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Abstract: The surface roughness and wettability of wood are critical aspects to consider when
producing laminated wood products with adhesive applications. This study aims to investigate the
surface roughness and dynamic wettability of Jabon wood in the presence of melamine formaldehyde
(MF)-based adhesives. Commercial MF adhesives (MF-0) and modified MF adhesives (MF-1) were
applied to Jabon wood, which includes tangential (T), radial (R), and semi-radial (T/R) surfaces.
The surface roughness of Jabon wood was assessed using a portable stylus-type profilometer. The
low-bond axisymmetric drop shape analysis (LB-ADSA) method was employed to identify the
contact angle (θ) of the MF-based adhesives on Jabon wood. The wettability was determined by
evaluating the constant contact angle change rate (K value) using the Shi and Gardner (S/G) model.
Dynamic mechanical analysis (DMA) was employed to investigate the viscoelastic characteristics
of the interphase analysis of the wood and MF-based adhesives. The roughness level (Ra) of the
Jabon board ranged from 5.62 to 6.94 µm, with the T/R having a higher level of roughness than
the R and T. MF-0 exhibited a higher K value (0.262–0.331) than MF-1 (0.136–0.212), indicating that
MF-0 wets the surface of Jabon wood more easily than MF-1. The wood–MF-0 interphase reached
a maximum stiffness of 957 N/m at 123.0 ◦C, while the wood–MF-1 had a maximum stiffness of
2734 N/m at 110.5 ◦C. In addition, the wood–MF-0 had a maximum storage modulus of 12,650 MPa
at a temperature of 128.9 ◦C, while the wood–MF-1 had a maximum storage modulus of 22,950 MPa
at 113.5 ◦C.

Keywords: contact angle analysis; dynamic mechanical analysis; melamine formaldehyde; Jabon
wood; wood–adhesive interphase

1. Introduction

Adhesive quality is a critical component that must be meticulously evaluated during the
production of laminated timber products [1]. In the manufacturing of wood products, surface
preparation is a critical step preceding the gluing or finishing procedures [2–5]. Sanding is
a method that is frequently employed in this process. The wettability of wood is directly
influenced by the texture of its surface, which is itself altered by sanding [6,7]. The properties
of the liquid being applied and the characteristics of the wood itself are the two primary
determinants of liquid penetration into wood [8,9]. Furthermore, Walinder (2000) [9] states
that investigations into wetting phenomena on wood surfaces could contributefundamental
knowledge regarding a wood material and its intricacies, in addition to being essential for
comprehending the interaction between wood and substances such as adhesives or coatings.
Wetting refers to the phenomenon that occurs when a liquid makes contact with a solid
surface [10,11]. In other terms, wetting is an intermolecular interaction that occurs when
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liquids and solids come into direct contact at their interfaces [9]. So, the roughness and
molecular physicochemical properties of solid surfaces reatlyaffect wetting phenomena and
the transmission of liquids [12,13].

The penetration of a liquid into wood pores is a crucial aspect of bond formation since
wood is a porous material [10]. The principles of adhesive wetting on a wood surface
include the creation of a contact angle at the solid–adhesive interface, the spread of the
adhesive over a solid surface, and the penetration of the adhesive into the porous solid
substrate [10,14]. In several recent investigations [3,11,15–20], the wettability qualities of
wood were determined by measuring the contact angle between a liquid and the surface
of the wood. As an anisotropic material, the adhesive wetting properties of wood may be
different along and across the wood grain direction [8,10]. Numerous factors influence
wood wettability, including surface roughness and machining conditions [14,21], wood
species and the location of wood [10,22], and treatment and drying methods [23]. In
addition, Yuan and Lee [24] have reported that the factors of wood characteristics and a
liquid’s properties affect wettability.

