Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Authors = Pierre Dahoo ORCID = 0000-0001-8119-7471

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 6144 KiB  
Article
Advancing CubeSats Capabilities: Ground-Based Calibration of Uvsq-Sat NG Satellite’s NIR Spectrometer and Determination of the Extraterrestrial Solar Spectrum
by Mustapha Meftah, Christophe Dufour, David Bolsée, Lionel Van Laeken, Cannelle Clavier, Amal Chandran, Loren Chang, Alain Sarkissian, Patrick Galopeau, Alain Hauchecorne, Pierre-Richard Dahoo, Luc Damé, André-Jean Vieau, Emmanuel Bertran, Pierre Gilbert, Fréderic Ferreira, Jean-Luc Engler, Christophe Montaron, Antoine Mangin, Odile Hembise Fanton d’Andon, Nicolas Caignard, Angèle Minet, Pierre Maso, Nuno Pereira, Étienne Brodu, Slimane Bekki, Catherine Billard and Philippe Keckhutadd Show full author list remove Hide full author list
Remote Sens. 2024, 16(19), 3655; https://doi.org/10.3390/rs16193655 - 30 Sep 2024
Cited by 1 | Viewed by 1951
Abstract
Uvsq-Sat NG is a French 6U CubeSat (10 × 20 × 30 cm) of the International Satellite Program in Research and Education (INSPIRE) designed primarily for observing greenhouse gases (GHG) such as CO2 and CH4, measuring the Earth’s radiation budget [...] Read more.
Uvsq-Sat NG is a French 6U CubeSat (10 × 20 × 30 cm) of the International Satellite Program in Research and Education (INSPIRE) designed primarily for observing greenhouse gases (GHG) such as CO2 and CH4, measuring the Earth’s radiation budget (ERB), and monitoring solar spectral irradiance (SSI) at the top-of-atmosphere (TOA). It epitomizes an advancement in CubeSat technology, showcasing its enhanced capabilities for comprehensive Earth observation. Scheduled for launch in 2025, the satellite carries a compact and miniaturized near-infrared (NIR) spectrometer capable of performing observations in both nadir and solar directions within the wavelength range of 1100 to 2000 nm, with a spectral resolution of 7 nm and a 0.15° field of view. This study outlines the preflight calibration process of the Uvsq-Sat NG NIR spectrometer (UNIS), with a focus on the spectral response function and the absolute calibration of the instrument. The absolute scale of the UNIS spectrometer was accurately calibrated with a quartz-halogen lamp featuring a coiled-coil tungsten filament, certified by the National Institute of Standards and Technology (NIST) as a standard of spectral irradiance. Furthermore, this study details the ground-based measurements of direct SSI through atmospheric NIR windows conducted with the UNIS spectrometer. The measurements were obtained at the Pommier site (45.54°N, 0.83°W) in Charentes–Maritimes (France) on 9 May 2024. The objective of these measurements was to verify the absolute calibration of the UNIS spectrometer conducted in the laboratory and to provide an extraterrestrial solar spectrum using the Langley-plot technique. By extrapolating the data to AirMass Zero (AM0), we obtained high-precision results that show excellent agreement with SOLAR-HRS and TSIS-1 HSRS solar spectra. At 1.6 μm, the SSI was determined to be 238.59 ± 3.39 mW.m−2.nm−1 (k = 2). These results demonstrate the accuracy and reliability of the UNIS spectrometer for both SSI observations and GHG measurements, providing a solid foundation for future orbital data collection and analysis. Full article
(This article belongs to the Special Issue Advances in CubeSats for Earth Observation)
Show Figures

