Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Authors = Naresworo Nugroho ORCID = 0000-0001-8957-3603

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 6902 KiB  
Article
Surface Roughness, Dynamic Wettability, and Interphase of Modified Melamine Formaldehyde-Based Adhesives on Jabon Wood
by Yusup Amin, Naresworo Nugroho, Effendi Tri Bahtiar, Wahyu Dwianto, Muhammad Adly Rahandi Lubis, Ulfa Adzkia and Lina Karlinasari
Polymers 2024, 16(8), 1084; https://doi.org/10.3390/polym16081084 - 12 Apr 2024
Cited by 4 | Viewed by 1781
Abstract
The surface roughness and wettability of wood are critical aspects to consider when producing laminated wood products with adhesive applications. This study aims to investigate the surface roughness and dynamic wettability of Jabon wood in the presence of melamine formaldehyde (MF)-based adhesives. Commercial [...] Read more.
The surface roughness and wettability of wood are critical aspects to consider when producing laminated wood products with adhesive applications. This study aims to investigate the surface roughness and dynamic wettability of Jabon wood in the presence of melamine formaldehyde (MF)-based adhesives. Commercial MF adhesives (MF-0) and modified MF adhesives (MF-1) were applied to Jabon wood, which includes tangential (T), radial (R), and semi-radial (T/R) surfaces. The surface roughness of Jabon wood was assessed using a portable stylus-type profilometer. The low-bond axisymmetric drop shape analysis (LB-ADSA) method was employed to identify the contact angle (θ) of the MF-based adhesives on Jabon wood. The wettability was determined by evaluating the constant contact angle change rate (K value) using the Shi and Gardner (S/G) model. Dynamic mechanical analysis (DMA) was employed to investigate the viscoelastic characteristics of the interphase analysis of the wood and MF-based adhesives. The roughness level (Ra) of the Jabon board ranged from 5.62 to 6.94 µm, with the T/R having a higher level of roughness than the R and T. MF-0 exhibited a higher K value (0.262–0.331) than MF-1 (0.136–0.212), indicating that MF-0 wets the surface of Jabon wood more easily than MF-1. The wood–MF-0 interphase reached a maximum stiffness of 957 N/m at 123.0 °C, while the wood–MF-1 had a maximum stiffness of 2734 N/m at 110.5 °C. In addition, the wood–MF-0 had a maximum storage modulus of 12,650 MPa at a temperature of 128.9 °C, while the wood–MF-1 had a maximum storage modulus of 22,950 MPa at 113.5 °C. Full article
(This article belongs to the Special Issue Recent Developments in Wood Polymer Composites)
Show Figures

Figure 1

13 pages, 4836 KiB  
Article
Effect of Glue Spread on Bonding Strength, Delamination, and Wood Failure of Jabon Wood-Based Cross-Laminated Timber Using Cold-Setting Melamine-Based Adhesive
by Yusup Amin, Renaldi Purnomo Adji, Muhammad Adly Rahandi Lubis, Naresworo Nugroho, Effendi Tri Bahtiar, Wahyu Dwianto and Lina Karlinasari
Polymers 2023, 15(10), 2349; https://doi.org/10.3390/polym15102349 - 17 May 2023
Cited by 9 | Viewed by 3897
Abstract
Cross-laminated timber (CLT) has become a popular engineered wood product due to its innovative properties and rapid development, which involves the use of various wood species and adhesives. This study aimed to assess the effect of glue application on the bonding strength, delamination, [...] Read more.
Cross-laminated timber (CLT) has become a popular engineered wood product due to its innovative properties and rapid development, which involves the use of various wood species and adhesives. This study aimed to assess the effect of glue application on the bonding strength, delamination, and wood failure of CLT made from jabon wood and bonded with a cold-setting melamine-based adhesive at three different rates: 250, 280, and 300 g/m2. The adhesive was composed of melamine–formaldehyde (MF) by adding 5% citric acid, 3% polymeric 4,4-methylene diphenyl diisocyanate (pMDI), and 10% wheat flour. Adding these ingredients increased the adhesive viscosity and decreased the gelation time. The CLT samples, made using cold pressing in the melamine-based adhesive at a pressure of 1.0 MPa for 2 h, were evaluated as per the standard EN 16531:2021. The results revealed that a higher glue spread resulted in a greater bonding strength, lower delamination, and a higher wood failure. The glue spread was shown to have a more significant influence on wood failure compared with delamination and the bonding strength. The application of 300 g/m2 glue spread (MF-1) on the jabon CLT led to a product that met the standard requirements. The use of modified MF in cold-setting adhesive produced a potential product that could be a feasible option for future CLT production in terms of its lower heat energy consumption. Full article
Show Figures

