Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Authors = Said Ajlouni

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 683 KiB  
Review
Microbial Contamination and Disease Outbreaks Associated with Rockmelons (Cucumis melo): Implications for Public Health Protection
by Pouria Rabiee, Ayesha Faraz, Said Ajlouni and Malik A. Hussain
Foods 2024, 13(14), 2198; https://doi.org/10.3390/foods13142198 - 11 Jul 2024
Cited by 1 | Viewed by 2960
Abstract
Foodborne illnesses caused by consuming contaminated fresh produce not only pose serious public health risks but also lead to huge economic losses. Rockmelons (cantaloupes) have emerged as a recurrent source of disease outbreaks caused by foodborne pathogens, including Listeria monocytogenes, Salmonella, [...] Read more.
Foodborne illnesses caused by consuming contaminated fresh produce not only pose serious public health risks but also lead to huge economic losses. Rockmelons (cantaloupes) have emerged as a recurrent source of disease outbreaks caused by foodborne pathogens, including Listeria monocytogenes, Salmonella, and Escherichia coli. The most common factor of the outbreaks was the microbial contamination of rockmelons at the farm, and subsequently, the pathogenic bacteria were transferred to the flesh during cutting and processing. One of the deadliest outbreaks occurred in the USA due to L. monocytogenes contamination of rockmelons which caused 33 deaths in 2011. Since then, several guidelines and recommendations have been developed for food safety management to reduce the microbial contamination of melons on farms and post-harvest operations. This article explicitly provides an updated overview of microbiological contamination, disease outbreaks, pathogens prevalence, and mitigation strategies to reduce public health risks due to the consumption of rockmelons. Full article
(This article belongs to the Special Issue Advances and Future Challenges to Microbial Food Safety—Volume II)
Show Figures

Graphical abstract

21 pages, 2364 KiB  
Article
Probiotic Yoghurt Enriched with Mango Peel Powder: Biotransformation of Phenolics and Modulation of Metabolomic Outputs after In Vitro Digestion and Colonic Fermentation
by Hafza Fasiha Zahid, Akhtar Ali, Alistair R. Legione, Chaminda Senaka Ranadheera, Zhongxiang Fang, Frank R. Dunshea and Said Ajlouni
Int. J. Mol. Sci. 2023, 24(10), 8560; https://doi.org/10.3390/ijms24108560 - 10 May 2023
Cited by 22 | Viewed by 3890
Abstract
This study investigated the health-promoting effects and prebiotic functions of mango peel powder (MPP) both as a plain individual ingredient and when incorporated in yoghurt during simulated digestion and fermentation. The treatments included plain MPP, plain yoghurt (YA), yoghurt fortified with MPP (YB), [...] Read more.
This study investigated the health-promoting effects and prebiotic functions of mango peel powder (MPP) both as a plain individual ingredient and when incorporated in yoghurt during simulated digestion and fermentation. The treatments included plain MPP, plain yoghurt (YA), yoghurt fortified with MPP (YB), and yoghurt fortified with MPP and lactic acid bacteria (YC), along with a blank (BL). The identification of polyphenols in the extracts of insoluble digesta and phenolic metabolites after the in vitro colonic fermentation were performed employing LC-ESI-QTOF-MS2. These extracts were also subjected to pH, microbial count, production of SCFA, and 16S rRNA analyses. The characterisation of phenolic profiles identified 62 phenolic compounds. Among these compounds, phenolic acids were the major compounds that underwent biotransformation via catabolic pathways such as ring fission, decarboxylation, and dehydroxylation. Changes in pH indicated that YC and MPP reduced the media pH from 6.27 and 6.33 to 4.50 and 4.53, respectively. This decline in pH was associated with significant increases in the LAB counts of these samples. The Bifidobacteria counts were 8.11 ± 0.89 and 8.02 ± 1.01 log CFU/g in YC and MPP, respectively, after 72 h of colonic fermentation. Results also showed that the presence of MPP imparted significant variations in the contents and profiles of individual short chain fatty acids (SCFA) with more predominant production of most SCFA in the MPP and YC treatments. The 16s rRNA sequencing data indicated a highly distinctive microbial population associated with YC in terms of relative abundance. These findings suggested MPP as a promising ingredient for utilisation in functional food formulations aiming to enhance gut health. Full article
Show Figures