Numerous adhesives can be used to fabricate laminated wood products such as urea
formaldehyde (UF), phenol formaldehyde (PF), melamine formaldehyde (MF), melamine–urea
formaldehyde (MUF), emulsion polymer isocyanate (EPI), and polyurethane [25–29]. Among
them, MF adhesives are one type of adhesives ordinarily used to produce laminated wood
products [1,26,27,29], such as cross-laminated timber (CLT), glued laminated timber (GLT), and
laminated veneer lumber (LVL). Alongside PF adhesives [25], MF adhesives are extensively
used in the production of semi-exterior- and exterior-grade wood-based panels [29]. These
adhesives are widely selected by glulam or CLT producers because of their relatively low
costs, transparent bonding lines, excellent durability, heat resistance, and resistance to water
and moisture [30,31]. MF, being a thermosetting glue, is typically utilized in conjunction with
hot presses, resulting in higher costs associated with heat energy consumption. Modifying
formaldehyde-based adhesives is a remarkably effective strategy for increasing the economic
advantages of these adhesives and preserving the environment [25]. A recent innovation
concerning the modification of MF-based adhesives for CLT production from Jabon wood by
means of cold-pressing application has been successfully developed [1]. Nevertheless, the
specific attributes of the bonding mechanism between Jabon wood and MF-based adhesives
have yet to be discovered. The bonding quality of a laminated wood product is influenced by
the surface roughness and wettability qualities of the wood. This study aims to investigate
the surface roughness and wettability of Jabon wood (Anthocephalus cadamba Roxb. Miq.) in
the presence of an MF-based adhesive.

2. Materials and Methods
2.1. Materials

The two main materials used in this study are Jabon wood and MF resin as an ad-
hesive. Jabon wood (Anthocephalus cadamba Roxb. Miq.) with a density of 0.44 g/cm3

and a moisture content of 12 ± 2% was obtained from a community forest located in the
Bogor Region, West Java. Meanwhile, the commercial melamine adhesive (MA-204) was
supplied by PT Pamolite Adhesive Industry, Probolinggo, East Java, Indonesia; Polymeric
4,4-methylene diphenyl diisocyanate (pMDI) was supplied by PT Anugerah Raya Kencana,
Tangerang, Banten, Indonesia. Additional materials such as wheat flour and technical-
grade citric acid powder were either obtained from a commercial market or provided by
the Integrated Laboratory of Bioproducts (iLab), National Research and Innovation Agency
(BRIN), Cibinong, Indonesia.

2.2. Methods
2.2.1. Surface Roughness Test

Jabon lumbers with a dimension of 90 mm × 40 mm × 15 mm in length, width, and
thickness were used for measuring surface roughness. In conformance with ISO 1997, the
surface roughness of Jabon wood lumbers was determined using a portable stylus-type
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profilometer (Mitutoyo Surftest® SJ-210, Mitutoyo Corporation, Kanagawa, Japan), after
sanding with a 100-grit belt sander (P100). The surface roughness measurement of the
wood specimens was performed perpendicular to the fiber direction in three different
positions (Figure 1) by a diamond tip with a radius of 5 mm, a tracing length of 6 mm, a
cut off of 0.8 mm, and a speed of 0.5 mm/s [3,15,32]. The arithmetical mean roughness
value (Ra) was used to assess the surface roughness level [3,4,11,14,15]. Ra measurements
were conducted on tangential (T), radial (R), and semi-radial (T/R) cross-sections of Jabon
lumbers, with each kind of lumber being tested over three replicas. The Keyence VHX
6000 Digital Microscope (Keyence Corporation, Osaka, Japan) was used for observing the
surface topography profile of Jabon wood on three different surfaces. This microscope can
generate high-quality digital images [33]. The ultrasmall zoom lens models VH-Z20T and
VH-250T dual-light enable high-magnification recording, with magnification capabilities of
20–200× and 250–2500×, respectively.
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Figure 1. The surface roughness measurement of Jabon wood specimens in three different positions
using a portable stylus-type profilometer (Mitutoyo Surftest® SJ-210).

2.2.2. Contact Angle Measurement

Commercial melamine formaldehyde adhesives (MF-0) and modified MF adhesives
(MF-1) were chosen to investigate the wettability of adhesives on Jabon wood. In this
research, MF-1 was composed, starting from MF-0, by adding citric acid (20 wt%) as a cata-
lyst, pMDI (96.2 wt%) as a cross-linker, and wheat flour as a filler [1]. Citric acid and pMDI
were added based on the solids content of the control adhesive: 5% and 3%, respectively.
Wheat flour made up as much as 10% of the total mixture. The resulting mixture was then
manually stirred for 1–2 min at 27 ± 2 ◦C, yielding a cold-setting melamine-based adhesive.
According to a previously published study, the fundamental properties of the adhesives
used in this study are shown in Table 1 [1].

Table 1. Basic properties of MF-based adhesives [1].