Figure 1

19 pages, 3068 KiB  
Article
Structural Analysis of Self-Weight Loading Standing Trees to Determine Its Critical Buckling Height
by Lina Karlinasari, Effendi Tri Bahtiar, Adhelya Suci Apriyanti Kadir, Ulfa Adzkia, Naresworo Nugroho and Iskandar Z. Siregar
Sustainability 2023, 15(7), 6075; https://doi.org/10.3390/su15076075 - 31 Mar 2023
Cited by 8 | Viewed by 3311
Abstract
A tree may receive compression and flexure combination, and the structural analysis governed by the building code may be capable of estimating the tree’s safety in the built environment. This study proposed to refer to the building code to check the tree dimension [...] Read more.
A tree may receive compression and flexure combination, and the structural analysis governed by the building code may be capable of estimating the tree’s safety in the built environment. This study proposed to refer to the building code to check the tree dimension adequacy resisting the load. This study simplified the case by focusing only on the self-weight and ignoring the external loads; therefore, the buckling analysis of a slender tapered round column subjected to compression is advocated. Buckling occurs when the tree’s structure can no longer maintain its original shape. Euler and Ylinen’s buckling stress analysis (Method 1) calculated tree safety with a 95% confidence level. This study also applied the Greenhill formula (Method 2) to determine the critical height of a tree receiving the stem weight, then modified it to include the crown weight (Method 3). The three methods calculated the critical height to determine the safety factor (Sf), that is, the ratio of the actual tree height (H) to the 95% confidence level estimated critical height (Hcr). The safety factors were then categorized as unsafe (Sf < 1.00), safe (1.00 < Sf < 1.645), and very safe (1.645 < Sf). This study demonstrated that Method 1 is the most reliable and applicable among other methods. Method 1 resulted in no unsafe trees, 10 safe trees, and 13 very safe trees among the observed excurrent agathis (Agathis dammara). Meanwhile, among the decurrent rain trees (Samanea saman (Jacq.) Merr), 5, 31, and 14 were unsafe, safe, and very safe, respectively. Full article
Show Figures

Figure 1

14 pages, 16576 KiB  
Article
Inferring Vertical Tree Growth Direction of Samanea saman and Delonix regia Trees with the Pattern of Lateral Root Distribution Using the Root Detector
by Mohamad Miftah Rahman, Yoga Fredisa, Dodi Nandika, Naresworo Nugroho, Iskandar Zulkanaen Siregar and Lina Karlinasari
Forests 2023, 14(2), 427; https://doi.org/10.3390/f14020427 - 19 Feb 2023
Cited by 1 | Viewed by 3238
Abstract
The root system is important for supporting tree growth and stability. In this study, we analyzed the relationship between the main lateral root distribution pattern and vertical tree growth direction based on root detection and analysis of tree morphometry. Tree growth represented by [...] Read more.
The root system is important for supporting tree growth and stability. In this study, we analyzed the relationship between the main lateral root distribution pattern and vertical tree growth direction based on root detection and analysis of tree morphometry. Tree growth represented by morphometric data were measured directly, and the root distribution was identified using a sonic Root Detector. Sixteen targeted trees (eight Samanea saman and eight Delonix regia trees) in an urban area landscape were selected in this study. The Root Detector revealed that the average sonic velocity of lateral roots was 676.88 m∙s−1 for S. saman and 865.32 m∙s−1 for D. regia. For root distribution, Root Detector determined the average numbers of main lateral roots for S. saman and D. regia, which were 6 and 10, respectively. Based on correlation analysis, significant relationships were found between tree root sonic velocity and the degree of lean, height, and diameter of the tree; meanwhile the relationship between crown diameter and slenderness were not significant. Findings confirmed that, in relation to the root distribution and the growth direction of the trunk and crown, the lateral root is mainly distributed in the opposite direction of the tree lean rather than crown growth direction. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