Figure 1

19 pages, 2729 KiB  
Article
Identification of Phenolics Profile in Freeze-Dried Apple Peel and Their Bioactivities during In Vitro Digestion and Colonic Fermentation
by Hafza Fasiha Zahid, Akhtar Ali, Chaminda Senaka Ranadheera, Zhongxiang Fang and Said Ajlouni
Int. J. Mol. Sci. 2023, 24(2), 1514; https://doi.org/10.3390/ijms24021514 - 12 Jan 2023
Cited by 24 | Viewed by 4288
Abstract
Freeze-dried apple peel powder (Fd-APP) was subjected to in vitro digestion and colonic fermentation to evaluate the variations in its phenolic composition, bioactivities (antioxidant activity, α-amylase, and α-glucosidase inhibition), and fecal metabolic outputs. A total of 88 phenolics were tentatively identified, of which [...] Read more.
Freeze-dried apple peel powder (Fd-APP) was subjected to in vitro digestion and colonic fermentation to evaluate the variations in its phenolic composition, bioactivities (antioxidant activity, α-amylase, and α-glucosidase inhibition), and fecal metabolic outputs. A total of 88 phenolics were tentatively identified, of which 51 phenolic compounds were quantitated in Fd-APP sample extracts before digestion, and 34 were released during subsequent phases of digestion. Among these, phenolic acids showed the highest bio accessibility index (BI) of 68%, followed by flavonoids (63%) and anthocyanins (52%). The inhibitory functions of Fd-APP extract against α-amylase and α-glucosidase pre- and post-digestion were moderate and ranged from 41.88 to 44.08% and 35.23 to 41.13%, respectively. Additionally, the antioxidant activities revealed a significant (p ≤ 0.05) decline during the in vitro digestion. However, the colonic fermentation stage presented different products where the intact parent phenolic compounds present in Fd-APP were utilized by gut microbes and produced various phenolic metabolites such as 3- hydroxyphenyl acetic acid (3-HPAA), ferulic acid (FA), 3-(4-hydroxyphenyl) propionic acid (3,4 HPPA) and 4- hydroxybenzoic acid (4-HBA). Furthermore, colonic fermentation of Fd-APP accelerated the production of short-chain fatty acids (SCFAs), with acetic acid being the most prevalent (97.53 ± 9.09 mM). The decrease in pH of fermentation media to 4.3 significantly (p ≤ 0.05) enhanced counts of Bifidobacterium (10.27 log CFU/mL), which demonstrated the potential prebiotic effects of Fd-APP. These findings indicated that the consumption of apple peel as a constituent of novel functional foods may support and protect the intestinal microbiota and consequently promote human health. Full article
(This article belongs to the Special Issue State-of-the-Art Bioactives and Nutraceuticals in Australia)
Show Figures

Graphical abstract

11 pages, 1014 KiB  
Article
Prebiotic Functions of Konjac Root Powder in Chocolate Milk Enriched with Free and Encapsulated Lactic Acid Bacteria
by Said Ajlouni, Md. Nur Hossain and Ziqian Tang
Microorganisms 2022, 10(12), 2433; https://doi.org/10.3390/microorganisms10122433 - 8 Dec 2022
Cited by 3 | Viewed by 2561
Abstract
This study investigated the prebiotic functions of Konjac root powder (KRP) when added to chocolate milk (ChM) enriched with 2% of free or microencapsulated lactic acid bacteria (FLAB or ELAB). The effects of different concentrations of KRP (0%, 2% and 4%) and refrigerated [...] Read more.
This study investigated the prebiotic functions of Konjac root powder (KRP) when added to chocolate milk (ChM) enriched with 2% of free or microencapsulated lactic acid bacteria (FLAB or ELAB). The effects of different concentrations of KRP (0%, 2% and 4%) and refrigerated storage time on the physical, chemical and microbiological characteristics of this chocolate milk were examined. The results show that pH significantly declined (p < 0.05), while titratable acidity increased in all ChM samples with KRP and FLAB or ELAB during refrigerated storage. The pH values ranged from 6.0 ± 0.03 in samples enriched ELAB and 4% KRP to 6.33 ± 0.03 in ChM enriched with FLAB and 2% KRP. Viscosity of ChM was affected mainly by the added amounts of KRP and storage time. The largest viscosity (5500 cP) was observed in all samples containing 4% KPR on day zero and decreased significantly (p < 0.05) over storage time to reach 2800 cP in ChM samples containing 0% LAB and 4% KRP after 21 days of storage. Changes in LAB counts proved the initial hypothesis that KRP could act as prebiotics in the presence of LAB using chocolate milk as a carrier. The initial LAB counts in inoculated samples on day zero of refrigeration storage were not significantly different (p > 0.05) among all treatments. However, ChM enriched with 2% and 4% KRP and ELAB revealed significantly (p < 0.05) larger LAB counts (4.91 ± 0.78 and 5.0 ± 0.57 log CFU/mL, respectively) than the control (3.85 ± 0.55 log CFU/mL) after 21 days of storage. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

