Charging

In this section, an overview of front-end converter topologies for WPT applications is provided.
They can be classified into two groups, namely dual-stage and single-stage based on the power
conversion stages. The classification of single-phase converter topologies for IPT systems is shown in
Figure 2.
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2.1. Dual-Stage Power Conversion

A front-end AC–DC converter is used to convert the supply AC voltage to an intermediate DC-link
voltage and to shape the input current for both PFC and harmonic reduction. A comprehensive review
for the PFC rectifiers is presented in [46,47]. For the inversion stage, a current-source inverter (CSI) or
a VSI can be employed.
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Two CSI topologies commonly used in IPT systems are push-pull, half-bridge [48–53], and
full-bridge [54,55]. Figure 3a–c shows the configuration of CSIs. The requirement of blocking
diodes and bulky inductors that increases the size and cost of the whole IPT system is one of the
major drawbacks of the CSIs. A single parallel compensating capacitor in the primary circuit is
normally used with CSIs; however, the inverter switches suffer high voltage stress in high-power
applications [48,50,52,54]. In order to overcome this drawback, a parallel-series CC compensation
circuit is introduced in [53,55]. The CSIs combined with the parallel-series CC compensation circuit
mitigates current and voltage stress on inverter switches and harmonic contents in primary coil current.
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For VSI topologies, buck, half-bridge, and full-bridge topologies shown in Figure 3d–f can be used
in the IPT systems, and they are compatible with single capacitor series, LCL, and LCCL compensation
networks [1,21,56–66]. The series compensation is simple and cost-effective. However, under light
load conditions or in the absence of the receiver, the system experiences severe instability [67,68]. LCL
or LCCL tanks overcome these issues and have a high tolerance to coil misalignments [68]. However, a
significant amount of lower-order harmonics in the output current of the VSIs connected with LCL
and LCCL compensation circuits deviates zero-phase-angle operation of the inverters, increasing
their switching losses [69]. Moreover, the inductors in LCL and LCCL compensation circuits must
be designed precisely as the effective power transfer capability is highly sensitive to the inductance
value [57,61]. Figure 4 shows the compatibility of the inverter types and primary compensation circuits
of the IPT systems. Table 2 shows the comparison of the inverter topologies regarding the component
requirement. It can be seen that the CSIs require more components than the VSIs.
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Table 2. Power conversion topologies and control schemes of the inductive power transfer (IPT) systems.

Power Conversion Topologies Figure Component Requirement
Control Schemes

Switches Passive Components

Dual-stage (excluding
front-end PFC stage)

Current-source push-pull Figure 3a 2 reverse blocking
1 inductor,
1 phase-splitting
transformer

• Variable switching frequency
• DC-link voltage control
• Secondary-side control
• Dual-side controlCurrent-source half-bridge Figure 3b 2 reverse blocking 2 inductors

Current-source full-bridge Figure 3c 4 reverse blocking 1 inductor

• Variable switching frequency
• DC-link voltage control
• Pulse width modulation (phase-shift control)
• Secondary-side control
• Dual-side control

Voltage-source buck Figure 3d 2 reverse conducting None

• Discrete energy injection
• Variable switching frequency
• DC-link voltage control
• Pulse width modulation (duty cycle control)
• Secondary-side control
• Dual-side controlVoltage-source half-bridge Figure 3e 2 reverse conducting 2 capacitors

Voltage-source full-bridge Figure 3f 4 reverse conducting None

• Discrete energy injection
• Variable switching frequency
• DC-link voltage control
• Pulse width modulation (phase-shift control)
• Secondary-side control
• Dual-side control

Single-stage

Buck MC Figure 5a 2 bidirectional None
• Discrete energy injection
• Pulse width modulation (duty cycle control)
• Secondary-side control
• Dual-side controlHalf-bridge MC Figure 5b 2 bidirectional 2 capacitors

Full-bridge MC Figure 5c 4 bidirectional None

• Discrete energy injection
• Pulse width modulation (phase-shift control)
• Secondary-side control
• Dual-side control

Boost-derived full-bridge MC Figure 5e 4 bidirectional 1 inductor
• Pulse width modulation
• Secondary-side control
• Dual-side control

