Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Authors = Shahin Jalali

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5580 KiB  
Article
Improving Eco-Friendly Polymer Adhesive Joints: Innovative Toughening Strategies for Consistent Performance Under Various Loading Conditions
by Shahin Jalali, Ricardo J. C. Carbas, Eduardo A. S. Marques and Lucas F. M. da Silva
Polymers 2025, 17(5), 648; https://doi.org/10.3390/polym17050648 - 28 Feb 2025
Viewed by 872
Abstract
In modern engineering applications, the use of sustainable materials and eco-friendly methods has become increasingly important. Wood joints, especially those strengthened with bio-adhesive, have attracted considerable attention due to their inherent environmental benefits and desirable mechanical properties. Compared to traditional joining methods, adhesive [...] Read more.
In modern engineering applications, the use of sustainable materials and eco-friendly methods has become increasingly important. Wood joints, especially those strengthened with bio-adhesive, have attracted considerable attention due to their inherent environmental benefits and desirable mechanical properties. Compared to traditional joining methods, adhesive joints offer unique advantages such as improved load distribution, reduced stress concentration, and enhanced aesthetic appeal. This study aims to enhance delamination resistance in wooden adhesive joints using a novel method involving reinforced high-toughness resin on surfaces. Additionally, a hybrid substrate approach applies a tough layer to outer plies and a densified wood core with greater fiber direction strength. Normal, toughened, and hybrid single-lap joint specimens were analyzed through both experimental and numerical methods under various loading conditions, including quasi-static and intermediate rates. The proposed method involved bio-adhesive penetration into the wood substrate, forming a reinforced surface zone. The experimentally validated results show a significant improvement in joint strength, exhibiting an approximate 2.8-fold increase for the toughened joints compared to the reference joints under intermediate-rate conditions. Furthermore, the absorbed energy of the toughened joints increased by a substantial factor of up to 4.5 times under the same conditions. The fracture surfaces analysis revealed that the toughening method changed the failure mechanism of the joints from delamination to fiber breakage, indicating that the strength of the substrate was lower than that of the joint under impact conditions. The viscoelastic behavior of the bio-adhesive also influenced the response of the joints to the changing displacement rate. The toughening method enhanced the resilience and load-bearing capacity of the wood joints, making them more suitable for dynamic applications. Full article
(This article belongs to the Special Issue Eco-Friendly Polymer-Based Materials: Design and Applications)
Show Figures

Figure 1

15 pages, 4413 KiB  
Article
Exploring Bio-Based Polyurethane Adhesives for Eco-Friendly Structural Applications: An Experimental and Numerical Study
by Ana M. S. Couto, Catarina S. P. Borges, Shahin Jalali, Beatriz D. Simões, Eduardo A. S. Marques, Ricardo J. C. Carbas, João C. Bordado, Till Vallée and Lucas F. M. da Silva
Polymers 2024, 16(17), 2546; https://doi.org/10.3390/polym16172546 - 9 Sep 2024
Viewed by 1896
Abstract
In response to heightened environmental awareness, various industries, including the civil and automotive sector, are contemplating a shift towards the utilization of more sustainable materials. For adhesive bonding, this necessitates the exploration of materials derived from renewable sources, commonly denoted as bio-adhesives. This [...] Read more.
In response to heightened environmental awareness, various industries, including the civil and automotive sector, are contemplating a shift towards the utilization of more sustainable materials. For adhesive bonding, this necessitates the exploration of materials derived from renewable sources, commonly denoted as bio-adhesives. This study focuses on a bio-adhesive L-joint, which is a commonly employed configuration in the automotive sector for creating bonded structural components with significant bending stiffness. In this investigation, the behavior of joints composed of pine wood and bio-based adhesives was studied. Two distinct configurations were studied, differing solely in the fiber orientation of the wood. The research combined experimental testing and finite element modeling to analyze the strength of the joints and determine their failure mode when subjected to tensile loading conditions. The findings indicate that the configuration of the joint plays a crucial role in its overall performance, with one of the solutions demonstrating higher strength. Additionally, a good degree of agreement was observed between the experimental and numerical analyses for one of the configurations, while the consideration of the maximum principal stress failure predictor (MPSFP) proved to accurately predict the location for crack propagation in both configurations. Full article
(This article belongs to the Special Issue Eco-Friendly Coatings and Adhesive Technology)
Show Figures

