Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Authors = Mona G. Alharbi

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 5272 KiB  
Article
Molecular Screening Reveals De Novo Loss-of-Function NR4A2 Variants in Saudi Children with Autism Spectrum Disorders: A Single-Center Study
by Najwa M. Alharbi, Wejdan F. Baaboud, Heba Shawky, Aisha A. Alrofaidi, Reem M. Farsi, Khloud M. Algothmi, Shahira A. Hassoubah, Fatemah S. Basingab, Sheren A. Azhari, Mona G. Alharbi, Reham Yahya and Safiah Alhazmi
Int. J. Mol. Sci. 2025, 26(12), 5468; https://doi.org/10.3390/ijms26125468 - 7 Jun 2025
Viewed by 562
Abstract
Dysregulated expression of nuclear receptor superfamily 4 group A member 2 (NR4A2) has recently been associated with autistic spectrum disorder (ASD), speech impairment, and neurodevelopmental delay (NDD); however, its precise role in the prevalence and etiopathogenesis of ASD has not been [...] Read more.
Dysregulated expression of nuclear receptor superfamily 4 group A member 2 (NR4A2) has recently been associated with autistic spectrum disorder (ASD), speech impairment, and neurodevelopmental delay (NDD); however, its precise role in the prevalence and etiopathogenesis of ASD has not been fully elucidated. Herein, we aimed to explore the role of NR4A2 variants in the genetic underpinnings of ASD among Saudi children of different age ranges and phenotype severities. A total of 338 children with ASD from 315 unrelated families (293 simplex, 2 quads, and 1 quintet) were screened for NR4A2 variants via exome sequencing (ES) of the genomic DNA extracted from peripheral blood mononuclear cells (PBMCs), after which the probands with identified NR4A2 variants were further subjected to trio genetic analyses. ES analysis revealed 10 de novo NR4A2 variants (5 indels/nonsense, 2 missense, and 3 variants affecting splicing) in 8 unrelated probands (2.37%) and 2 affected siblings from 8 unrelated families (6 simplex (2.04%) and 2 quads (8.7%)). Three NR4A2 variants were notably recurrent among both affected and unaffected carriers. All identified indels and two splicing variants met the criteria for pathogenic/loss-of-function (LoF) variants according to the ACMG classification (PVS1), whereas the missense variants were classified as of uncertain significance (VUS). This study is among the first to identify such a high frequency of recurrent variants in an ASD cohort, suggesting their significant contribution to the etiopathogenesis of ASD within this population. Full article
Show Figures