Bridgeless boost Figure 5f 2 diodes,
4 reverse conducting

1 inductor,
1 capacitor

• Pulse width modulation
• Secondary-side control
• Dual-side control
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2.2. Single-Stage AC–AC Conversion

Matrix converters (MCs) are considered as a prominent candidate for powering the WPT systems
with only single-stage power conversion. Several MCs including buck [36,37], half-bridge [30,31],
and full-bridge [35] have been introduced to IPT applications in the literature. All MCs reported
in [30,31,35–37] have a buck-derived configuration, as shown in Figure 5a–c, thus line-current regulation
is compromised. In EV charging application, if a highly nonlinear diode-bridge rectifier is used at the
battery side, there will be severe line current distortion and power factor deterioration, as explained
in [70]. In [35], a secondary active full-bridge rectifier whose phase shift angle follows the line-voltage
waveform is used to shape the line current. In this topology, the primary and secondary converters must
be controlled synchronously in every switching cycle, which increases the implementation complexity.

In order to overcome the above issue, a boost-derived full-bridge MC (FBMC) compatible with
a primary parallel-series CC compensation network is proposed in [38]. The proposed converter
topology is able to shape the line current and regulate power flow through two control loops, which
are similar to those of a conventional boost converter. In [39], a single-stage topology integrating
bridgeless boost PFC converter and full-bridge VSI is proposed for IPT applications. The converter
is operated in discontinuous conduction mode, thereby, the line current control loop is eliminated.
However, in discontinuous conduction mode (DCM), the converter incurs more current stress, losses,
and electromagnetic interference (EMI) problems, which is not suitable for high-power applications.
Figure 5d and e show the configuration of boost-derived FBMC and bridgeless boost PFC converter in
IPT systems.

3. Power Control Schemes

Figure 6 shows the classification of power control schemes for IPT systems. Power control in
IPT systems can be implemented on the primary side, secondary side, or both sides. The secondary
side control is suitable for the IPT applications where multiple secondary coils are coupled to a single
primary coil. In these applications, the frequency and the magnitude of primary current are fixed,
and the power flow is controlled on the secondary side by an active rectifier or a back-end DC–DC
converter illustrated in Figure 6 for each secondary coil [30,58,59,71–74]. These topologies are normally
employed in long-power track systems where a constant track current is required to power independent
secondary coils.
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However, in charging applications where only one a secondary coil is coupled to a primary coil
and keeping the secondary-side configuration as simple as possible is a priority, the primary side
control is selected. The primary side control can be divided into three groups: fixed frequency, variable
frequency, and discrete energy injection. In fixed frequency control, the switching frequency of the
inverter is kept at a constant value, which is slightly different from the primary resonant frequency to
offer soft-switching operation. In order to control the power flow, the phase (phase shift control) or
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the duty cycle of the inverter switches is varied [75,76]. This allows the inverters to produce output
voltage/current with variable pulse width. The other way to regulate the power flow with the fixed
switching frequency is controlling the input DC voltage of the inverter using a front-end DC–DC
converter [48]. For the variable switching frequency control scheme, the duty cycle of the gating signals
is maintained constant at 50% and the switching frequency is varied to regulate the output power [49].
However, if the operating frequency is largely different from the resonant frequency, the resonant
tank will incur a large circulating current, causing an efficiency drop in the overall system owing
to large losses in switches and the coils. Moreover, the bifurcation phenomenon must be carefully
considered in this control technique [77]. In [36], a discrete energy injection control is used for the
matrix buck converter in order to control the magnitude of the primary current. The control technique
reduces the switching frequency and enables soft switching. However, the zero-crossing detection of
primary high-frequency current that is required to ensure the converter to be operated in zero current
switching (ZCS) conditions is an implementation challenge. Moreover, current sag occurs during the
zero-crossing of its single-phase input voltage, which degrades the average power transferred. The
dual-side control is suitable for bidirectional IPT systems where power flow can be regulated in both
directions by controlling the duty cycle of the primary and secondary converters and the phase-shift
between them [56,57,78]. Table 2 shows the compatibility of power conversion topologies and control
schemes of the IPT applications.