Figure 1

22 pages, 1478 KiB  
Article
Assessing Greenhouse Gas Monitoring Capabilities Using SolAtmos End-to-End Simulator: Application to the Uvsq-Sat NG Mission
by Cannelle Clavier, Mustapha Meftah, Alain Sarkissian, Frédéric Romand, Odile Hembise Fanton d’Andon, Antoine Mangin, Slimane Bekki, Pierre-Richard Dahoo, Patrick Galopeau, Franck Lefèvre, Alain Hauchecorne and Philippe Keckhut
Remote Sens. 2024, 16(8), 1442; https://doi.org/10.3390/rs16081442 - 18 Apr 2024
Cited by 6 | Viewed by 1716
Abstract
Monitoring atmospheric concentrations of greenhouse gases (GHGs) like carbon dioxide and methane in near real time and with good spatial resolution is crucial for enhancing our understanding of the sources and sinks of these gases. A novel approach can be proposed using a [...] Read more.
Monitoring atmospheric concentrations of greenhouse gases (GHGs) like carbon dioxide and methane in near real time and with good spatial resolution is crucial for enhancing our understanding of the sources and sinks of these gases. A novel approach can be proposed using a constellation of small satellites equipped with miniaturized spectrometers having a spectral resolution of a few nanometers. The objective of this study is to describe expected results that can be obtained with a single satellite named Uvsq-Sat NG. The SolAtmos end-to-end simulator and its three tools (IRIS, OptiSpectra, and GHGRetrieval) were developed to evaluate the performance of the spectrometer of the Uvsq-Sat NG mission, which focuses on measuring the main GHGs. The IRIS tool was implemented to provide Top-Of-Atmosphere (TOA) spectral radiances. Four scenes were analyzed (pine forest, deciduous forest, ocean, snow) combined with different aerosol types (continental, desert, maritime, urban). Simulated radiance spectra were calculated based on the wavelength ranges of the Uvsq-Sat NG, which spans from 1200 to 2000 nm. The OptiSpectra tool was used to determine optimal observational settings for the spectrometer, including Signal-to-Noise Ratio (SNR) and integration time. Data derived from IRIS and OptiSpectra served as input for our GHGRetrieval simulation tool, developed to provide greenhouse gas concentrations. The Levenberg–Marquardt algorithm was applied iteratively to fine-tune gas concentrations and model inputs, aligning observed transmittance functions with simulated ones under given environmental conditions. To estimate gas concentrations (CO2, CH4, O2, H2O) and their uncertainties, the Monte Carlo method was used. Based on this analysis, this study demonstrates that a miniaturized spectrometer onboard Uvsq-Sat NG is capable of observing different scenes by adjusting its integration time according to the wavelength. The expected precision for each measurement is of the order of a few ppm for carbon dioxide and less than 25 ppb for methane. Full article
(This article belongs to the Special Issue Remote Sensing of Greenhouse Gas Emissions II)
Show Figures