16 pages, 330 KiB  
Article
Functional and Healthy Yogurts Fortified with Probiotics and Fruit Peel Powders
by Hafza Fasiha Zahid, Chaminda Senaka Ranadheera, Zhongxiang Fang and Said Ajlouni
Fermentation 2022, 8(9), 469; https://doi.org/10.3390/fermentation8090469 - 19 Sep 2022
Cited by 31 | Viewed by 6544
Abstract
The application of processing waste by-products along with probiotics is an interesting choice to confer potential functional aspects to food products. This study was designed to investigate the nutritional capacity of freeze-dried mango peel powder (MPP) and banana peel powder (BPP) in the [...] Read more.
The application of processing waste by-products along with probiotics is an interesting choice to confer potential functional aspects to food products. This study was designed to investigate the nutritional capacity of freeze-dried mango peel powder (MPP) and banana peel powder (BPP) in the presence of a mixture of three probiotic species (1% of each of three probiotics (Lacticaseibacillus casei (431®), Lacticaseibacillus rhamnosus (LGG®) and Bifidobacterium subsp. Lactis (Bb-12®)) as sources of additional nutrients and prebiotics in fresh and rehydrated freeze-dried (RFD) yogurts for 28 days of refrigerated storage. The net count of probiotics in yogurt fortified with MPP and BPP increased by at least 1 log CFU/g after 4 weeks of refrigerated storage. Adding fruit peel powder (FPP) significantly (p < 0.05) increased fat, ash, and protein contents in both fresh and RFD yogurts in comparison with the control yogurt. Similarly, the total phenolic contents (TPC) and antioxidant activity (AOA) was enhanced significantly (p < 0.05). The TPC reached 2.27 ± 0.18 and 2.73 ± 0.11 mg GAE/g in RFD enriched with BPP and MPP compared to a TPC of 0.31 ± 0.07 mg GAE/g in the control. Additionally, yogurt samples enriched with BPP (Y-5) and MPP (Y-6) demonstrated 12% more sugar contents than non-fortified yogurts (Y-1). Higher titratable acidity and lower pH values were also recorded in the RFD yogurt. Significant differences (p < 0.05) in the color parameters were detected in both fresh and RFD yogurts with reduced brightness (L*) and increased redness (a*) of the product. These findings demonstrated the suitability of MPP and BPP in yogurt formulations to optimize the advantages of such synbiotic products with higher availability of phenolic compounds. Full article
(This article belongs to the Special Issue Bioactivity Change in Fermented Foods)
14 pages, 825 KiB  
Article
Interaction between Chocolate Polyphenols and Encapsulated Probiotics during In Vitro Digestion and Colonic Fermentation
by Md Nur Hossain, Chaminda Senaka Ranadheera, Zhongxiang Fang and Said Ajlouni
Fermentation 2022, 8(6), 253; https://doi.org/10.3390/fermentation8060253 - 27 May 2022
Cited by 8 | Viewed by 3595
Abstract
This study evaluated the interaction between probiotics and polyphenols in chocolates (45% and 70% cocoa) fortified with encapsulated probiotics. Cocoa powder was used as the main encapsulation component in a Na-alginate plus fructooligosaccharides formulation. Probiotic-chocolates (PCh) were produced by adding 1% encapsulated probiotics [...] Read more.
This study evaluated the interaction between probiotics and polyphenols in chocolates (45% and 70% cocoa) fortified with encapsulated probiotics. Cocoa powder was used as the main encapsulation component in a Na-alginate plus fructooligosaccharides formulation. Probiotic-chocolates (PCh) were produced by adding 1% encapsulated probiotics to the final mixture. The chocolate samples were subjected to in vitro gastrointestinal digestion and colonic fermentation. The data revealed that the most bioaccessible polyphenols in both formulations of PCh containing 45% and 70% cocoa were released in the gastric digested supernatant. The bioaccessible polyphenols from PCh with 70% cocoa reached 83.22–92.33% and 8.08–15.14% during gastrointestinal digestion and colonic fermentation, respectively. Furthermore, the polyphenols with higher bioaccessibility during colonic fermentation of both PChs developed with the CA1 formulation (cocoa powder 10%, Na-alginate 1% and fructooligosaccharides 2%) were detected in the presence of Streptococcus thermophilus and Lactobacillus sanfranciscensis. The results showed that PCh with specific probiotics favored the bioconversion of a specific polyphenol. For example, chocolate fortified with Lacticaseibacillus casei released larger quantities of epicatechin and procyanidin B1, while Lactiplantibacillus plantarum released more catechin and procyanidin B1 for Lacticaseibacillus rhamnosus LGG. Overall, the study findings concluded that chocolate polyphenols could be utilized by probiotics for their metabolism and modulating the gut, which improved the chocolates’ functionality. Full article
(This article belongs to the Special Issue High Quality Functional Food: Potential of Probiotics)
Show Figures