Type of Adhesive
Properties

Solids Content (%) Gelation Time (min, T = 100 ◦C) Viscosity (cPs, T = 25 ◦C) pH

MF-0 51.89 ± 0.36 30.27 ± 0.15 484.51 ± 3.69 7.67 ± 0.58
MF-1 48.56 ± 0.08 6.90 ± 0.10 570.75 ± 14.80 6.67 ± 0.58

The evaluation of wettability was performed through the measurement of the dynamic
contact angle between the MF-based adhesives and the surface of Jabon wood. Distilled
water (aquades) was employed as a control. Each of these liquids, i.e., MF-0, MF-1, and
aquades, were dripped using a micropipette and a syringe onto the Jabon wood surface,
employing the same specimen and point location as the surface roughness test. The sessile
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droplet volume used for the experiment was 0.02 mL for aquades [3,32] and about 0.03 mL
for the MF-based adhesives [11,15].

The experiment involved using a Dino-Lite Digital Microscope Basic Am 2111 series
(AnMo Electronics Corporation, New Taipei City, Taiwan) with a USB camera connected to
a personal computer (PC) to record videos (Figure 2). A Dino-Capture tool with a magnifi-
cation of 40× was utilized to record the process of droplet distribution and absorption from
the initial placing until the water penetrated the wood surface. The video data in a Win-
dows media video (WMV) format were further processed using the GOM Player software
(GOM Player 2.3.90.5360) to extract visual segments at intervals of 3 s, resulting in seven
individual images, for a total duration of 18 s. As in the surface roughness test, the contact
angle measurements were conducted on T, R, and T/R surfaces of Jabon wood in three
replicas, respectively. The contact angle (θ) of an individual drop image was determined
using the low-bond axisymmetric drop shape analysis (LB-ADSA) method, provided by
the Image-J software (ImageJ 1.46r) [34]. In contrast to predominant droplet shape analyses,
such as the drop-snakes analysis method [3,4,8], the LB-ADSA method fails to distinguish
between left and right droplet image contours and contact angles. The approach applied
by LB-ADSA is that the contact angles on the left and right sides of an object are identical
(Figure 3), resulting in a reflection resembling a mirror on both sides [34].
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Figure 2. Capturing droplet distribution and change patterns with a Dino-Lite Digital Microscope
(Am 2111 series) adjusted for 40× magnification.

2.2.3. Determination of Equilibrium Contact Angle and Constant Contact Angle
Change Rate

When the liquid was first poured on the wood surface, the droplet was normally
circular and gradually flattened over time [15]. With time, the drop shape tended to
stabilize, resulting in an equilibrium contact angle (θe). The change in the contact angle as a
function of time was determined using a segmented regression model between the time (x)
and the contact angle (y), using the SAS STAT’s PROC NLIN [3,11,15]. The rate of contact
angle change is proportional to the rate of liquid penetration and spread across a solid
surface [10,11]. In this study, wettability was quantitatively assessed by examining the
constant contact angle change rate (K value) on the S/G model [10]. The K value indicates
the rate at which a liquid distributes and permeates into the porous structure of wood.
Increasing values of K correspond to a reduced time needed for the contact angle to reach a
state of relative equilibrium and for the liquid to spread and permeate. The S/G model is
explained by Equation (1):

θ =
θi × θe

θi + (θe − θi)exp
[
K
(

θe
θe−θi

)
t
] (1)
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where θ represents the contact angle at a certain time, θi is the initial contact angle, θe is
equilibrium contact angle, t is the wetting time, and K represents the constant contact angle
change rate. A non-linear regression model was used to calculate the K-value using the
defined function to fit the S/G equation via XLSTAT Addinsoft (XLSTAT 2014.5.03) [3,11].
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Figure 3. Contact angle measurements by LB-ADSA method: (a) aquades at 0 s; (b) MF-0 adhesive at
0 s; (c) MF-1 adhesive at 0 s; (d) aquades at 3 s; (e) MF-0 adhesive at 3 s; and (f) MF-1 adhesive at 3 s.