Figure 1

26 pages, 2173 KiB  
Article
Uvsq-Sat NG, a New CubeSat Pathfinder for Monitoring Earth Outgoing Energy and Greenhouse Gases
by Mustapha Meftah, Cannelle Clavier, Alain Sarkissian, Alain Hauchecorne, Slimane Bekki, Franck Lefèvre, Patrick Galopeau, Pierre-Richard Dahoo, Andrea Pazmino, André-Jean Vieau, Christophe Dufour, Pierre Maso, Nicolas Caignard, Frédéric Ferreira, Pierre Gilbert, Odile Hembise Fanton d’Andon, Sandrine Mathieu, Antoine Mangin, Catherine Billard and Philippe Keckhut
Remote Sens. 2023, 15(19), 4876; https://doi.org/10.3390/rs15194876 - 8 Oct 2023
Cited by 9 | Viewed by 4045
Abstract
Climate change is undeniably one of the most pressing and critical challenges facing humanity in the 21st century. In this context, monitoring the Earth’s Energy Imbalance (EEI) is fundamental in conjunction with greenhouse gases (GHGs) in order to comprehensively understand and address climate [...] Read more.
Climate change is undeniably one of the most pressing and critical challenges facing humanity in the 21st century. In this context, monitoring the Earth’s Energy Imbalance (EEI) is fundamental in conjunction with greenhouse gases (GHGs) in order to comprehensively understand and address climate change. The French Uvsq-Sat NG pathfinder mission addresses this issue through the implementation of a Six-Unit CubeSat, which has dimensions of 111.3 × 36.6 × 38.8 cm in its unstowed configuration. Uvsq-Sat NG is a satellite mission spearheaded by the Laboratoire Atmosphères, Observations Spatiales (LATMOS), and supported by the International Satellite Program in Research and Education (INSPIRE). The launch of this mission is planned for 2025. One of the Uvsq-Sat NG objectives is to ensure the smooth continuity of the Earth Radiation Budget (ERB) initiated via the Uvsq-Sat and Inspire-Sat satellites. Uvsq-Sat NG seeks to achieve broadband ERB measurements using state-of-the-art yet straightforward technologies. Another goal of the Uvsq-Sat NG mission is to conduct precise and comprehensive monitoring of atmospheric gas concentrations (CO2 and CH4) on a global scale and to investigate its correlation with Earth’s Outgoing Longwave Radiation (OLR). Uvsq-Sat NG carries several payloads, including Earth Radiative Sensors (ERSs) for monitoring incoming solar radiation and outgoing terrestrial radiation. A Near-Infrared (NIR) Spectrometer is onboard to assess GHGs’ atmospheric concentrations through observations in the wavelength range of 1200 to 2000 nm. Uvsq-Sat NG also includes a high-definition camera (NanoCam) designed to capture images of the Earth in the visible range. The NanoCam will facilitate data post-processing acquired via the spectrometer by ensuring accurate geolocation of the observed scenes. It will also offer the capability of observing the Earth’s limb, thus providing the opportunity to roughly estimate the vertical temperature profile of the atmosphere. We present here the scientific objectives of the Uvsq-Sat NG mission, along with a comprehensive overview of the CubeSat platform’s concepts and payload properties as well as the mission’s current status. Furthermore, we also describe a method for the retrieval of atmospheric gas columns (CO2, CH4, O2, H2O) from the Uvsq-Sat NG NIR Spectrometer data. The retrieval is based on spectra simulated for a range of environmental conditions (surface pressure, surface reflectance, vertical temperature profile, mixing ratios of primary gases, water vapor, other trace gases, cloud and aerosol optical depth distributions) as well as spectrometer characteristics (Signal-to-Noise Ratio (SNR) and spectral resolution from 1 to 6 nm). Full article
Show Figures

Figure 1

14 pages, 2744 KiB  
Article
Surface-Bulk 2D Spin-Crossover Nanoparticles within Ising-like Model Solved by Using Entropic Sampling Technique
by Catherine Cazelles, Mamadou Ndiaye, Pierre Dahoo, Jorge Linares and Kamel Boukheddaden
Magnetochemistry 2023, 9(3), 61; https://doi.org/10.3390/magnetochemistry9030061 - 23 Feb 2023
Cited by 2 | Viewed by 2088
Abstract
We model the thermal effects in different 2D spin-crossover (SCO) square lattices within the frame of the Ising-like model using Monte Carlo entropic sampling (MCES) method to enhance the scan of macrostates beyond the most probable thermal ones. In fact, MCES allows access [...] Read more.
We model the thermal effects in different 2D spin-crossover (SCO) square lattices within the frame of the Ising-like model using Monte Carlo entropic sampling (MCES) method to enhance the scan of macrostates beyond the most probable thermal ones. In fact, MCES allows access to the metastable states, and it is then well adapted to study thermal hysteresis properties. In this contribution, we distinguish, for the first time, the interaction between molecules located in bulk at the surface and those connecting the bulk and surface regions of an SCO lattice. In addition, an extra ligand field contribution is assigned to surface molecules through an interaction parameter L. In the absence of environmental effects on surface nanoparticles, a single thermal hysteresis loop increasing with the lattice size is simulated with a unique bulk and surface equilibrium temperature Teq=Teqbulk= Teqsurf. When environmental effects are accounted for, a two-step behavior associated with two hysteresis loops of widths ΔTS (for the surface) and ΔTB (for the bulk) with an intermediate plateau 14 K wide is obtained in the thermal dependence of the high-spin (HS) fraction for the 6 × 6 lattice. The surface and bulk equilibrium temperatures are then different, both decreasing towards lower values, and the L parameter controls the three states’ behavior as well as the hysteresis loop interval. Size effects show that the equilibrium temperature is governed by the surface atoms for a small lattice size (5 × 5) and by the bulk atoms for a large lattice size (7 × 7). Moreover, a change in the size of the lattice results in a variation of the order–disorder (or Curie) temperature, TO.D., and the surface equilibrium temperature, Teq, while only TO.D. changes in bulk. Full article
(This article belongs to the Special Issue Advances in Molecular Magnetism)
Show Figures