Figure 1

16 pages, 4745 KiB  
Article
A Novel Technique for Substrate Toughening in Wood Single Lap Joints Using a Zero-Thickness Bio-Adhesive
by Shahin Jalali, Catarina da Silva Pereira Borges, Ricardo João Camilo Carbas, Eduardo André de Sousa Marques, Alireza Akhavan-Safar, Ana Sofia Oliveira Ferreira Barbosa, João Carlos Moura Bordado and Lucas Filipe Martins da Silva
Materials 2024, 17(2), 448; https://doi.org/10.3390/ma17020448 - 17 Jan 2024
Cited by 5 | Viewed by 1549
Abstract
In contemporary engineering practices, the utilization of sustainable materials and eco-friendly techniques has gained significant importance. Wooden joints, particularly those created with polyurethan-based bio-adhesives, have garnered significant attention owing to their intrinsic environmental advantages and desirable mechanical properties. In comparison to conventional joining [...] Read more.
In contemporary engineering practices, the utilization of sustainable materials and eco-friendly techniques has gained significant importance. Wooden joints, particularly those created with polyurethan-based bio-adhesives, have garnered significant attention owing to their intrinsic environmental advantages and desirable mechanical properties. In comparison to conventional joining methods, adhesive joints offer distinct benefits such as an enhanced load distribution, reduced stress concentration, and improved aesthetic appeal. In this study, reference and toughened single-lap joint samples were investigated experimentally and numerically under quasi-static loading conditions. The proposed research methodology involves the infusion of a bio-adhesive into the wooden substrate, reinforcing the matrix of its surfaces. This innovative approach was developed to explore a synergetic effect of both wood and bio-adhesive. The experimentally validated results showcase a significant enhancement in joint strength, demonstrating an 85% increase when compared to joints with regular pine substrates. Moreover, the increased delamination thickness observed in toughened joints was found to increase the energy absorption of the joint. Full article
(This article belongs to the Special Issue Mechanical Properties and Application of Adhesive Materials)
Show Figures

Figure 1

19 pages, 7429 KiB  
Article
Characterization of Densified Pine Wood and a Zero-Thickness Bio-Based Adhesive for Eco-Friendly Structural Applications
by Shahin Jalali, Catarina da Silva Pereira Borges, Ricardo João Camilo Carbas, Eduardo André de Sousa Marques, João Carlos Moura Bordado and Lucas Filipe Martins da Silva
Materials 2023, 16(22), 7147; https://doi.org/10.3390/ma16227147 - 13 Nov 2023
Cited by 3 | Viewed by 1784
Abstract
This study investigates a sustainable alternative for composites and adhesives in high-performance industries like civil and automotive. This study pioneers the development and application of a new methodology to characterize a bio-based, zero-thickness adhesive. This method facilitates precise measurements of the adhesive’s strength [...] Read more.
This study investigates a sustainable alternative for composites and adhesives in high-performance industries like civil and automotive. This study pioneers the development and application of a new methodology to characterize a bio-based, zero-thickness adhesive. This method facilitates precise measurements of the adhesive’s strength and fracture properties under zero-thickness conditions. The research also encompasses the characterization of densified pine wood, an innovative wood product distinguished by enhanced mechanical properties, which is subsequently compared to natural pine wood. We conducted a comprehensive characterization of wood’s strength properties, utilizing dogbone-shaped samples in the fiber direction, and block specimens in the transverse direction. Butt joints were employed for adhesive testing. Mode I fracture properties were determined via compact tension (CT) and double cantilever beam (DCB) tests for wood and adhesive, respectively, while mode II response was assessed through end-loaded split (ELS) tests. The densification procedure, encompassing chemical and mechanical processes, was a focal point of the study. Initially, wood was subjected to acid boiling to remove the wood matrix, followed by the application of pressure to enhance density. As a result, wood density increased by approximately 100 percent, accompanied by substantial improvements in strength and fracture energy along the fiber direction by about 120 percent. However, it is worth noting that due to the delignification nature of the densification method, properties in the transverse direction, mainly reliant on the lignin matrix, exhibited compromises. Also introduced was an innovative technique to evaluate the bio-based adhesive, applied as a zero-thickness layer. The results from this method reveal promising mechanical properties, highlighting the bio-based adhesive’s potential as an eco-friendly substitute for synthetic adhesives in the wood industry. Full article
(This article belongs to the Special Issue Obtaining and Characterization of New Materials, Volume IV)
Show Figures

Figure 1

16 pages, 4895 KiB  
Article
Impact Fatigue Life of Adhesively Bonded Composite-Steel Joints Enhanced with the Bi-Adhesive Technique
by Alireza Akhavan-Safar, Ghasem Eisaabadi Bozchaloei, Shahin Jalali, Reza Beygi, Majid R. Ayatollahi and Lucas F. M. da Silva
Materials 2023, 16(1), 419; https://doi.org/10.3390/ma16010419 - 2 Jan 2023
Cited by 15 | Viewed by 2888
Abstract
One of the most common loading conditions that bonded joints experience in service is repeated impact. Despite the destructive effects of impact fatigue, the behavior of metal-composite bonded joints subjected to repeated impact loads has rarely been studied in the literature. Therefore, it [...] Read more.
One of the most common loading conditions that bonded joints experience in service is repeated impact. Despite the destructive effects of impact fatigue, the behavior of metal-composite bonded joints subjected to repeated impact loads has rarely been studied in the literature. Therefore, it is of utmost importance to pay attention to this phenomenon on the one hand and to find solutions to improve the impact fatigue life of bonded composite metal components on the other hand. Accordingly, in this study, the use of the bi-adhesive technique is proposed to improve the durability of composite-metal single-lap joints (SLJs) under impact fatigue loading conditions. J-N (energy-life) method is also used to analyze the experimental data obtained. Accordingly, in the present study, the impact fatigue behavior of single adhesive metal to composite joints was analyzed experimentally based on the J-N method and also numerically using the finite element method (FEM). By using two adhesives along a single overlap, the impact fatigue life of joints between dissimilar composite and metal joints was also analyzed experimentally. The results show that the double adhesives technique can significantly improve the impact fatigue life of the tested joints. It was also found that the optimum length ratio of the adhesives (the length covered by the ductile adhesive relative to the total overlap size) is a function of the stiffness of the joint and is more pronounced for less stiff bonded joints. A linear elastic numerical analysis was also conducted to evaluate the stress state along the bloodline of the bonded joints. Results show that the compressive peel stress made at the boundary of the two adhesives can be a possible reason behind the different results observed. Full article
Show Figures