4. Performance Comparison and Discussion

In this section, the performance of a conventional dual-stage topology and two potential
single-stage topologies including buck- and boost-derived FBMCs are compared regarding input
power quality, current stress, voltage stress, power losses, and cost.

4.1. Design Considerations

The conventional dual-stage IPT charging system is illustrated in Figure 7a. At the front end, a
conventional boost rectifier is used to shape the grid current and maintain a constant DC voltage Vdc
across DC-link capacitor Ci. As a bulky and costly inductor is required for the CSIs, an FBVSI is the
most common choice at the primary side to generate a high-frequency voltage (vp) feeding the primary
coil. A series-series (SS) compensation topology is used because it is simple and cost-effective, and its
primary compensation is independent of the coupling coefficient and load. Moreover, the efficiency of
SS compensation is high even at a low coupling coefficient [68,79]. In order to maximize the power
transfer capabilities and minimize the VA rating of the primary inverter, the resonant circuits at both
sides of the coupling are usually tuned to the same resonant frequency (ω0) equal to the switching
frequency of the inverter.

ω0 =
1√

LpCp
=

1
√

LsCs
(1)

where Lp and Ls are primary and secondary coil self-inductances, respectively, and Cp and Cs are
primary and secondary tuning capacitors, respectively.

Power regulation is conducted using the phase-shift control at the primary inverter side.
Considering an ideal IPT system operating at the resonance frequency (ω0), power transferred
from the primary to the secondary side can be given by

Po =
8VdcVb

π2ω0M
sinπDp (2)

where Dp is the duty cycle of the primary voltage (vp) and M is the mutual inductance and can be
calculated as

M = k
√

LpLs (3)
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Figure 7. IPT charging system fed by (a) dual-stage power converter (PFC and full-bridge VSI), (b)
buck-derived FBMC, and (c) boost-derived FBMC.

In EV wireless charging applications, the coupling coefficient k may be in the range of 0.1–0.3.
In a dual-stage topology, the major drawback is low power density owing to multiple conversion
stages and a bulky DC-link capacitor. The reduction of the number of power conversion stages can be
obtained using MCs. Figure 7b shows the IPT charging system using a buck-derived FBMC. The FBMC
constituted by four bidirectional switches can directly convert low frequency (50–60 Hz) grid voltage
to resonant frequency (85 kHz) voltage feeding the inductive coil. During the positive half cycle of
the grid voltage vg, switches Spnb (n = 1, 2, 3, 4) are turned on and switches Spna are the phase-shift
pulse-width modulation (PWM) strategy. Otherwise, during the negative half-cycle, the switches Spna

are kept on and switches Spnb are controlled by the phase-shift PWM strategy.
An active rectifier is employed in the battery side for shaping the input current. The primary

and secondary converters are synchronized in every switching cycle so that primary voltage vp is 90◦
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lagging with secondary voltage vs, and the duty cycle of the secondary voltage is controlled following
grid voltage waveform to correct input current, as shown in Figure 7b. The power transferred is
controlled by adjusting the duty cycle of the primary voltage.

Po =
4
√

2VgVb

π2ω0M
sinπDp (4)

where Vg is the root mean square (RMS) value of the grid voltage.
Although the buck-derived FBMC-based IPT charging system removes the intermediate conversion

stage, high-frequency communication is required to synchronize the PWM patterns of the primary
and secondary converters in every switching cycle, which increases the control complexity. The
boost-derived MC can solve the above issue. It is capable of correcting the grid current and regulating
power flow through two control loops, which are similar to those of a conventional boost converter.
Figure 7c shows an IPT topology fed by a boost-derived FBMC [38]. On the primary side, parallel-series
CC compensation is used to reduce voltage stress on the MC switches. The tuning capacitor Cps is
selected so as to limit the maximum peak of vp across the converter switches. It is desirable to restrict
vp to 0.5~0.7 of the rating voltage of the switches [48]. The switching scheme and controller design for
the boost-derived full-bridge matrix converter are described in [38]. Tables 3 and 4 show the passive
component design and the switching stresses of the converter components.

Table 3. Passive component design. FB, full-bridge.