2.2.4. Wood–Adhesives Interphase Analysis Using Dynamic Mechanical Analyzer

Dynamic mechanical analysis (DMA) can be employed to investigate the viscoelastic
characteristics of the interphase analysis of wood and adhesives. Most polymeric materials
or polymeric interfacial phases exhibit a viscoelastic behavior, which combines the char-
acteristics of both solids (elasticity) and liquids (viscosity) [35–37]. Dynamic mechanical
analysis (DMA 8000, Perkin Elmer Inc., Waltham, MA, USA) was utilized to investigate
the MF resin and Jabon wood interphase. Each MF adhesive was used to bond two thin
Jabon wood veneers (50 mm × 10 mm × 0.5 mm) with a glue spread of 300 g/m2. All the
specimens were precured in an oven at 50 ◦C for 10 min before the DMA analysis. The
storage modulus (E′), loss modulus (E′′), and tan delta of each specimen were determined
at a frequency of 1 Hz, a strain level of 0.01%, and a heating rate of 1 ◦C/minin the scanning
range of 25–300 ◦C in the dual-cantilever mode [38].

2.2.5. Mechanical Properties of Wood–MF Composites

Block shear strength samples were prepared by gluing Jabon wood with MF-0 and
MF-1 resins. Two-ply composites were made via cold-pressing at 1 MPa for 2 h at different
glue spreads of 250, 280, and 300 g/m2. Furthermore, the composites were conditioned
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for a week prior to block shear testing. A block shear strength analysis was undertaken
to determine the bonding strength. The block shear samples were tested using a 50 kN
universal testing machine (UTM AG-IS 50 kN, Shimadzu, Kyoto, Japan) with a crosshead
speed of 2 mm/min.

3. Results and Discussion
3.1. Surface Roughness of Jabon Wood

The result in Table 2 shows the surface roughness value of Jabon wood after sanding
with a 100-grit belt sander (P-100) on different surface types, determined using a portable
stylus-type profilometer. The surface roughness of solid materials is generally measured using
three parameters: average surface roughness (Ra), root mean square roughness (Rq), and
ten-point mean roughness (Rz) [39]. However, Ra is the most used metric for determining
wood surface roughness. Consequently, the Ra parameter was employed in this investigation
to quantify the surface irregularity of Jabon wood. An approach methodology utilizing Ra
values has been implemented in prior studies [3–5,14,15,39,40]. The average roughness (Ra)
of a profile is calculated by averaging the individual depths and heights (irregularities) of
its arithmetic mean elevation. In addition, Ra represents the mean deviation of the profile
from the mean line, determined across the entire length of the assessment [41]. Jabon wood
treated with a P-100-grit sander had an Ra of 5.62 µm on the tangential surface (T), 5.77 µm
on the radial surface (R), and 6.94 µm on the semi-radial surface (T/R). The tangential surface
had a lower Ra value than the radial or semi-radial surfaces, indicating that the roughness
level of Jabon wood on a tangential surface was better than that of the radial and semi-radial
surfaces. The findings of this study aligned with prior studies [41] indicating that the radial
surface of rubberwood exhibited a rougher appearance compared to its tangential surface.
The average Ra value of the three types of Jabon wood surfaces investigated in this study
(6.11 µm) is comparable to prior research [15], which found that the average Ra value of Jabon
wood before heat treatment was 6.22 m.

Table 2. Surface roughness of Jabon wood after being sanded with a 100-grit belt sander.

Roughness
Parameter Tangential Surface (T) Radial Surface (R) Semi-Radial Surface

(T/R)

Ra (mm) 5.62 ± 1.54 5.77 ± 1.65 6.94 ± 1.63
Rq (mm) 7.27 ± 2.13 7.14 ± 2.13 8.68 ± 1.89
Rz (mm) 33.21 ± 9.52 32.09 ± 10.64 39.09 ± 7.07

