Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Authors = Nickolay Smirnov

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 12180 KiB  
Article
Development of Cryogenic Systems for Astronomical Research
by Yuri Balega, Oleg Bolshakov, Aleksandr Chernikov, Aleksandra Gunbina, Valerian Edelman, Mariya Efimova, Aleksandr Eliseev, Artem Krasilnikov, Igor Lapkin, Ilya Lesnov, Mariya Mansfeld, Mariya Markina, Evgenii Pevzner, Sergey Shitov, Andrey Smirnov, Mickhail Tarasov, Nickolay Tyatushkin, Anton Vdovin and Vyacheslav Vdovin
Photonics 2024, 11(3), 257; https://doi.org/10.3390/photonics11030257 - 13 Mar 2024
Cited by 3 | Viewed by 2802
Abstract
The article presents a brief review of cooling systems that ensure various temperature levels (from 0.1 K to 230 K) for radio astronomical receivers of photonic and electronic (or optical and radio) devices. The features of various cooling levels and the requirements for [...] Read more.
The article presents a brief review of cooling systems that ensure various temperature levels (from 0.1 K to 230 K) for radio astronomical receivers of photonic and electronic (or optical and radio) devices. The features of various cooling levels and the requirements for the design of the cooling systems are considered in detail, as well as the approaches to designing interfaces for cooled receivers: vacuum, cryogenic, electrical, mechanical, optical, and other interfaces required for effective operation. The presented approaches to design are illustrated by a series of joint developments of the authors carried out over the past 45 years, including those produced over the past year. Full article
(This article belongs to the Special Issue Optical Systems for Astronomy)
Show Figures

Figure 1

15 pages, 6030 KiB  
Article
Mathematical Modeling of the Hydrodynamic Instability and Chemical Inhibition of Detonation Waves in a Syngas–Air Mixture
by Valeriy Nikitin, Elena Mikhalchenko, Lyuben Stamov, Nickolay Smirnov and Vilen Azatyan
Mathematics 2023, 11(24), 4879; https://doi.org/10.3390/math11244879 - 5 Dec 2023
Cited by 6 | Viewed by 1453
Abstract
This paper presents the results of the two-dimensional modeling of the hydrodynamic instability of a detonation wave, which results in the formation of an oscillating cellular structure on the wave front. This cellular structure of the wave, unstable due to its origin, demonstrates [...] Read more.
This paper presents the results of the two-dimensional modeling of the hydrodynamic instability of a detonation wave, which results in the formation of an oscillating cellular structure on the wave front. This cellular structure of the wave, unstable due to its origin, demonstrates the constant statistically averaged characteristics of the cell size. The suppression of detonation propagation in synthesis gas mixtures with air using a combustible inhibitor is studied numerically. Contrary to the majority of inhibitors being either inert substances, which do not take part in the chemical reaction, or take part in chemical reaction but do not contribute to energy release, the suggested inhibitor is also a fuel, which enters into an exothermic reaction with oxygen. The unsaturated hydrocarbon propylene additive is used as an inhibitor. The dependence of the effect of the inhibitor content on the mitigation of detonation for various conditions of detonation initiation is researched. The results make it possible to determine a critical percentage of inhibitor which prevents the occurrence of detonation and the critical percentage of inhibitor which destroys a developed detonation wave. Full article
(This article belongs to the Special Issue Applications of Mathematics to Fluid Dynamics)
Show Figures

Figure 1

15 pages, 8805 KiB  
Article
Modeling a Combustion Chamber of a Pulse Detonation Engine
by Nickolay Smirnov, Valeriy Nikitin, Elena Mikhalchenko and Lyuben Stamov
Fire 2023, 6(9), 335; https://doi.org/10.3390/fire6090335 - 25 Aug 2023
Cited by 17 | Viewed by 3505
Abstract
This paper presents the results of numerical simulation of a model combustion chamber of a pulse detonation engine using the authors’ developed software package. The main goal of the present study is to numerically investigate the effects of cyclic operation of pulse detonating [...] Read more.
This paper presents the results of numerical simulation of a model combustion chamber of a pulse detonation engine using the authors’ developed software package. The main goal of the present study is to numerically investigate the effects of cyclic operation of pulse detonating chambers, as the former studies have been limited to simulating one cycle. To achieve this goal, a new mathematical model for heavy gas was applied simulating condensed fuel phase, which made it possible to accelerate computations and simulate multi-cycle operation of the device. Distributions of such characteristics as temperature, pressure, velocity, concentrations of reagents, intensity of reactions, and thrust force are obtained. A two-stage kinetic model of propellant combustion is proposed. Attention is paid to the main stages of PDE operation: filling of the chamber with reagents, ignition and transition to detonation, products exhaust, purification, and cooling the chamber with a neutral gas. The simulation of the working cycle with the shortest period for the specified system parameters was carried out, the execution time of each stage was obtained, and an assessment was carried out to minimize the main stages of the work cycle. Numerical results demonstrated that the characteristics of the engine cycle are stabilized already in the second cycle: the thrust in the first cycle differs from the thrust in the second by 5%, in the third from the second by 1%. Moreover, details of thrust dynamics in the second and third cycles were studied. Full article
Show Figures