Topologies Components Parameters

Dual-stage [80]

Boost inductor Li

Inductance Peak current

Li =
1

%∆Ii

V2
g

Po(max) fs

(
1−

√
2Vg

Vdc

)
ÎLi =

√
2 Po

Vg
+ ∆Ii

2

Boost capacitor Ci

Capacitance Peak voltage
Ci =

1
%∆Vdc

Po
ωgV2

dc
V̂Ci = Vdc +

∆Vdc
2

Compensation capacitors Cp
and Cs

Capacitance Peak voltage
Cp = 1

ω2
0Lp

Cs =
1

ω2
0Ls

V̂Cp = 4Vb
πω2

0CpM

V̂Cs =
4Vdc

πω2
0CsM

Buck-derived
FB MC [81,82]

Compensation capacitors Cp
and Cs

Capacitance Peak voltage

Cp = 1
ω2

0Lp

Cs =
1

ω2
0Ls

V̂Cp = 4Vb
πω2

0CpM

V̂Cs =
4
√

2Vg

πω2
0CsM

Boost-derived
FB MC [38]

Boost inductor Li

Inductance Peak current

Li =

√
2Vg

2∆Ii fs
ÎLi =

√
2Po

Vg
+ ∆Ii

2

Compensation capacitors
Cpp, Cps, and Cs
Note: Cps is designed to
limit the peak of primary
voltage vp, which is the
voltage stress on MC
switches.

Capacitance Peak voltage

Cs =
1

ω2
0Ls

Cpp =
Lp−

1
ω2

0Cps

ω4
0M4

R2
oeq

+ω2
0

(
Lp−

1
ω2

0Cps

)2

V̂Cs =
πPo

ω0CsVb

V̂Cpp = V̂p =

√√√√√√ (
4Vb
πM

)2
(
Lp −

1
ω2

0Cps

)2

+
(
πω0MPo

Vb

)2

V̂Cps =
4Vb

πω2
0CpsM
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Table 4. Stress on switching devices.

Topologies Components Current Stress Voltage Stress

Dual-stage

Boost switch Sb and diode Db
Peak current Break down voltage

ÎSb = ÎDb =
√

2Po
Vg

+ ∆Ii
2 V̂Sb = V̂Db > Vdc +

∆Vdc
2

Primary inverter switches Spn
(n = 1, 2, 3, 4)

Peak current Break down voltage
ÎSpn = 4Vb

πω0M V̂Spn > Vdc +
∆Vdc

2

Secondary rectifier diodes Dsn
(n = 1, 2, 3, 4)

Peak current Break down voltage
ÎDsn = 4Vdc

πω0M V̂Dsn > Vb

Buck-derived FB MC

Primary inverter switches Spnx
(n = 1, 2, 3, 4 and x = a, b)

Peak current Break down voltage
ÎSpnx = 4Vb

πω0M V̂Spnx >
√

2Vg

Secondary rectifier switches
Ssn (n = 1, 2, 3, 4)

Peak current Break down voltage

ÎSsn =
4
√

2Vg
πω0M

V̂Ssn > Vb

Boost-derived FB MC

Primary inverter switches Spnx
(n = 1, 2, 3, 4 and x = a, b)

Peak current Break down voltage

ÎSpnx >
√

2Po
Vg

+ ∆Ii
2 V̂Spnx > V̂p

Secondary rectifier diodes Dsn
(n = 1, 2, 3, 4)

Peak current Break down voltage
ÎDsn >

πPo
Vb

V̂Dsn > Vb

4.2. Performance Comparison

In this section, the performance of IPT configurations is compared in terms of input power factor,
input current distortion, current stress, voltage stress, power losses on converters, and normalized
cost. The IPT charging systems are designed in compliance with the level 1 (WPT1) of static wireless
charging standard for light-duty vehicles provided in SAE J2954 technical information report [19]
with power rating Po = 3.3 kW, operating frequency fs = 85 kHz, grid voltage Vg = 208 V, and battery
voltage Vb = 300–400 V. The parameters of the charging system with each type of power conversion
configuration are shown in Table 5. All the components are designed based on Tables 3 and 4. The
selection of components is based on their maximum current and voltage stresses. Note that available
discrete Rohm SiC MOSFETs and Schottky diodes are considered for all power conversion topologies.
Moreover, LC filters are used as interfaces between the grid and the charging systems to limit current
harmonic injection owing to the switching power converters. The LC filters are designed based on
the spectrum analysis of the input current waveforms (ii). The details of the selected components for
different power conversion stages are listed in Table 6.