Figure 1

1 pages, 143 KiB  
Retraction
RETRACTED: Teklemariam et al. Isolation and Characterization of a Novel Lytic Phage, vB_PseuP-SA22, and Its Efficacy against Carbapenem-Resistant Pseudomonas aeruginosa. Antibiotics 2023, 12, 497
by Addisu D. Teklemariam, Rashad R. Al-Hindi, Mona G. Alharbi, Ibrahim Alotibi, Sheren A. Azhari, Ishtiaq Qadri, Turki Alamri, Ahmed Esmael and Steve Harakeh
Antibiotics 2024, 13(9), 814; https://doi.org/10.3390/antibiotics13090814 - 28 Aug 2024
Cited by 1 | Viewed by 1067
Abstract
The journal retracts the article, “Isolation and Characterization of a Novel Lytic Phage, vB_PseuP-SA22, and Its Efficacy against Carbapenem-Resistant Pseudomonas aeruginosa”, cited above [...] Full article
15 pages, 1198 KiB  
Article
Associations between Serum Iron Indices and Self-Assessed Multiple Intelligence Scores among Adolescents in Riyadh, Saudi Arabia
by Hibah A. Farhan, Fatimah A. A. Al-Ghannam, Kaiser Wani, Malak N. K. Khattak, Abdullah M. Alnaami, Mona G. Alharbi, Abir A. Alamro, Shaun Sabico and Nasser M. Al-Daghri
Biomedicines 2024, 12(7), 1578; https://doi.org/10.3390/biomedicines12071578 - 16 Jul 2024
Cited by 2 | Viewed by 1348
Abstract
Micronutrient deficiencies, including iron deficiency, are linked to different cognitive impairments and sensory functions. However, whether circulating iron levels affect self-assessed multiple intelligence (MI) scores in adolescents remains uninvestigated. This study aimed to investigate associations between serum iron levels and self-assessed MI scores [...] Read more.
Micronutrient deficiencies, including iron deficiency, are linked to different cognitive impairments and sensory functions. However, whether circulating iron levels affect self-assessed multiple intelligence (MI) scores in adolescents remains uninvestigated. This study aimed to investigate associations between serum iron levels and self-assessed MI scores in adolescents in Riyadh, Saudi Arabia. Recruiting 434 Saudi adolescents (174 boys and 260 girls, aged 12–17), we administered the McKenzie questionnaire to assess MI across nine categories. Anthropometrics and fasting blood samples were collected to measure circulating iron and transferrin levels. Total iron-binding capacity (TIBC) and transferrin saturation (TSAT) levels were calculated. Notably, girls exhibited significantly higher MI scores in the interactive domain than boys (age and BMI-adjusted OR = 1.36, 95% confidence interval = 1.07–1.73, p = 0.01). No significant correlations were observed between serum iron and MI. However, normal TSAT levels (TSAT > 20%) corresponded with higher age and BMI-adjusted odds of MI scores in the musical (OR = 1.59, 95%CI = 1.1–2.2, p = 0.006), linguistic (1.57, 1.1–2.3, p = 0.016), kinesthetic (1.48, 1.1–2.1, p = 0.024), spatial (1.45, 1.1–2.1, p = 0.03), and existential (1.56, 1.1–2.1, p = 0.01) categories compared to ones with lower TSAT levels (TSAT ≤ 20%), only in boys. In conclusion, serum iron levels may not directly influence MI domains in adolescents in Riyadh, Saudi Arabia; however, lower TSAT levels, indicative of iron-deficiency anemia, may influence MI, only in boys, indicating a possible relationship between iron metabolism and cognitive functions. Full article
(This article belongs to the Special Issue Advances in Iron Deficiency and Iron-Related Disorders)
Show Figures

Figure 1

15 pages, 1104 KiB  
Article
Functional Characterization and Anti-Tumor Effect of a Novel Group II Secreted Phospholipase A2 from Snake Venom of Saudi Cerastes cerates gasperetti
by Mona Alonazi, Najeh Krayem, Mona G. Alharbi, Arwa Ishaq A. Khayyat, Humidah Alanazi, Habib Horchani and Abir Ben Bacha
Molecules 2023, 28(18), 6517; https://doi.org/10.3390/molecules28186517 - 8 Sep 2023
Cited by 1 | Viewed by 1974
Abstract
Secreted phospholipases A2 are snake-venom proteins with many biological activities, notably anti-tumor activity. Phospholipases from the same snake type but different geographical locations have shown similar biochemical and biological activities with minor differences in protein sequences. Thus, the discovery of a new [...] Read more.
Secreted phospholipases A2 are snake-venom proteins with many biological activities, notably anti-tumor activity. Phospholipases from the same snake type but different geographical locations have shown similar biochemical and biological activities with minor differences in protein sequences. Thus, the discovery of a new phospholipase A2 with unique characteristics identified in a previously studied venom could suggest the origins of these differences. Here, a new Group II secreted phospholipase A2 (Cc-PLA2-II) from the snake venom of Saudi Cerastes cerastes gasperetti was isolated and characterized. The purified enzyme had a molecular weight of 13.945 kDa and showed high specific activity on emulsified phosphatidylcholine of 1560 U/mg at pH 9.5 and 50 °C with strict calcium dependence. Interestingly, stability in extreme pH and high temperatures was observed after enzyme incubation at several pH levels and temperatures. Moreover, a significant dose-dependent cytotoxic anti-tumor effect against six human cancer cell lines was observed with concentrations of Cc-PLA2 ranging from 2.5 to 8 µM. No cytotoxic effect on normal human umbilical-vein endothelial cells was noted. These results suggest that Cc-PLA2-II potentially has angiogenic activity of besides cytotoxicity as part of its anti-tumor mechanism. This study justifies the inclusion of this enzyme in many applications for anticancer drug development. Full article
Show Figures