Figure 1

27 pages, 6396 KiB  
Article
A Planar-3D Mathematical Model for Studying the Effect of Heterogeneity of Rock Fracture Toughness on Hydraulic Fracture Propagation: Early-Time Solution including the Stage before Propagation
by Kairui Li, Nickolay N. Smirnov, Chengzhi Qi, Mingyang Wang, Dmitry A. Pestov and Anastasia A. Shamina
Mathematics 2023, 11(9), 2083; https://doi.org/10.3390/math11092083 - 27 Apr 2023
Cited by 2 | Viewed by 2034
Abstract
Among the studies of the effect of rock’s heterogeneity on hydraulic fracture propagation, very little information on the effects of the heterogeneity of rock’s fracture toughness is available. The objective of the present paper is to develop a planar-3D model for studying the [...] Read more.
Among the studies of the effect of rock’s heterogeneity on hydraulic fracture propagation, very little information on the effects of the heterogeneity of rock’s fracture toughness is available. The objective of the present paper is to develop a planar-3D model for studying the effect of the heterogeneity of rock’s fracture toughness on hydraulic fracture propagation. Not only the stage of fracture propagation, but also the stage before the fracture propagation is considered in this model. Based on the proposed model, the evolution of hydraulic fracture propagation under a typical heterogeneous distribution of rock’s fracture toughness and the solution at the stage before fracture propagation are analyzed in detail. Furthermore, a series of numerical comparison experiments including five different distributions of rock’s fracture toughness are made in order to study the effect of the heterogeneity of rock’s toughness. The results indicate that the minimum fracture radius and the contrast of rock’s fracture toughness between adjacent layers are important parameters for determining the size and location of the maximum fracture opening. Most importantly, the fracture contour is greatly affected by the heterogeneity of rock’s fracture toughness. Full article
(This article belongs to the Section E2: Control Theory and Mechanics)
Show Figures

Figure 1

35 pages, 12781 KiB  
Article
Mathematical Modeling of Hydraulic Fracture Formation and Cleaning Processes
by Nickolay Smirnov, Kairui Li, Evgeniya Skryleva, Dmitriy Pestov, Anastasia Shamina, Chengzhi Qi and Alexey Kiselev
Energies 2022, 15(6), 1967; https://doi.org/10.3390/en15061967 - 8 Mar 2022
Cited by 9 | Viewed by 2930
Abstract
The effectiveness of the hydraulic fracturing procedure is crucially dependent on the stage of fracture planning and design. Forecasting fracture behavior in rock formations characterized by non-uniform toughness is a serious challenge. In the present paper, a planar-3D model considering the rock’s non-uniform [...] Read more.
The effectiveness of the hydraulic fracturing procedure is crucially dependent on the stage of fracture planning and design. Forecasting fracture behavior in rock formations characterized by non-uniform toughness is a serious challenge. In the present paper, a planar-3D model considering the rock’s non-uniform fracture toughness has been developed for the uneven propagation of a hydraulic fracture. The series of numerical experiments were designed to study the effect of inhomogenous fracture toughness. The results show that the fracture toughness contract significantly controls the overall direction of fracture propagation, and a combination of toughness contrast and the proportion between the pay zone and barrier zone determine the fracture profile: from almost circular with or without a pair of narrow wedges when the proportion is small to almost rectangular otherwise. This paper also discusses the process of cleaning a fracture from hydraulic fracturing fluid by oil. Using numerical modeling on the basis of the constructed mathematical model, a relationship is established between the quality of hydraulic fracture cleaning and the geometrical parameters of the fracture and the region filled with the hydraulic fracturing fluid. The results of numerical experiments show that while fracturing fluid is more viscous than oil, the length of the fracture has a greater influence on the cleaning process than the viscosity of the fracturing fluid. Full article
(This article belongs to the Special Issue Hydraulic Fracturing: Progress and Challenges)
Show Figures

Figure 1

Back to TopTop