The evaluation of surface quality can be accomplished through the utilization of
topographic measurements [42]. Figure 4 shows the 3D surface topographical profile of
Jabon wood after it was sanded with a 100-grit belt sander (P100) and analyzed with a
digital microscope (Keyence VHX 6000, Keyence Corporation, Osaka, Japan). The tangential
surface of Jabon wood (Figure 4a) had a lower maximum peak height value than the radial
(Figure 4b) and semi-radial (Figure 4c) surfaces. This finding is comparable with the results
obtained using the stylus method mentioned previously and in line with the results of
previous studies [43]. Visually, Figure 4b,c demonstrate that the radial surface has greater
amounts of pattern (color) changes than the semi-radial surface, rendering it rougher.
However, it is crucial to highlight that significant fluctuations in the surface roughness
profile do not imply a rougher surface when compared with a surface roughness profile
with slight variations [43]. Based on a 3D analysis of the surface topographical profiles, the
maximum value of the peak height has a greater impact on wood surface roughness than
the frequency of color change patterns.
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The surface properties of wood are essential in the manufacturing processes of wood
products, such as adhesive bonding or finishing [5,41]. Wetting analyses, topography
measurements, and cell damage evaluations can all help to determine surface quality.
Numerous processing techniques used on wood can influence the structure, morphology,
and chemical composition of the wood surface, hence altering the ability of liquids to wet
the wood [14]. Different wood machining techniques result in various levels of liquid
wettability on wood. Previous research [21] investigated the effect of surface conditions
caused by various machining methods on the wettability properties of Mediterranean
wood species. The same authors reported that sanded surfaces exhibited a significantly
higher wettability compared to planed or disc-sawn surfaces. Sanding is a necessary and
time-consuming procedure in the woodworking industry [6]. Sanded wooden surfaces are
often varnished or glued in the manufacturing of furniture products. Several studies have
been conducted to investigate the effect of sander grit size on the level of roughness of a
wood surface [4,7,11,41]. Generally, the surface roughness of wood decreases as the grit
number of the abrasive paper increases [11,41]. The sanding technique, whether applied
tangentially, radially, or semi-radially, serves to refine the surface cells and make them
smoother. The sanded surface disintegrates, creating fine particles (dust) which will occupy
the pores on the surface [41]. A wood structure reveals variations in its constituents across
its tangential, radial, and longitudinal surfaces [8]. An example of this distinction is the
variation in the orientation of ray cells. The tangential surface is considerably smoother
(lower Ra) than the radial surface. Possibly, the radial surface presents a greater obstacle
during measurements than the tangential surface; this indicates that the radial surface
is considerably coarser in texture [41]. It has been reported in other studies that surface
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roughness does not invariably diminish as sandpaper grain size increases [4]. Wood surface
roughness parameters do not indicate that sanding with an abrasive of a smaller grain size
results in a smoother surface [7]. Therefore, in our study, it was determined that 100-grain
sandpaper (P-100) would be adequate to produce Jabon lumber with a suitable surface for
applying MF-based adhesives in the manufacturing of laminated wood products. Previous
investigations [44,45] verified a substantial rise in surface roughness parameters when
P-100-grit sandpaper was utilized. The abrasive grains formed deep grooves, peak heights,
and cell wall fibrillation on the wood surface, accelerating the dispersion of liquid on
said surface. In line with Dai et al. (2019) [46], Niaraki and Krause [47] reported that the
wood surfaces developed a larger number of interface areas after sanding. Consequently,
adhesives are capable of more readily penetrating a wood’s depths and dispersing more
uniformly across its surface.

3.2. Contact Angle and Dynamic Wettability

The capability of a liquid to generate a contact interface with a solid surface is referred
to as wetting [48]. The wetting characteristics of wood are classified based on the contact
angle (θ) formed between liquid droplets and the surface of the wood [11,15,48,49]. The
roughness of a wood surface is directly linked to its wettability. A higher surface roughness
corresponds to a greater surface hydrophilicity, resulting in more effective wetting and a
lower contact angle [3,11,24,50].