Figure 1

16 pages, 1617 KiB  
Article
Analysis of Biochemical and Antimicrobial Properties of Bioactive Molecules of Argemone mexicana
by Jyotsna Jaiswal, Nikhat J. Siddiqi, Sabiha Fatima, Manal Abudawood, Sooad K. AlDaihan, Mona G. Alharbi, Maria de Lourdes Pereira, Preeti Sharma and Bechan Sharma
Molecules 2023, 28(11), 4428; https://doi.org/10.3390/molecules28114428 - 30 May 2023
Cited by 10 | Viewed by 3628
Abstract
This study identified phytochemicals in Argemone mexicana (A. mexicana) extracts that are responsible for its medicinal properties, and the best solvent for their extraction. The extracts of the stem, leaves, flowers, and fruits of A. mexicana were prepared at low (corresponding to room [...] Read more.
This study identified phytochemicals in Argemone mexicana (A. mexicana) extracts that are responsible for its medicinal properties, and the best solvent for their extraction. The extracts of the stem, leaves, flowers, and fruits of A. mexicana were prepared at low (corresponding to room temperature) and high temperatures (corresponding to the boiling points) in various solvents, viz., hexane, ethyl acetate, methanol, and H2O. The UV-visible absorption spectra of various phytoconstituents in the isolated extracts were determined through spectrophotometry. Qualitative tests for the screening of phytoconstituents in the extracts were performed to identify various phytochemicals. We identified the presence of terpenoids, alkaloids, cardiac glycosides, and carbohydrates in the plant extracts. The antioxidant and anti-human immunodeficiency virus type 1 reverse transcriptase (anti-HIV-1RT) potential, as well as the antibacterial activity of various A. mexicana extracts were determined. These extracts showed strong antioxidant activities. The extracts exhibited antimicrobial activities against Salmonella typhi, Staphylococcus epidermis, Citrobacter, Neisseria gonorrhoeae, and Shigella flexineri. These extracts significantly inhibited HIV-1 reverse transcriptase activity. The aqueous leaf extract prepared at a temperature equivalent to the boiling point, i.e., 100 °C, was identified to be the most active against pathogenic bacteria and HIV-1 RT. Full article
Show Figures

Graphical abstract

26 pages, 2122 KiB  
Review
Human Salmonellosis: A Continuous Global Threat in the Farm-to-Fork Food Safety Continuum
by Addisu D. Teklemariam, Rashad R. Al-Hindi, Raed S. Albiheyri, Mona G. Alharbi, Mashail A. Alghamdi, Amani A. R. Filimban, Abdullah S. Al Mutiri, Abdullah M. Al-Alyani, Mazen S. Alseghayer, Abdulaziz M. Almaneea, Abdulgader H. Albar, Mohsen A. Khormi and Arun K. Bhunia
Foods 2023, 12(9), 1756; https://doi.org/10.3390/foods12091756 - 23 Apr 2023
Cited by 97 | Viewed by 32010
Abstract
Salmonella is one of the most common zoonotic foodborne pathogens and a worldwide public health threat. Salmonella enterica is the most pathogenic among Salmonella species, comprising over 2500 serovars. It causes typhoid fever and gastroenteritis, and the serovars responsible for the later disease [...] Read more.
Salmonella is one of the most common zoonotic foodborne pathogens and a worldwide public health threat. Salmonella enterica is the most pathogenic among Salmonella species, comprising over 2500 serovars. It causes typhoid fever and gastroenteritis, and the serovars responsible for the later disease are known as non-typhoidal Salmonella (NTS). Salmonella transmission to humans happens along the farm-to-fork continuum via contaminated animal- and plant-derived foods, including poultry, eggs, fish, pork, beef, vegetables, fruits, nuts, and flour. Several virulence factors have been recognized to play a vital role in attaching, invading, and evading the host defense system. These factors include capsule, adhesion proteins, flagella, plasmids, and type III secretion systems that are encoded on the Salmonella pathogenicity islands. The increased global prevalence of NTS serovars in recent years indicates that the control approaches centered on alleviating the food animals’ contamination along the food chain have been unsuccessful. Moreover, the emergence of antibiotic-resistant Salmonella variants suggests a potential food safety crisis. This review summarizes the current state of the knowledge on the nomenclature, microbiological features, virulence factors, and the mechanism of antimicrobial resistance of Salmonella. Furthermore, it provides insights into the pathogenesis and epidemiology of Salmonella infections. The recent outbreaks of salmonellosis reported in different clinical settings and geographical regions, including Africa, the Middle East and North Africa, Latin America, Europe, and the USA in the farm-to-fork continuum, are also highlighted. Full article
Show Figures