Figure 8 shows the typical waveforms of IPT charging systems with different power supply
topologies. It can be seen that the absence of DC-link energy storage in MC-based topologies causes a
double line frequency fluctuation in transferred power. This results in a fluctuating charging current
as shown in Figure 8b and c. As reported in [40–44,83,84], batteries can be charged by double line
frequency (100 or 120 Hz) current with negligible side effects on their performance.
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Table 5. Specifications of IPT charging systems.

Topologies Parameter Symbol Value Unit

Dual-stage

Primary, secondary, mutual
inductance Lp, Ls, M 356, 328, 65 µH

Compensation capacitors Cp, Cs 10, 11 nF
Boost inductor Li 0.215 mH
DC-bus capacitor Ci 1540 µF
DC-bus voltage Vdc 400 V
Grid inductor Lg 0.215 mH
Grid capacitor Cg 0.78 µF
Output capacitor Co 500 µF

Buck-derived
FBMC

Primary, secondary, mutual
inductance Lp, Ls, M 111, 111, 24 µH

Compensation capacitors Cp, Cs 32, 32 nF
Grid inductor Lg 0.215 mH
Grid capacitor Cg 0.78 µF
Output capacitor Co 500 µF

Boost-derived
FBMC

Primary, secondary, mutual
inductance Lp, Ls, M 111, 111, 24 µH

Compensation capacitors Cps, Cpp, Cs 43, 115, 32 nF
Boost inductor Li 0.215 mH
Grid inductor Lg 0.036 mH
Grid capacitor Cg 0.136 µF
Output capacitor Co 500 µF

Table 6. Main components of power conversion stages.

Topologies Components Symbol Part Number Quantity

Dual-stage

Front-end rectifier diodes Dgn
* SCS240AE2C-ND 4

Boost diode Db SCS240AE2C-ND 1
Boost switch Sb SCT3060ALGC11-ND 1
Primary inverter switches Spn

* SCT3120ALHRC11-ND 4
Secondary rectifier diodes Dsn

* SCS230AE2HRC-ND 4
Boost inductor Li HF5712-561M-25AH 2 parallel
DC-bus capacitor Ci LGN2X221MELC50 7 parallel
Grid inductor Lg HF5712-561M-25AH 2 parallel
Grid capacitor Cg B32656T7394K000 2 parallel

Buck-derived
FBMC

Primary MC switches Spna, Spnb
* SCT3030ALGC11-ND 8

Secondary rectifier diodes Ssn
* SCT3060ALGC11-ND 4

Grid inductor Lg HF5712-561M-25AH 2 parallel
Grid capacitor Cg B32656T7394K000 2 parallel

Boost-derived
FBMC

Primary MC switches Spna, Spnb
* SCT2080KEC-ND 8

Secondary rectifier diodes Dsn
* SCS240AE2C-ND 4

Boost inductor Li HF5712-561M-25AH 2 parallel
Grid inductor Lg HF467-980M-25AV 2 parallel
Grid capacitor Cg B32654A1683K000 2 parallel

*n = 1, 2, 3, 4.
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4.2.1. Input Power Factor and Input Current Distortion

An EV charger must ensure a good grid power quality with a high power factor and low current
distortion. All three topologies provide sinusoidal grid currents with the power factor of 0.99. Figure 9a
shows total harmonic distortion (THD) of the grid current under different load conditions (20%, 50%,
and 100% of load). It can be seen that the three topologies can be preferred in order of boost-derived
FBMC, dual-stage converter, and buck-derived FBMC, regarding grid current distortion. Despite
having the identical input LC filter, the buck-derived FBMC injects higher current harmonics to the
grid than dual-stage topology, because its input current is discontinuous. The boost-derived FBMC has
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the continuous input current with ripple frequency at a twofold switching frequency, thereby gaining
the significant harmonic reduction of grid current with a smaller input filter.
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power-conversion-stage efficiency.