Figure 1

17 pages, 3340 KiB  
Article
Utilization of Mango, Apple and Banana Fruit Peels as Prebiotics and Functional Ingredients
by Hafza Fasiha Zahid, Chaminda Senaka Ranadheera, Zhongxiang Fang and Said Ajlouni
Agriculture 2021, 11(7), 584; https://doi.org/10.3390/agriculture11070584 - 24 Jun 2021
Cited by 60 | Viewed by 15681
Abstract
Among the waste by-products generated by the fruit industry (peels, seeds, and skins), fruit peel constitutes the major component. It is estimated that fruit peel accounts for at least 20% of the fresh fruit weight. Fruit peels are considered as major sources of [...] Read more.
Among the waste by-products generated by the fruit industry (peels, seeds, and skins), fruit peel constitutes the major component. It is estimated that fruit peel accounts for at least 20% of the fresh fruit weight. Fruit peels are considered as major sources of dietary fiber and anticipated to be successfully utilized as prebiotics. This study examined the chemical composition, functional properties and the prebiotic effects of three major tropical fruit peels (apple, banana and mango). The prebiotic effect was tested using three commercial probiotic strains (Lactobacillus rhamnosus, L. casei and Bifidobacterium lactis) individually and in combination. Each probiotic culture was fortified with different concentration (0%, 2% and 4%) of selected fruit peel powder (FPP). Results revealed that all tested FPP significantly (p < 0.05) enhanced the probiotics viable counts, which reached >10 logs after 24 h of incubation. However, the concentration of 2% and 4% FPP showed no significant differences (p > 0.05) on the probiotic viable counts. Additionally, the prebiotic effects of FPP were the same when applied to individual and mixed cultures. This investigation demonstrated that small amount (2%) of apple, banana and mango peel powder could be successfully utilized as prebiotics to enhance the growth of lactic acid bacteria (LAB). Additionally, the studied physical and chemical characteristics of FPP demonstrated their potential applications in the food and pharmaceutical industries as functional ingredients. Full article
(This article belongs to the Section Agricultural Product Quality and Safety)
Show Figures

Figure 1

14 pages, 683 KiB  
Article
Probiotic Yogurt Fortified with Chickpea Flour: Physico-Chemical Properties and Probiotic Survival during Storage and Simulated Gastrointestinal Transit
by Manwinder Kaur Sidhu, Fengzhi Lyu, Thomas Patrick Sharkie, Said Ajlouni and Chaminda Senaka Ranadheera
Foods 2020, 9(9), 1144; https://doi.org/10.3390/foods9091144 - 19 Aug 2020
Cited by 31 | Viewed by 6898
Abstract
In the present study, probiotic yogurt with Lactobacillus acidophilus LA5 and Bifidobacterium BB12 was produced via fortification with chickpea flour (0, 1, 2.5, 5% w/v). During refrigerated storage for five weeks, probiotics maintained a viable count above the minimum therapeutic level (10 [...] Read more.
In the present study, probiotic yogurt with Lactobacillus acidophilus LA5 and Bifidobacterium BB12 was produced via fortification with chickpea flour (0, 1, 2.5, 5% w/v). During refrigerated storage for five weeks, probiotics maintained a viable count above the minimum therapeutic level (106 CFU/g) in all yogurt types. Although there was no significant (p > 0.05) positive effect of chickpea flour on probiotic viability during storage, the addition of chickpea flour has beneficial effects on the viability of both probiotic species in the presence of gastric and intestinal juices, with 0.3% bile. This study also evaluated the physio-chemical properties of probiotic yogurt during storage. Some physicochemical properties of yogurt, such as water holding capacity and susceptibility to syneresis, were enhanced by the addition of chickpea flour. Hence, chickpea flour could be an attractive pulse ingredient in the production of probiotic yogurts for health-conscious consumers. Full article
(This article belongs to the Special Issue Probiotics: Technological Aspects, Development of Dairy Foods)
Show Figures