Figure 1

22 pages, 2360 KiB  
Review
Sustainable Development Approaches through Wooden Adhesive Joints Design
by Catarina S. P. Borges, Shahin Jalali, Panayiotis Tsokanas, Eduardo A. S. Marques, Ricardo J. C. Carbas and Lucas F. M. da Silva
Polymers 2023, 15(1), 89; https://doi.org/10.3390/polym15010089 - 26 Dec 2022
Cited by 15 | Viewed by 5459
Abstract
Over recent decades, the need to comply with environmental standards has become a concern in many industrial sectors. As a result, manufacturers have increased their use of eco-friendly, recycled, recyclable, and, overall, more sustainable materials and industrial techniques. One technique highly dependent on [...] Read more.
Over recent decades, the need to comply with environmental standards has become a concern in many industrial sectors. As a result, manufacturers have increased their use of eco-friendly, recycled, recyclable, and, overall, more sustainable materials and industrial techniques. One technique highly dependent on petroleum-based products, and at the edge of a paradigm change, is adhesive bonding. Adhesive bonding is often used to join composite materials and depends upon an adhesive to achieve the connection. However, the matrices of the composite materials and the adhesives used, as well as, in some cases, the composite fibres, are manufactured from petrochemical products. Efforts to use natural composites and adhesives are therefore ongoing. One composite that has proven to be promising is wood due to its high strength and stiffness (particularly when it is densified), formability, and durability. However, wood must be very carefully characterised since its properties can be variable, depending on the slope of the grains, irregularities (such as knots, shakes, or splits), and on the location and climate of each individual tree. Therefore, in addition to neat wood, wood composites may also be a promising option to increase sustainability, with more predictable properties. To bond wood or wooden composite substrates, bio-adhesives can be considered. These adhesives are now formulated with increasingly enhanced mechanical properties and are becoming promising alternatives at the structural application level. In this paper, wooden adhesive joints are surveyed considering bio-adhesives and wood-based substrates, taking into consideration the recent approaches to improve these base materials, accurately characterise them, and implement them in adhesive joints. Full article
Show Figures

Figure 1

22 pages, 10702 KiB  
Article
Development and Characterisation of Joints with Novel Densified and Wood/Cork Composite Substrates
by Luis M. R. M. Corte-Real, Shahin Jalali, Catarina S. P. Borges, Eduardo A. S. Marques, Ricardo J. C. Carbas and Lucas F. M. da Silva
Materials 2022, 15(20), 7163; https://doi.org/10.3390/ma15207163 - 14 Oct 2022
Cited by 3 | Viewed by 2093
Abstract
The automotive industry, driven by the desire to decrease the environmental impact of vehicles, is permanently seeking to develop lightweight structural components, which lead to lower gas emissions and energy consumption, reducing their carbon footprint. In parallel, adopting innovative, constructive solutions, which dispense [...] Read more.
The automotive industry, driven by the desire to decrease the environmental impact of vehicles, is permanently seeking to develop lightweight structural components, which lead to lower gas emissions and energy consumption, reducing their carbon footprint. In parallel, adopting innovative, constructive solutions, which dispense non-recyclable and energy-intensive materials, can increase the footprint reduction. Thus, an increase in the use of renewable materials for structural applications, including wood and its by-products, has been observed over the last few decades. Furthermore, composite materials are often joined by using petroleum-based synthetic adhesives, which should be progressively replaced by eco-friendly bio-adhesives. In this study, novel densified wood and wood/cork composites, joined with a bio-adhesive, are proposed and characterised. The densification of the wood aims to enhance the mechanical properties of the natural material, with the purpose of improving the energy absorption of the wood/bio-adhesive joint. To mitigate delamination and the brittle behaviour of wood/cork agglomerates were introduced between the wood substrate and the bio-adhesive. Different configurations of single lap joints (SLJ) were manufactured to study the effect of the overlap length and loading rate on the performance of the joints, both in terms of failure load and energy absorption. Afterward, the joints were numerically simulated. The densification process was successful, although it represents an additional challenge in terms of surface flatness, because the bio-adhesive requires zero bondline thickness. The increase of the overlap had a positive impact on the energy absorption of the joint, and the addition of cork resulted in a more consistent failure mode and higher strain to failure. The numerical models developed had a good correlation with the experimental results. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

Back to TopTop