The wettability of wood has a role in the construction of an adhesive system. The
wettability of the aquades and MF-based adhesives applied to various Jabon wood surfaces
in our study could be quantitatively investigated with the S/G model [10,11]. Table 3
shows the initial contact angles (θi), equilibrium contact angles (θe), contact angle reduc-
tion ratio, K value, and R squared values for all the wood surfaces and liquid treatments
examined. The change in contact angle over time during the liquid absorption process is a
reducing function [10]. Liquid penetration and spreading occur in conjunction with the
formation of a contact angle at the wood surface when a liquid drop is applied on it. In
the early phases, until the third minute of the wetting process, there is a rapid decrease in
the contact angle of a liquid drop (Figure 5). The aquades treatment exhibits the highest
average contact angle reduction ratio (64.35–72.16%) compared to MF-0 and MF-1. The
contact angle reduction ratio of MF-0 (42.83–51.18%) is slightly higher than that of MF-1
(41.21–44.55%). The effect angle gradually diminishes over time, ultimately achieving
a state of relative equilibrium [10]. As shown in Table 3 and Figure 5, generally, ad-
hesives based on MF exhibit higher initial contact angles and equilibrium contact an-
gles than those of aquades. In the aquades treatment, the equilibrium contact angle is
reached after 8.46–11.13 s. Meanwhile, the treatments MF-0 and MF-1 take 5.25–5.95 and
7.80–11.50 s, respectively, to achieve the equilibrium contact angle. In addition, according
to [51], an equilibrium contact angle is achieved on a surface when an adhesive’s adhesion
is counterbalanced by the solid surface’s tension over time. The time required to achieve
the equilibrium contact angle is impacted by various parameters, such as the initial contact
angle, the contact angle reduction ratio, and the properties of the liquid employed. When
addressing aquades or MF-based adhesives, the time required to reach the contact angle
tends to be longer, as the initial contact angle increases and the contact angle reduction
ratio decreases. By treating aquades, decreasing the time required to reach the equilibrium
contact angle tends to enhance the K value. This indicates that the wood surface becomes
easily wet [4,11,52]. During the MF-based adhesive treatments, MF-1 takes more time to
reach the equilibrium contact angle compared to MF-0. The viscosity difference between
the MF-0 and MF-I adhesives also exhibits an effect, alongside the initial contact angle and
contact angle reduction ratio. The higher viscosity of MF-1 compared to MF-0 [1] hinders
the absorption of the adhesive into the wood surface, resulting in a longer time required to
reach the equilibrium contact angle.
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Table 3. Non-linear fitting results for aquades and MF-based adhesives on Jabon wood surfaces.

Liquid Surface
Type

Time to Reach the
Equilibrium Contact Angle θi θe

Contact Angle
Reduction Ratio Wettability

(s) (◦) (◦) (%) K Value R2

Aquades
T 11.13 75.5 26.914 64.35 0.269 0.981
R 8.46 84.77 26.790 68.40 0.385 0.998

T/R 8.93 86.4 24.056 72.16 0.422 0.991

MF-0
T 5.25 92.10 49.902 45.82 0.331 0.875
R 5.74 102.65 58.682 42.83 0.262 0.904

T/R 5.95 108.06 52.752 51.18 0.320 0.930

MF-1
T 7.95 120.13 66.611 44.55 0.212 0.962
R 7.80 112.99 65.087 42.40 0.203 0.956

T/R 11.50 126.08 74.124 41.21 0.136 0.977
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The contact angle of the modified MF (MF-1) is higher than that of MF-0, which is
commercially available. A high wettability can be determined by contact angles below
90 degrees, which signifies that the liquid efficiently wets the wood surface. A contact angle
exceeding 90 degrees signifies an insufficient wettability, wherein the liquid fails to sufficiently
lubricate the wood surface [4,11,53]. Previous studies [40,54] reported that an increase in
surface roughness results in a decrease in the contact angle, which subsequently leads to
enhanced wettability and bonding performance. According to the findings of the current
study and the above theory [40,54], the MF-0 adhesive has a higher bonding performance than
MF-1 because its contact angle is lower. A higher K value indicates a more wettable surface [11].
Overall, Table 3 shows that the MF-0 adhesive exhibits a higher K value (0.262–0.331) than
the MF-1 adhesive (0.136–0.212), indicating that the MF-0 adhesive wets the surface of Jabon
wood more easily than the MF-1 adhesive. This result also shows that the wetting model
had R squared values greater than 0.904 across all the wood samples examined in our study.
Consequently, the S/G wetting model could be used to precisely characterize the hydration
process of MF-based adhesives on Jabon wood surfaces. Nevertheless, prior research [1]
shows that the MF-1 adhesive exhibits a superior bonding performance in terms of block shear
strength and delamination compared to MF-0. The observed phenomenon can be attributed
to the higher viscosity of MF-1 in comparison to MF-0 (Table 1). This viscosity factor restricts
the absorption of the MF-1 adhesive into the wood surface, resulting in a greater contact
angle of MF-1 compared to MF-0. There are other factors, in addition to the contact angle and
the wettability of the wood surface, that impact the performance of wood bonding when a
particular type of adhesive is utilized.
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Figure 6a,b show how changes in the surface roughness of Jabon wood affect the
equilibrium contact angle and wettability of MF-based adhesives. In general, the surface
roughness variances between Jabon wood’s three surface areas did not have much of an
impact on the equilibrium contact angle. The equilibrium contact angle decreased slightly
after the aquades treatment as roughness increased on the radial and semi-radial surfaces.
Meanwhile, in the MF-0 and MF-1 treatments, the equilibrium contact angle fluctuated
due to the increased surface roughness of Jabon wood. As the wood’s surface roughness
increased, the K value consequently increased in the aquades treatment. Prior studies [3,4]
reported that rougher surfaces tended to result in lower θe and higher K values. Liquid
permeated and diffused more extensively across the wood samples as surface roughness
increased [11]. Furthermore, according to de Moura and Hernández (2006) [42], surfaces
that have been sanded provide optimal circumstances for the spreading of liquids due
to the presence of scratches caused by the abrasive grains. These scratches enhance the
conduction of liquids through capillarity.
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3.3. Wood–Adhesive Interphase Analysis