Graphical abstract

15 pages, 275 KiB  
Review
Apple Pomace as a Functional and Healthy Ingredient in Food Products: A Review
by Fengzhi Lyu, Selma F. Luiz, Denise Rosane Perdomo Azeredo, Adriano G. Cruz, Said Ajlouni and Chaminda Senaka Ranadheera
Processes 2020, 8(3), 319; https://doi.org/10.3390/pr8030319 - 9 Mar 2020
Cited by 208 | Viewed by 24101
Abstract
Apple pomace is a major by-product obtained during apple juice processing. Several million metric tons of apple pomace are estimated to be generated worldwide every year. However, the recovery rate of this by-product is low. Pomace is commonly disposed and thrown away as [...] Read more.
Apple pomace is a major by-product obtained during apple juice processing. Several million metric tons of apple pomace are estimated to be generated worldwide every year. However, the recovery rate of this by-product is low. Pomace is commonly disposed and thrown away as a waste, which results in environmental problems and even public health hazards. As a by-product of the apple juice processing industries, pomace contains plenty of different varieties of nutritionally important compounds, such as carbohydrates, phenolic compounds, dietary fiber and minerals. These important compounds can be recovered from apple pomace, or there is even a possibility of using apple pomace in the food systems directly or after minimal processing. Therefore, apple pomace can be utilized in food products to improve their health benefits and commercial values. This review focuses on the current food applications and influence of apple pomace on the characteristics of various food products. Full article
(This article belongs to the Special Issue Screening of Bioactive Compounds from Food Processing Waste)
9 pages, 836 KiB  
Article
Functional Efficacy of Probiotic Lactobacillus sanfranciscensis in Apple, Orange and Tomato Juices with Special Reference to Storage Stability and In Vitro Gastrointestinal Survival
by Wenjie Zhu, Fengzhi Lyu, Nenad Naumovski, Said Ajlouni and Chaminda Senaka Ranadheera
Beverages 2020, 6(1), 13; https://doi.org/10.3390/beverages6010013 - 25 Feb 2020
Cited by 57 | Viewed by 7967
Abstract
There is an increasing demand for non-dairy probiotic carriers such as fruit and vegetable juices. Probiotic Lactobacillus sanfranciscensis is predominantly used in the bakery industry, and its efficacy in fruit juices has not been studied sufficiently. Additionally, support from the carrier matrices for [...] Read more.
There is an increasing demand for non-dairy probiotic carriers such as fruit and vegetable juices. Probiotic Lactobacillus sanfranciscensis is predominantly used in the bakery industry, and its efficacy in fruit juices has not been studied sufficiently. Additionally, support from the carrier matrices for maintaining probiotic viability and gastrointestinal tolerance is important in selecting suitable vehicles for probiotic delivery. Three different non-dairy carrier juices (apple, orange and tomato) were tested for their ability to maintain L. sanfranciscensis viable during four weeks of refrigerated storage (4 °C). Their potential protection of L. sanfranciscensis against in vitro gastrointestinal digestion was also evaluated. Results indicated that the probiotics viability in all three juice samples met the recommended level for probiotic food (>106–107 cfu/mL) at the end of storage. However, all three juice samples showed a comparatively lower protective effect (p < 0.05) on the viability of L. sanfranciscensis when exposed to simulated gastric juice (pH = 2) at the end of 60 min and simulated intestinal juice with 0.3% (w/v) bile salt (pH = 8) at the end of 240 min exposure. In general, the three tested juices can be regarded as the potential non-dairy based carriers for L. sanfranciscensis. The future research is needed to improve the modification of the probiotic carriers in order to prolong the viability of L. sanfranciscensis during the gastrointestinal digestion. Full article
(This article belongs to the Special Issue Fruit Juices: Technology, Chemistry, and Nutrition)
Show Figures