20 pages, 4222 KiB  
Article
Bamboo Scrimber’s Physical and Mechanical Properties in Comparison to Four Structural Timber Species
by Sarah Putri Sylvayanti, Naresworo Nugroho and Effendi Tri Bahtiar
Forests 2023, 14(1), 146; https://doi.org/10.3390/f14010146 - 12 Jan 2023
Cited by 17 | Viewed by 6198
Abstract
Bamboo scrimber is a sustainable engineered material that overcomes natural round bamboo’s various weaknesses. This study compared the bamboo scrimber’s mechanical (strength, stiffness, and ductility) to timber. The results showed that scrimber’s physical and mechanical properties are comparable, even superior, to wood, especially [...] Read more.
Bamboo scrimber is a sustainable engineered material that overcomes natural round bamboo’s various weaknesses. This study compared the bamboo scrimber’s mechanical (strength, stiffness, and ductility) to timber. The results showed that scrimber’s physical and mechanical properties are comparable, even superior, to wood, especially in compression. Scrimber has a higher density than timber. Its drier equilibrium moisture content indicates that scrimber is more hydrophobic than timbers. The maximum crushing strength (σc//), compressive stress perpendicular-to-fiber at the proportional limit (σcp) and that at the 0.04” deformation (σc0.04⊥), shear strength (τ//), longitudinal compressive modulus of elasticity (Ec//), lateral compressive modulus of elasticity (Ec), and modulus of rigidity (G) of scrimber are higher than those of timbers. Both scrimber’s and timber’s flexural properties (modulus of rupture (σb) and flexural modulus of elasticity (Eb)) are comparable. On the contrary, the tensile strength parallel-to-fiber (σt//) of scrimber is weaker than that of timber. Scrimber is high ductility (μ > 6) when subjected to compression perpendicular-to-fiber, medium ductility (4 < μ ≤ 6) when subjected to compression parallel-to-fiber, and low ductility (brittle) when subjected to bending, shear, or tensile parallel-to-fiber. The higher ductility of scrimber may give an alarm and more time before failure than timbers. Timbers have brittle to lower ductility when receiving each kind of loading scheme. The ratio of shear modulus to strength (G/τ) and compression modulus to strength parallel-to-fiber (EC∥/σC∥) strongly correlates with the ductility ratio. However, the ratio of the flexural modulus of elasticity to the modulus of rupture (Ebb) and the ratio of the modulus Young to compression stress perpendicular-to-fiber (Ec/σcp) do not strongly correlate to the ductility value. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