Figure 1

13 pages, 2704 KiB  
Article
A Generalized Ising-like Model for Spin Crossover Nanoparticles
by Catherine Cazelles, Jorge Linares, Pierre-Richard Dahoo and Kamel Boukheddaden
Magnetochemistry 2022, 8(5), 49; https://doi.org/10.3390/magnetochemistry8050049 - 4 May 2022
Cited by 4 | Viewed by 2549
Abstract
Cooperative spin crossover (SCO) materials exhibit first-order phase transitions in the solid state, between the high-spin (HS) and low-spin (LS) states. Elastic long-range interactions are the basic mechanism for this particular behavior and are described well by the Ising-like model, which allows the [...] Read more.
Cooperative spin crossover (SCO) materials exhibit first-order phase transitions in the solid state, between the high-spin (HS) and low-spin (LS) states. Elastic long-range interactions are the basic mechanism for this particular behavior and are described well by the Ising-like model, which allows the reproduction of most of the experimental results in the literature. Until now, this model has been applied with an interaction parameter between the molecules, which is considered to be independent of the states. In this contribution, we extend the Ising-like model to include interaction energy that depends on the spin states and apply it to study SCO nanoparticles. Our research shows that following this new hypothesis, the equilibrium temperature shifts toward higher values. Full article
Show Figures

Figure 1

11 pages, 2290 KiB  
Article
Monitoring Spin-Crossover Properties by Diffused Reflectivity
by Gelu-Marius Rotaru, Epiphane Codjovi, Pierre-Richard Dahoo, Isabelle Maurin, Jorge Linares and Aurelian Rotaru
Symmetry 2021, 13(7), 1148; https://doi.org/10.3390/sym13071148 - 27 Jun 2021
Cited by 7 | Viewed by 2589
Abstract
In this work we present a detailed study showing the importance of the Kubelka-Munk (KM) correction in the analysis of diffuse reflectivity measurements to characterize spin crossover compounds. Combined reflectance and magnetic susceptibility measurements are carried out as a function of temperature or [...] Read more.
In this work we present a detailed study showing the importance of the Kubelka-Munk (KM) correction in the analysis of diffuse reflectivity measurements to characterize spin crossover compounds. Combined reflectance and magnetic susceptibility measurements are carried out as a function of temperature or time to highlight the conditions under which this correction becomes critical. In particular, we investigate the influence of the color contrast between the two spin states on the reflectance measurements. Interestingly, the samples’ contrast seems to play an important role on the spin-like domain structure as suggested by the symmetry of the FORC diagrams. These latest results are discussed within the framework of Classical Preisach model (CPM). Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

15 pages, 2550 KiB  
Article
Hexagonal-Shaped Spin Crossover Nanoparticles Studied by Ising-Like Model Solved by Local Mean Field Approximation
by Catherine Cazelles, Jorge Linares, Mamadou Ndiaye, Pierre-Richard Dahoo and Kamel Boukheddaden
Magnetochemistry 2021, 7(5), 69; https://doi.org/10.3390/magnetochemistry7050069 - 17 May 2021
Cited by 1 | Viewed by 2725
Abstract
The properties of spin crossover (SCO) nanoparticles were studied for five 2D hexagonal lattice structures of increasing sizes embedded in a matrix, thus affecting the thermal properties of the SCO region. These effects were modeled using the Ising-like model in the framework of [...] Read more.
The properties of spin crossover (SCO) nanoparticles were studied for five 2D hexagonal lattice structures of increasing sizes embedded in a matrix, thus affecting the thermal properties of the SCO region. These effects were modeled using the Ising-like model in the framework of local mean field approximation (LMFA). The systematic combined effect of the different types of couplings, consisting of (i) bulk short- and long-range interactions and (ii) edge and corner interactions at the surface mediated by the matrix environment, were investigated by using parameter values typical of SCO complexes. Gradual two and three hysteretic transition curves from the LS to HS states were obtained. The results were interpreted in terms of the competition between the structure-dependent order and disorder temperatures (TO.D.) of internal coupling origin and the ligand field-dependent equilibrium temperatures (Teq) of external origin. Full article
(This article belongs to the Special Issue Characterization of Spin Crossover Compounds)
Show Figures