Figure 1

12 pages, 772 KiB  
Article
Bee Pollen and Probiotics’ Potential to Protect and Treat Intestinal Permeability in Propionic Acid-Induced Rodent Model of Autism
by Mona Alonazi, Abir Ben Bacha, Mona G. Alharbi, Arwa Ishaq A. Khayyat, Laila AL-Ayadhi and Afaf El-Ansary
Metabolites 2023, 13(4), 548; https://doi.org/10.3390/metabo13040548 - 12 Apr 2023
Cited by 5 | Viewed by 3970
Abstract
Rodent models may help investigations on the possible link between autism spectrum disorder (ASD) and gut microbiota since autistic patients frequently manifested gastrointestinal troubles as co-morbidities. Thirty young male rats were divided into five groups: Group 1 serves as control; Group 2, bee [...] Read more.
Rodent models may help investigations on the possible link between autism spectrum disorder (ASD) and gut microbiota since autistic patients frequently manifested gastrointestinal troubles as co-morbidities. Thirty young male rats were divided into five groups: Group 1 serves as control; Group 2, bee pollen and probiotic-treated; and Group 3, propionic acid (PPA)-induced rodent model of autism; Group 4 and Group 5, the protective and therapeutic groups were given bee pollen and probiotic combination treatment either before or after the neurotoxic dose of PPA, respectively. Serum occludin, zonulin, lipid peroxides (MDA), glutathione (GSH), glutathione-S-transferase (GST), glutathione peroxidase (GPX), catalase, and gut microbial composition were assessed in all investigated groups. Recorded data clearly indicated the marked elevation in serum occludin (1.23 ± 0.15 ng/mL) and zonulin (1.91 ± 0.13 ng/mL) levels as potent biomarkers of leaky gut in the PPA- treated rats while both were normalized to bee pollen/probiotic-treated rats. Similarly, the high significant decrease in catalase (3.55 ± 0.34 U/dL), GSH (39.68 ± 3.72 µg/mL), GST (29.85 ± 2.18 U/mL), and GPX (13.39 ± 1.54 U/mL) concomitant with a highly significant increase in MDA (3.41 ± 0.12 µmoles/mL) as a marker of oxidative stress was also observed in PPA-treated animals. Interestingly, combined bee pollen/probiotic treatments demonstrated remarkable amelioration of the five studied oxidative stress variables as well as the fecal microbial composition. Overall, our findings demonstrated a new approach to the beneficial use of bee pollen and probiotic combination as a therapeutic intervention strategy to relieve neurotoxic effects of PPA, a short-chain fatty acid linked to the pathoetiology of autism. Full article
(This article belongs to the Special Issue Complementary and Alternative Medicine in Autism Spectrum Disorders)
Show Figures