21 pages, 13411 KiB  
Article
Comparing the Building Code Sawn Lumber’s Wet Service Factors (CM) with Four Commercial Wood Species Laboratory Tests
by Effendi Tri Bahtiar, Asep Denih, Trisna Priadi, Gustian Rama Putra, Andiana Koswara, Naresworo Nugroho and Dede Hermawan
Forests 2022, 13(12), 2094; https://doi.org/10.3390/f13122094 - 8 Dec 2022
Cited by 6 | Viewed by 2750
Abstract
Indonesian Wooden Building Code (SNI 7973-2013) has adopted the National Design Specification (NDS) for Wood Construction since 2013. A periodic harmonization of the building-code-designated values (i.e., reference design values and adjustment factors) with the experimental data of commercial wood species is [...] Read more.
Indonesian Wooden Building Code (SNI 7973-2013) has adopted the National Design Specification (NDS) for Wood Construction since 2013. A periodic harmonization of the building-code-designated values (i.e., reference design values and adjustment factors) with the experimental data of commercial wood species is necessary. This study aimed to compare the building code’s wet service factors (CM) with the laboratory test of some commercial wood species. Since wood is weaker when its moisture content is high, the wet service factor (CM) must adjust the sawn lumber reference design values if the building serves in wet or aquatic environments. Four commercial wood species, namely pine (Pinus merkusii), agathis (Agathis dammara), red meranti (Shorea leprosula), and mahogany (Swietenia mahagoni), were subjected to mechanical property tests. To calculate the empirical CM values, the mechanical properties tests were conducted on air-dry and wet wood. Instead of testing the full-sized timber, which contains the growth characteristics and defects, this study chose clear-wood specimens to resemble the boundary condition of the ceteris paribus (other things being equal). The wet (water-saturated) specimens were immersed in water for 65 days, and the test was carried out when the specimen was still immersed. The test arrangement imitated the submerged wood as the worst-case scenario of the wet environment where the construction serves, rather than green or partially immersed timber. As many as 40 specimens were tested to compare each mechanical property’s wet service factor; thus, this study reported 200 specimens’ laboratory test results. The empirical CM values to adjust the modulus of elasticity, modulus of rupture, shear strength parallel-to-grain, tensile strength parallel-to-grain, and maximum crushing strength (CM = 0.59, 0.76, 0.65, 0.73, and 0.67, respectively) were significantly lower than SNI 7973-2013 designated values (CM = 0.9, 0.85, 0.97, 1, and 0.8, respectively). The empirical CM for the compression stress perpendicular-to-grain at the proportional limit and that at the 0.04″ deformation (CM = 0.66) were slightly lower than the designated values (CM = 0.67), although they were not significantly different. This study resulted in lower empirical CM values than the designated ones, which found that the building code lacked conservativeness. The lacked conservativeness is mainly attributed to the building code’s recent choices, e.g., (1) the wet service environment basis is the green timber rather than the fully water-saturated one, and (2) the ratio of near minimum (5% lower) distribution value is chosen as the CM value rather than the average of wet timber’s mechanical property divided by the air-dry one. This study proposes changing both recent choices to alternative ones to develop more safe and reliable designated CM values. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

20 pages, 4711 KiB  
Article
Experimental Study of Beam Stability Factor of Sawn Lumber Subjected to Concentrated Bending Loads at Several Points
by Effendi Tri Bahtiar, Erizal Erizal, Dede Hermawan, Naresworo Nugroho and Rizky Hidayatullah
Forests 2022, 13(9), 1480; https://doi.org/10.3390/f13091480 - 14 Sep 2022
Cited by 9 | Viewed by 2255
Abstract
The beam stability factor (CL) is applied in construction practices to adjust the reference bending design value (Fb) of sawn lumber to consider the lateral-torsional buckling. Bending tests were carried out on 272 specimens of four wood [...] Read more.
The beam stability factor (CL) is applied in construction practices to adjust the reference bending design value (Fb) of sawn lumber to consider the lateral-torsional buckling. Bending tests were carried out on 272 specimens of four wood species, namely, red meranti (Shorea sp.), mahogany (Swietenia sp.), pine (Pinus sp.), and agathis (Agathis sp.), to analyze a simply supported beam subjected to concentrated loads at several points. The empirical CL value is a ratio of the modulus of rupture (SR) of a specimen to the average SR of the standard-size specimens. The non-linear regression estimated the Euler buckling coefficient for sawn lumber beam (KbE) in this study as 0.413, with 5% lower and 5% upper values of 0.338 and 0.488. Applying the 2.74 factor, which represents an approximately 5% lower exclusion value on the pure bending modulus of elasticity (Emin) and a factor of safety, the adjusted Euler buckling coefficient (KbE) value for a timber beam was 1.13 (0.92–1.34), which is within the range approved by the NDS (KbE = 1.20). This study harmonizes the NDS design practices of CL computation with the empirical results. Because agathis has the lowest ductility (μ), most natural defects (smallest strength ratio, S), and highest E/SR ratio, the agathis beam did not twist during the bending test; instead, it failed before twisting could occur, indicating inelastic material failure. Meanwhile the other specimens (pinus, mahogany, and red meranti), which have smaller E/SR ratio, higher ductility, and less natural defects, tended to fail because of lesser beam stability. This phenomenon resulted in the CL curve of agathis being the highest among the others. The CL value is mathematically related to the beam slenderness ratio (RB) and the E/SR ratio. Because the strength ratio (S) and ductility ratio (μ) have significant inverse correlations with the E/SR ratio, they are correlated with the CL value. Applying the CL value to adjust the characteristic bending strength is safe and reliable, as less than 5% of the specimens’ SR data points lie below the curve of the adjusted characteristics values. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