Figure 1

14 pages, 2881 KiB  
Article
A First Order Phase Transition Studied by an Ising-Like Model Solved by Entropic Sampling Monte Carlo Method
by Jorge Linares, Catherine Cazelles, Pierre-Richard Dahoo and Kamel Boukheddaden
Symmetry 2021, 13(4), 587; https://doi.org/10.3390/sym13040587 - 2 Apr 2021
Cited by 5 | Viewed by 2822
Abstract
Two-dimensional (2D) square, rectangular and hexagonal lattices and 3D parallelepipedic lattices of spin crossover (SCO) compounds which represent typical examples of first order phase transitions compounds are studied in terms of their size, shape and model through an Ising-like Hamiltonian in which the [...] Read more.
Two-dimensional (2D) square, rectangular and hexagonal lattices and 3D parallelepipedic lattices of spin crossover (SCO) compounds which represent typical examples of first order phase transitions compounds are studied in terms of their size, shape and model through an Ising-like Hamiltonian in which the fictitious spin states are coupled via the respective short and long-range interaction parameters J, and G. Furthermore, an environmental L parameter accounting for surface effects is also introduced. The wealth of SCO transition properties between its bi-stable low spin (LS) and high spin (HS) states are simulated using Monte Carlo Entropic Sampling (MCES) method which favors the scanning of macro states of weak probability occurrences. For given J and G, the focus is on surface effects through parameter L. It is shown that the combined first-order phase transition effects of the parameters of the Hamiltonian can be highlighted through two typical temperatures, TO.D., the critical order-disorder temperature and Teq the equilibrium temperature that is fixed at zero effective ligand field. The relative positions of TO.D. and Teq control the nature of the transition and mediate the width and position of the thermal hysteresis curves with size and shape. When surface effects are negligible (L = 0), the equilibrium transition temperature, Teq. becomes constant, while the thermal hysteresis’ width increases with size. When surface effects are considered, L ≠ 0, Teq. increases with size and the first order transition vanishes in favor of a gradual transition until reaching a threshold size, below which a reentrance phenomenon occurs and the thermal hysteresis reappears again, as shown for hexagonal configuration. Full article
Show Figures

Figure 1

24 pages, 4739 KiB  
Article
UVSQ-SAT, a Pathfinder CubeSat Mission for Observing Essential Climate Variables
by Mustapha Meftah, Luc Damé, Philippe Keckhut, Slimane Bekki, Alain Sarkissian, Alain Hauchecorne, Emmanuel Bertran, Jean-Paul Carta, David Rogers, Sadok Abbaki, Christophe Dufour, Pierre Gilbert, Laurent Lapauw, André-Jean Vieau, Xavier Arrateig, Nicolas Muscat, Philippe Bove, Éric Sandana, Ferechteh Teherani, Tong Li, Gilbert Pradel, Michel Mahé, Christophe Mercier, Agne Paskeviciute, Kevin Segura, Alicia Berciano Alba, Ahmed Aboulila, Loren Chang, Amal Chandran, Pierre-Richard Dahoo and Alain Buiadd Show full author list remove Hide full author list
Remote Sens. 2020, 12(1), 92; https://doi.org/10.3390/rs12010092 - 26 Dec 2019
Cited by 19 | Viewed by 9713
Abstract
The UltraViolet and infrared Sensors at high Quantum efficiency onboard a small SATellite (UVSQ-SAT) mission aims to demonstrate pioneering technologies for broadband measurement of the Earth’s radiation budget (ERB) and solar spectral irradiance (SSI) in the Herzberg continuum (200–242 nm) using high quantum [...] Read more.
The UltraViolet and infrared Sensors at high Quantum efficiency onboard a small SATellite (UVSQ-SAT) mission aims to demonstrate pioneering technologies for broadband measurement of the Earth’s radiation budget (ERB) and solar spectral irradiance (SSI) in the Herzberg continuum (200–242 nm) using high quantum efficiency ultraviolet and infrared sensors. This research and innovation mission has been initiated by the University of Versailles Saint-Quentin-en-Yvelines (UVSQ) with the support of the International Satellite Program in Research and Education (INSPIRE). The motivation of the UVSQ-SAT mission is to experiment miniaturized remote sensing sensors that could be used in the multi-point observation of Essential Climate Variables (ECV) by a small satellite constellation. UVSQ-SAT represents the first step in this ambitious satellite constellation project which is currently under development under the responsibility of the Laboratory Atmospheres, Environments, Space Observations (LATMOS), with the UVSQ-SAT CubeSat launch planned for 2020/2021. The UVSQ-SAT scientific payload consists of twelve miniaturized thermopile-based radiation sensors for monitoring incoming solar radiation and outgoing terrestrial radiation, four photodiodes that benefit from the intrinsic advantages of Ga 2 O 3 alloy-based sensors made by pulsed laser deposition for measuring solar UV spectral irradiance, and a new three-axis accelerometer/gyroscope/compass for satellite attitude estimation. We present here the scientific objectives of the UVSQ-SAT mission along the concepts and properties of the CubeSat platform and its payload. We also present the results of a numerical simulation study on the spatial reconstruction of the Earth’s radiation budget, on a geographical grid of 1 ° × 1 ° degree latitude-longitude, that could be achieved with UVSQ-SAT for different observation periods. Full article
(This article belongs to the Special Issue Applications of Micro- and Nano-Satellites for Earth Observation)
Show Figures