4.2.2. Switching Stress

Figure 9b and c show the maximum current and voltage stress on the converter switches. Although
the parallel-series CC compensation is used, the switches of boost-derived FBMC still suffer from high
voltage stress. The buck-derived FBMC is characterized by low switch voltage stress (grid voltage
peak) and high switch current stress. The dual-stage topology exhibits the lowest switch current stress
in the primary inverter and secondary rectifier.

4.2.3. Efficiency and Loss Distribution

The losses on the conversion stages of each system are simulated and analyzed using the thermal
modules in PSIM simulation. The efficiency of the power conversion stages of each system versus
various output power is illustrated in Figure 9d. It is clear that the efficiency of the buck-derived FBMC
system is the highest (almost 98%) at full load conditions, but it decreases gradually to 93% at the light
load conditions. In contrast, the efficiency of the boost-derived FBMC system steadily increases from
92.5% to 96% when the load decreases from 100% to 20%. The dual-stage system maintains fairly high
efficiency (94~96.5%) in a wide load range.

The detailed loss distribution of the three systems is shown in Figure 10. It can be observed that
the conduction losses of primary converters dominate the total losses of power conversion stages. In
the dual-stage system, the conduction losses of the front-end rectifier and the primary inverter are the
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two major parts. For the single-stage systems, the conduction losses of matrix converters contribute to
the largest proportions (>60%).
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4.2.4. Cost

Cost is also an important quantity to evaluate the performance of a power converter. The cost
structure of each charging system excluding inductive coupling coils and compensation networks
is illustrated in Figure 11. The costs of the power conversion stages are calculated based on the
component cost provided in Table 7. In order to simplify the cost analysis, the auxiliary cost including
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printed circuit board (PCB) cost, cooling system cost, and housing cost is assumed to be 10% of the
power converter cost. Note that MOSFETs are driven by isolated gate drivers, and MOSFETs having
common-source connection utilize a common gate driver power supply to reduce the system cost.
This shows that the cost of single-stage systems is lower than that of the dual-stage counterpart. The
buck-derived FBMC system is the most cost-effective solution, as it presents 8.4% less cost than the
dual-stage system. It is found that the costs of the passive components dominate in the dual-stage
system, whereas the semiconductor devices of matrix converters occupy the largest portions in the
total cost of the single-stage systems.
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Table 7. Cost of components.

Components Manufacturer Part Number Rating Unit Cost ($)

Diode
SCS230AE2HRC-ND 650 V/30 A 8.97
SCS240AE2C-ND 650 V/40 A 12.75

MOSFET

SCT3120ALHRC11-ND 650 V/21 A 9.27
SCT3060ALGC11-ND 650 V/39 A 8.74
SCT3030ALGC11-ND 650 V/70 A 19.46
SCT2080KEC-ND 1200 V/40 A 17.77

Gate driver IC UCC5390SCD N/A 2.16

Gate driver supply R12P21503D +15 V/−3 V/2 W 7.11

Inductor
HF467-980M-25AV 25 A/72 µH 21.15
HF5712-561M-25AH 25 A/430 µH 29.25

Capacitor
LGN2X221MELC50 (Electrolytic) 600 V/220 µF 7.78
B32656T7394K000 (Film) 500 V/0.39 µF 4.23
B32654A1683K000 500 V/0.068 µF 1.01

4.3. Discussions

From the above analysis, it can be observed that the three IPT charging systems have their own
advantages and disadvantages. A comparison summary of the three IPT charging systems is shown
in Figure 12, where performance indices are presented in a scale range from 1 (worst) to 3 (best). In
order to evaluate the efficiencies of the three systems, their average values under all load conditions
are considered. The switching stresses are assessed based on the product of the maximum current
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and voltage stresses. Figure 12 shows that the buck-derived FBMC surpasses the other counterparts
with the advantages of high efficiency, cost reduction and possible power density improvement due to
less component count, while the boost-derived FBMC has the greatest input current quality due to
the feature of the continuous input current with ripple frequency at a twice switching frequency. The
conventional dual-stage topology has the lowest stress on switching devices, and its efficiency maintains
a comparable high level over wide load range. Moreover, the dual-stage converter topology is highly
matured in terms of manufacturability and control as it has been developed by many manufacturers
and widely used in the industry. Also, this topology allows each converter stage to be separately
designed and optimized.
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5. Future Trends and Opportunities