The analysis of a wood–adhesive interphase entails the examination of the boundary
between the wood surface and the adhesive substance. The wetting process of an adhesive
on a solid surface has three main steps [55]: the establishment of interfacial adhesion at
the surface; the spreading of an adhesive as a liquid flow over a solid surface; and the
infiltration of a liquid into the inner regions of a porous solid. The interphase is essential
in determining the overall performance and longevity of the adhesive bond. Several
analytical techniques can be utilized for this objective, and DMA can be employed to
investigate the viscoelastic characteristics of the interface between the adhesive and wood
in question [1,38]. The interphase region exhibits an irregular or diverse layer [56]. Figure 7
displays the illustration of the wood–adhesive interphase of MF resins on Jabon wood. The
interphase, within the context of wood bonding, is important in determining the strength
and durability of the adhesive bond. In addition, according to [56], an adhesive’s bonding
performance with wood elements is substantially impacted by the degree of the adhesive’s
penetration into the porous network of interconnected layers.
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DMA involves the application of varying levels of stress to a material and the sub-
sequent measurement of the resulting strain. Stress refers to the amount of force exerted
on a certain region, whereas strain represents the extent of deformation or change in
length compared to a material’s initial length. Figure 8a shows that MF-1 had a greater
stress–strain curve compared to MF-0. A greater stress–strain curve suggests more stiffness
in a material, indicating that the material is more resistant to deformation when subjected to
dynamic loading. This result is in line with the stiffness of wood–MF resin as a function of
temperature (Figure 8b). Wood–MF-0 reached a maximum stiffness of 957 N/m at 123.0 ◦C,
while the wood–MF-1 had a maximum stiffness of 2734 N/m at 110.5 ◦C. The stiffness of
wood adhesives is crucial in determining the overall structural integrity and performance
of bonded wood products [57]. This study showed that MF-1 had a greater stiffness and
could produce a better performance in its bonded wood products compared to MF-0.
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In line with the above results, the stiffness of wood adhesives is commonly quantified
by the storage modulus (E’), which assesses an adhesive’s capacity to retain elastic energy.
The storage modulus quantifies the inherent stiffness or rigidity of a material. Figure 9
displays the DMA thermograms of the wood–MF resin adhesives. Wood–MF-0 had a
maximum storage modulus (E’max) of 12,650 MPa at a temperature of 128.9 ◦C, while
wood–MF-1 had a maximum storage modulus (E’max) of 22,950 MPa at a temperature
of 113.5 ◦C. The results showed that MF-1 had a greater storage modulus at a lower
temperature compared to MF-0. In contrast, the loss modulus of the wood–MF-0 adhesive
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was higher than that of wood–MF-1. The loss modulus of a wood–adhesive interphase
pertains to the capacity of the interface between the wood and the adhesive to release energy
when subjected to dynamic loading conditions [57]. Various factors, such as adhesive
formulation, curing conditions, wood surface preparation, and unique wood features,
affect the loss modulus of the wood–adhesive interphase. The interface between wood and
an adhesive is pivotal for the overall efficacy of wood–adhesive bonding as it influences
parameters such as bond strength, endurance, and resilience to external conditions. Like
the loss modulus, the tangent delta (tanδ) is a metric that quantifies the extent of damping
or energy dissipation in a substance. It is commonly employed to describe the viscoelastic
properties of a system. Tan δ in the wood–adhesive interphase context indicates the
proportion of a material’s viscous (dissipative) reaction to its elastic (storage) response
when subjected to dynamic loading circumstances.
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The block shear strength results revealed that the adhesive strength of MF-0 with glue
spreads of 250 g/m2, 280 g/m2, and 300 g/m2 was determined to be 1.03 MPa, 1.94 MPa,
and 2.13 MPa, respectively (Figure 10). The shear strength values of the MF-0 samples were
30% lower than those of the MF-1 samples. The maximum block shear strength of MF-1
was 3.14 MPa, which was obtained with a glue application rate of 300 g/m2. This adhesive
achieved bonding strengths of 1.56 MPa and 2.57 MPa when applied at glue spreads of
250 g/m2 and 280 g/m2, respectively. These results were in accordance with the results of
the DMA (Figure 9), revealing that MF-1 has a greater storage modulus compared to MF-0.