Figure 1

18 pages, 297 KiB  
Article
LC-ESI-QTOF/MS Profiling of Australian Mango Peel By-Product Polyphenols and Their Potential Antioxidant Activities
by Danying Peng, Hafza Fasiha Zahid, Said Ajlouni, Frank R. Dunshea and Hafiz A. R. Suleria
Processes 2019, 7(10), 764; https://doi.org/10.3390/pr7100764 - 18 Oct 2019
Cited by 92 | Viewed by 9372
Abstract
Mango (Mangifera indica L.) is one of the most important fruits in the world. Mango peel is an important by-product that is rich in polyphenols and it could have high economic value if it is effectively utilized. Phenolic characterization is an essential [...] Read more.
Mango (Mangifera indica L.) is one of the most important fruits in the world. Mango peel is an important by-product that is rich in polyphenols and it could have high economic value if it is effectively utilized. Phenolic characterization is an essential step in the commercial utilization of mango peel by-products as food ingredients. Herein, qualitative and quantitative analyses of two Australian mango peel “Keitt” and “Kensington Pride” (K&P) by-products were conducted while using liquid chromatography coupled to electrospray ionisation and quadrupole time of flight mass spectrometry (LC-ESI-QTOF/MS) and high-performance liquid chromatography coupled to photodiode array detector (HPLC-PDA). A total of 98 polyphenols compounds were tentatively identified in both Keitt peel and K&P peel extracts, with greater concentrations of these compounds being detected in Keitt peel. The total phenolic content (TPC), total flavonoid content (TFC), and a total tannin content (TTC) were determined. The antioxidant activity of mango peel by-products was determined while using 2,2-diphenyl-1-picrylhydrazyl (DPPH) antioxidant assay, ferric reducing antioxidant power (FRAP) assay, and 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging assay. Keitt peel contained higher concentrations of total phenolic compounds, flavonoids, and tannins and had higher antioxidant capacity in DPPH, FRAP, and ABTS assays as compared to K&P peel. In HPLC-PDA quantification, the predominant phenolic compounds in Keitt peel and K&P peel were catechin (62.32 ± 0.01 mg/gd.w.) and syringic acid (17.78 ± 0.01 mg/gd.w). Full article
(This article belongs to the Section Biological Processes and Systems)
Show Figures

Graphical abstract

17 pages, 504 KiB  
Review
Probiotic Delivery through Fermentation: Dairy vs. Non-Dairy Beverages
by Chaminda Senaka Ranadheera, Janak K. Vidanarachchi, Ramon Silva Rocha, Adriano G. Cruz and Said Ajlouni
Fermentation 2017, 3(4), 67; https://doi.org/10.3390/fermentation3040067 - 11 Dec 2017
Cited by 218 | Viewed by 34554
Abstract
Probiotics are live microorganisms that, when administered in adequate amounts, confer a health benefit on the host, mainly through the process of replacing or including beneficial bacteria in the gastrointestinal tract. Fermented dairy foods such as yogurt, fermented milk and cheese are the [...] Read more.
Probiotics are live microorganisms that, when administered in adequate amounts, confer a health benefit on the host, mainly through the process of replacing or including beneficial bacteria in the gastrointestinal tract. Fermented dairy foods such as yogurt, fermented milk and cheese are the major vehicle in delivering probiotics, and probiotic delivery have been traditionally associated with these fermented dairy foods. Additionally, many other non-dairy probiotic products and non-food form such as capsules, pills and tablets are also available and some of these non-food forms are highly popular among the consumers. Certain non-dairy probiotic foods, especially beverages that are non-fermented products, can also play an important role in probiotic delivery. There is an increasing demand for non-dairy probiotic foods (both fermented and non-fermented) including fruit and vegetable juices, soy and certain cereal products due to vegetarianism, lactose intolerance and dairy allergies, as well as interest in low cholesterol foods. In this context, this review mainly focus on the different types of probiotic food products including beverages with special reference to their viability followed by a brief account on the applicability of using fermented and non-fermented beverage products in probiotic delivery. Full article
(This article belongs to the Special Issue Microbiota of Fermented Beverages)
Show Figures

Graphical abstract

Back to TopTop