Figure 1

18 pages, 1635 KiB  
Review
Fresh Produce as a Potential Vector and Reservoir for Human Bacterial Pathogens: Revealing the Ambiguity of Interaction and Transmission
by Ahmed Esmael, Rashad R. Al-Hindi, Raed S. Albiheyri, Mona G. Alharbi, Amani A. R. Filimban, Mazen S. Alseghayer, Abdulaziz M. Almaneea, Meshari Ahmed Alhadlaq, Jumaa Ayubu and Addisu D. Teklemariam
Microorganisms 2023, 11(3), 753; https://doi.org/10.3390/microorganisms11030753 - 15 Mar 2023
Cited by 16 | Viewed by 4423
Abstract
The consumer demand for fresh produce (vegetables and fruits) has considerably increased since the 1980s for more nutritious foods and healthier life practices, particularly in developed countries. Currently, several foodborne outbreaks have been linked to fresh produce. The global rise in fresh produce [...] Read more.
The consumer demand for fresh produce (vegetables and fruits) has considerably increased since the 1980s for more nutritious foods and healthier life practices, particularly in developed countries. Currently, several foodborne outbreaks have been linked to fresh produce. The global rise in fresh produce associated with human infections may be due to the use of wastewater or any contaminated water for the cultivation of fruits and vegetables, the firm attachment of the foodborne pathogens on the plant surface, and the internalization of these agents deep inside the tissue of the plant, poor disinfection practices and human consumption of raw fresh produce. Several investigations have been established related to the human microbial pathogens (HMPs) interaction, their internalization, and survival on/within plant tissue. Previous studies have displayed that HMPs are comprised of several cellular constituents to attach and adapt to the plant’s intracellular niches. In addition, there are several plant-associated factors, such as surface morphology, nutrient content, and plant–HMP interactions, that determine the internalization and subsequent transmission to humans. Based on documented findings, the internalized HMPs are not susceptible to sanitation or decontaminants applied on the surface of the fresh produce. Therefore, the contamination of fresh produce by HMPs could pose significant food safety hazards. This review provides a comprehensive overview of the interaction between fresh produce and HMPs and reveals the ambiguity of interaction and transmission of the agents to humans. Full article
(This article belongs to the Special Issue Latest Review Papers in Food Microbiology 2023)
Show Figures

Figure 1

24 pages, 2728 KiB  
Article
RETRACTED: Isolation and Characterization of a Novel Lytic Phage, vB_PseuP-SA22, and Its Efficacy against Carbapenem-Resistant Pseudomonas aeruginosa
by Addisu D. Teklemariam, Rashad R. Al-Hindi, Mona G. Alharbi, Ibrahim Alotibi, Sheren A. Azhari, Ishtiaq Qadri, Turki Alamri, Ahmed Esmael and Steve Harakeh
Antibiotics 2023, 12(3), 497; https://doi.org/10.3390/antibiotics12030497 - 2 Mar 2023
Cited by 16 | Viewed by 4612 | Retraction
Abstract
Carbapenem-resistant Pseudomonas aeruginosa (CRPA) poses a serious public health threat in multiple clinical settings. In this study, we detail the isolation of a lytic bacteriophage, vB_PseuP-SA22, from wastewater using a clinical strain of CRPA. Transmission electron microscopy (TEM) analysis identified that the phage [...] Read more.
Carbapenem-resistant Pseudomonas aeruginosa (CRPA) poses a serious public health threat in multiple clinical settings. In this study, we detail the isolation of a lytic bacteriophage, vB_PseuP-SA22, from wastewater using a clinical strain of CRPA. Transmission electron microscopy (TEM) analysis identified that the phage had a podovirus morphology, which agreed with the results of whole genome sequencing. BLASTn search allowed us to classify vB_PseuP-SA22 into the genus Bruynoghevirus. The genome of vB_PseuP-SA22 consisted of 45,458 bp of double-stranded DNA, with a GC content of 52.5%. Of all the open reading frames (ORFs), only 26 (44.8%) were predicted to encode certain functional proteins, whereas the remaining 32 (55.2%) ORFs were annotated as sequences coding functionally uncharacterized hypothetical proteins. The genome lacked genes coding for toxins or markers of lysogenic phages, including integrases, repressors, recombinases, or excisionases. The phage produced round, halo plaques with a diameter of 1.5 ± 2.5 mm on the bacterial lawn. The TEM revealed that vB_PseuP-SA22 has an icosahedral head of 57.5 ± 4.5 nm in length and a short, non-contractile tail (19.5 ± 1.4 nm). The phage showed a latent period of 30 min, a burst size of 300 PFU/infected cells, and a broad host range. vB_PseuP-SA22 was found to be stable between 4–60 °C for 1 h, while the viability of the virus was reduced at temperatures above 60 °C. The phage showed stability at pH levels between 5 and 11. vB_PauP-SA22 reduced the number of live bacteria in P. aeruginosa biofilm by almost five logs. The overall results indicated that the isolated phage could be a candidate to control CRPA infections. However, experimental in vivo studies are essential to ensure the safety and efficacy of vB_PauP-SA22 before its use in humans. Full article
Show Figures