Polymers 2024, 16, 1084 13 of 16

Polymers 2024, 16, x FOR PEER REVIEW 13 of 16 
 

 

 
Figure 9. DMA thermograms of wood–MF resin adhesive: (a) MF-0 and (b) MF-1. 

The block shear strength results revealed that the adhesive strength of MF-0 with 
glue spreads of 250 g/m2, 280 g/m2, and 300 g/m2 was determined to be 1.03 MPa, 1.94 
MPa, and 2.13 MPa, respectively (Figure 10). The shear strength values of the MF-0 sam-
ples were 30% lower than those of the MF-1 samples. The maximum block shear strength 
of MF-1 was 3.14 MPa, which was obtained with a glue application rate of 300 g/m2. This 
adhesive achieved bonding strengths of 1.56 MPa and 2.57 MPa when applied at glue 
spreads of 250 g/m2 and 280 g/m2, respectively. These results were in accordance with the 
results of the DMA (Figure 9), revealing that MF-1 has a greater storage modulus com-
pared to MF-0. 

 
Figure 10. Bonding strength of MF resin adhesive at different amounts of glue spread. 

4. Conclusions 
The surface roughness and dynamic wettability of modified melamine formalde-

hyde-based adhesive on Jabon wood was investigated. Jabon wood treated with a P-100-
grit sander had Ra values of 5.62 µm on the tangential surface (T), 5.77 µm on the radial 
surface (R), and 6.94 µm on the semi-radial surface (T/R). The tangential surface had a 
lower Ra value than the radial or semi-radial surfaces, indicating that the roughness level 
of Jabon wood on the tangential surface was preferable to those on the radial and semi-
radial surfaces. The MF-based adhesives exhibited higher initial contact angles and equi-
librium contact angles than the aquades. However, the speed of acquiring the equilibrium 
contact angle for the MF-based adhesives tended to be faster than that of aquades. The 
contact angle of the modified MF (MF-1) exceeded that of MF-0. On the other hand, the 
MF-0 adhesive exhibited a higher K value compared to the MF-1 adhesive, indicating that 
the MF-0 adhesive wets the surface of Jabon wood more easily than the MF-1 adhesive. 

Figure 10. Bonding strength of MF resin adhesive at different amounts of glue spread.

4. Conclusions

The surface roughness and dynamic wettability of modified melamine formaldehyde-
based adhesive on Jabon wood was investigated. Jabon wood treated with a P-100-grit sander
had Ra values of 5.62 µm on the tangential surface (T), 5.77 µm on the radial surface (R), and
6.94 µm on the semi-radial surface (T/R). The tangential surface had a lower Ra value than
the radial or semi-radial surfaces, indicating that the roughness level of Jabon wood on the
tangential surface was preferable to those on the radial and semi-radial surfaces. The MF-
based adhesives exhibited higher initial contact angles and equilibrium contact angles than
the aquades. However, the speed of acquiring the equilibrium contact angle for the MF-based
adhesives tended to be faster than that of aquades. The contact angle of the modified MF
(MF-1) exceeded that of MF-0. On the other hand, the MF-0 adhesive exhibited a higher
K value compared to the MF-1 adhesive, indicating that the MF-0 adhesive wets the surface of
Jabon wood more easily than the MF-1 adhesive. The viscosity factor restricted the absorption
of the MF-1 adhesive into the wood surface, resulting in a higher contact angle of MF-1
compared to MF-0. There are other factors, in addition to the contact angle and the wetta-
bility of the wood surface, that impact the performance of wood bonding when a particular
type of adhesive is utilized. MF-1 exhibited a higher stress–strain curve and stiffness than
MF-0, suggesting that it offers superior performance for bonded wood products and greater
resistance to deformation under dynamic loading circumstances compared to MF-0.
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