11 pages, 2116 KiB  
Article
Tree Morphometric Relationships and Dynamic Elasticity Properties in Tropical Rain Tree (Samanea saman Jacq. Merr)
by Lina Karlinasari, Ulfa Adzkia, Tiara Puspitasari, Dodi Nandika, Naresworo Nugroho, Utami Dyah Syafitri and Iskandar Z. Siregar
Forests 2021, 12(12), 1711; https://doi.org/10.3390/f12121711 - 6 Dec 2021
Cited by 7 | Viewed by 5479
Abstract
Rain tree (Samanea saman) is a dominant species commonly planted as a shade tree in urban landscapes in the tropics, including in Indonesia. This species is also targeted for routine inspection and monitoring within tree management systems. Management should particularly focus [...] Read more.
Rain tree (Samanea saman) is a dominant species commonly planted as a shade tree in urban landscapes in the tropics, including in Indonesia. This species is also targeted for routine inspection and monitoring within tree management systems. Management should particularly focus on tree health through assessment of tree growth conditions as well as tree stability. However, baseline information on the relationships of many key characteristics for the rain tree (e.g., growth, morphometrics, and biomechanics) is lacking. Therefore, an investigation was carried out to determine the relationship of morphometric parameters to tree growth, which included use of an acoustic tool to assess the elasticity of the tree stem. Fifty rain trees were selected for data collection and evaluated using stress wave velocity tools and visual morphometrics assessment. The results demonstrated that, in general, the trees had good vigor and stability. Statistical analysis showed a strong relationship between tree growth parameters and selected morphometric characteristics. The use of a nondestructive acoustic-based instrument enabled determining the modulus of elasticity, which provided equivalent results with the elasticity value obtained through a common method for determining tree stability. Only live crown ratio and tree slenderness parameters had a relationship with the dynamic modulus of elasticity. These results offer a means of measurement that is simpler, less expensive, and faster than current methods, although further testing is needed for different tree species and growth sites. Full article
(This article belongs to the Special Issue Tree Stability and Tree Risk Analysis)
Show Figures

Figure 1

18 pages, 3912 KiB  
Article
Surface Characteristics and Acoustical Properties of Bamboo Particle Board Coated with Polyurethane Varnish
by Lina Karlinasari, Ulfa Adzkia, Anugrah Sabdono Sudarsono, Pipiet Larasatie, Yusup Amin and Naresworo Nugroho
Forests 2021, 12(9), 1285; https://doi.org/10.3390/f12091285 - 18 Sep 2021
Cited by 13 | Viewed by 5552
Abstract
Using bamboo particle board as a wall divider, a furniture component, or an automotive component with a sound absorber function may be a viable option for architects and engineers seeking to achieve desired acoustical qualities, including noise reduction. However, there is still a [...] Read more.
Using bamboo particle board as a wall divider, a furniture component, or an automotive component with a sound absorber function may be a viable option for architects and engineers seeking to achieve desired acoustical qualities, including noise reduction. However, there is still a dearth of research on the effect of particle board finishing and coatings on acoustical sound absorption and noise reduction qualities. This study, therefore, aims to determine the surface characteristics and acoustical properties of bamboo particle board, coated with polyurethane (PU). The single-layer homogeneous particle boards were constructed using particles classified as fine and coarse with two different board densities, and coated with a high-quality PU lacquer. This study found that the coating treatment of 0.3 mm 0.6 mm succeeded to significantly decrease surface roughness, as well as thickness, swelling, and water absorption, with the thickness coating as a dominant factor compared with board density and board particle size. Adding a PU coating increases sound absorption performance at low frequencies, but significantly reduces acoustical properties at high frequencies. The increase of particle board density leads to the decrease in noise reduction coefficient capability. Results obtained from this study are useful to determine the optimal coating thickness in terms of evaluating acoustical panel products. Full article
(This article belongs to the Special Issue Designed Wood Products for Aesthetic and Built Environment)
Show Figures

Figure 1

Back to TopTop