Graphical abstract

9 pages, 850 KiB  
Concept Paper
Pressure and Temperature Sensors Using Two Spin Crossover Materials
by Catalin-Maricel Jureschi, Jorge Linares, Ayoub Boulmaali, Pierre Richard Dahoo, Aurelian Rotaru and Yann Garcia
Sensors 2016, 16(2), 187; https://doi.org/10.3390/s16020187 - 2 Feb 2016
Cited by 67 | Viewed by 9638
Abstract
The possibility of a new design concept for dual spin crossover based sensors for concomitant detection of both temperature and pressure is presented. It is conjectured from numerical results obtained by mean field approximation applied to a Ising-like model that using two different [...] Read more.
The possibility of a new design concept for dual spin crossover based sensors for concomitant detection of both temperature and pressure is presented. It is conjectured from numerical results obtained by mean field approximation applied to a Ising-like model that using two different spin crossover compounds containing switching molecules with weak elastic interactions it is possible to simultaneously measure P and T. When the interaction parameters are optimized, the spin transition is gradual and for each spin crossover compounds, both temperature and pressure values being identified from their optical densities. This concept offers great perspectives for smart sensing devices. Full article
(This article belongs to the Special Issue Smart Materials for Switchable Sensors)
Show Figures

Graphical abstract

9 pages, 322 KiB  
Article
Electromagnetically Induced Transparency in Symmetric Planar Metamaterial at THz Wavelengths
by Abdelwaheb Ourir, Bruno Gallas, Loic Becerra, Julien De Rosny and Pierre Richard Dahoo
Photonics 2015, 2(1), 308-316; https://doi.org/10.3390/photonics2010308 - 19 Mar 2015
Cited by 8 | Viewed by 7143
Abstract
We report the experimental observation and the evidence of the analogue of electromagnetically-induced transparency (EIT) in a symmetric planar metamaterial. This effect has been obtained in the THz range thanks to a destructive Fano-interference between the two first modes of an array of [...] Read more.
We report the experimental observation and the evidence of the analogue of electromagnetically-induced transparency (EIT) in a symmetric planar metamaterial. This effect has been obtained in the THz range thanks to a destructive Fano-interference between the two first modes of an array of multi-gap split ring resonators deposited on a silicon substrate. This structure is a planar thin film material with four-fold symmetry. Thanks to this property, a polarization-independent transmission has been achieved. The proposed metamaterial is well adapted to variety of slow-light applications in the infrared and optical range. Full article
(This article belongs to the Special Issue New Frontiers in Plasmonics and Metamaterials)
Show Figures

Figure 1

Back to TopTop