Over the past decade, there have been significant developments in power converter topologies and
control schemes for EV IPT charging. One of the important challenges is the design of high-frequency
power converters for IPT to meet future requirements. Still, there is a lot of scope for further
improvements to enhance the performance in terms of efficiency, power density, scalability, and
reliability to promote the IPT-based systems for EV charging. Reducing power losses in power
conversion from the source to the input of the coil is a vital factor in improving efficiency. One of such
initiatives is to develop advanced soft-switching modulation techniques for the existing converter
topologies and new reduced-switch-count converter topologies to reduce switching losses. This is
expected to improve the thermal design and power density of the overall system. Several soft-switching
control schemes have been reported in the literature. Generally, they can be divided into three groups:
with auxiliary DC-DC converters [85–87], with variable resonant networks [88,89], and with active
inverter/rectifier control [59,90–92]. However, the proposed control schemes require extra DC-DC
converters or resonant components, or have an operation range limitation and high control complexity.

Direct power conversion topologies such as matrix converters can be one of the possible candidates
with the elimination of life-limited bulky DC capacitors employing enhanced charging techniques like
SRC charging. Another important performance enhancement is employing wide bandgap devices
in the existing converter topologies or development of advanced topologies, which can operate at
higher switching frequencies with low switching losses [93]. This can boost the performance of power
converters in the wireless charging applications [94]. The application of gallium nitride (GaN) in IPT
systems has opened up a new scope in improvement in power transfer and power density. These
devices have a low voltage drop, ability to operate at the higher switching frequency, and comparatively
lower thermal generation during operation, which allows for passive cooling to increase the converter
power density and cost-effectiveness [95]. However, some challenges regarding the manufacturing
process, packaging with higher current ratings, the gate driver design, device characterization, busbar



Energies 2020, 13, 2150 18 of 23

layout, thermal management, and reliability need to be addressed. Therefore, much more research
initiatives in the aforementioned issues could decide the power density of the converter. In addition,
employing the GaN devices allows an increase in switching frequencies even at higher current standards,
which improves the performance of WPT, such as transfer distance extension, higher tolerance to coil
misalignment, and passive component size reduction. Furthermore, the magnetic integration can be
used to integrate magnetic components of power converters, compensation networks, and coupling
coils, in turn, to enhance using higher flux density material to reduce the system size and losses. One
of the possible ways is the utilization of advanced materials and nanotechnology to reduce the size
and weight of passive components.

In the recent days, modular power converters with fault-tolerance are demanded due to industrial
requirements such as flexibility in assembly, manufacturing process, scalability and reduced mean
time to failure (MTTF). Some of the possible potential candidates are multiphase parallel inverter [96],
modular multilevel converter [97], parallel IPT power supply topologies [98] and extreme fast charging
architectures [99] to improve the output power capability and fault tolerance for WPT systems, which
can open up more research in developing advanced power topologies and fault-tolerant control schemes.
Other stimulating research areas for developing technology are bidirectional power flow, integration
with hybrid energy storage systems and multiple energy sources [100]. However, these areas are still
under research that further attention and investigation for developing advanced multi-port converter
topologies and newly advanced control schemes must comply with future charging standards to
promote IPT systems for EV charging applications.

6. Conclusions

This paper presents an extensive overview of power conversion topologies and control schemes
for IPT-based EV charging applications. The design considerations and performance evaluation of
the conventional dual-stage topology and two potential single-stage topologies including buck- and
boost-derived FBMCs were discussed. It is concluded that the conventional dual-stage topology has
the lowest stress on switching devices, and the boost-derived FBMC provides the greatest input current
quality. On the other hand, the superiorities of the buck-derived FBMC over the other topologies
are high efficiency, low component count and cost. However, further investigation on IPT-based
charging systems is needed including scalability to higher power levels, adoption of soft-switching
technology, fault-tolerability technology, active power decoupling methods, magnetic integration,
green energy based-IPT systems, multi-mode operation systems, wide bandgap device technology,
high-performance advanced and non-invasive control schemes. With the continual improvements and
the aforementioned advancements, IPT-based systems will definitively increase the availability and
economic viability of the EVs in the near future.
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