Figure 1

17 pages, 3055 KiB  
Review
The Battle between Bacteria and Bacteriophages: A Conundrum to Their Immune System
by Addisu D. Teklemariam, Rashad R. Al-Hindi, Ishtiaq Qadri, Mona G. Alharbi, Wafaa S. Ramadan, Jumaa Ayubu, Ahmed M. Al-Hejin, Raghad F. Hakim, Fanar F. Hakim, Rahad F. Hakim, Loojen I. Alseraihi, Turki Alamri and Steve Harakeh
Antibiotics 2023, 12(2), 381; https://doi.org/10.3390/antibiotics12020381 - 13 Feb 2023
Cited by 33 | Viewed by 10125
Abstract
Bacteria and their predators, bacteriophages, or phages are continuously engaged in an arms race for their survival using various defense strategies. Several studies indicated that the bacterial immune arsenal towards phage is quite diverse and uses different components of the host machinery. Most [...] Read more.
Bacteria and their predators, bacteriophages, or phages are continuously engaged in an arms race for their survival using various defense strategies. Several studies indicated that the bacterial immune arsenal towards phage is quite diverse and uses different components of the host machinery. Most studied antiphage systems are associated with phages, whose genomic matter is double-stranded-DNA. These defense mechanisms are mainly related to either the host or phage-derived proteins and other associated structures and biomolecules. Some of these strategies include DNA restriction-modification (R-M), spontaneous mutations, blocking of phage receptors, production of competitive inhibitors and extracellular matrix which prevent the entry of phage DNA into the host cytoplasm, assembly interference, abortive infection, toxin–antitoxin systems, bacterial retrons, and secondary metabolite-based replication interference. On the contrary, phages develop anti-phage resistance defense mechanisms in consortium with each of these bacterial phage resistance strategies with small fitness cost. These mechanisms allow phages to undergo their replication safely inside their bacterial host’s cytoplasm and be able to produce viable, competent, and immunologically endured progeny virions for the next generation. In this review, we highlight the major bacterial defense systems developed against their predators and some of the phage counterstrategies and suggest potential research directions. Full article
Show Figures

Figure 1

26 pages, 2349 KiB  
Review
Beyond the Risk of Biofilms: An Up-and-Coming Battleground of Bacterial Life and Potential Antibiofilm Agents
by Mohamed Zeineldin, Ahmed Esmael, Rashad R. Al-Hindi, Mona G. Alharbi, Debebe Ashenafi Bekele and Addisu D. Teklemariam
Life 2023, 13(2), 503; https://doi.org/10.3390/life13020503 - 11 Feb 2023
Cited by 20 | Viewed by 5120
Abstract
Microbial pathogens and their virulence factors like biofilms are one of the major factors which influence the disease process and its outcomes. Biofilms are a complex microbial network that is produced by bacteria on any devices and/or biotic surfaces to escape harsh environmental [...] Read more.
Microbial pathogens and their virulence factors like biofilms are one of the major factors which influence the disease process and its outcomes. Biofilms are a complex microbial network that is produced by bacteria on any devices and/or biotic surfaces to escape harsh environmental conditions and antimicrobial effects. Due to the natural protective nature of biofilms and the associated multidrug resistance issues, researchers evaluated several natural anti-biofilm agents, including bacteriophages and their derivatives, honey, plant extracts, and surfactants for better destruction of biofilm and planktonic cells. This review discusses some of these natural agents that are being put into practice to prevent biofilm formation. In addition, we highlight bacterial biofilm formation and the mechanism of resistance to antibiotics. Full article
Show Figures

Figure 1

14 pages, 1681 KiB  
Article
Biodiesel Production by Single and Mixed Immobilized Lipases Using Waste Cooking Oil
by Abir Ben Bacha, Mona Alonazi, Mona G. Alharbi, Habib Horchani and Imen Ben Abdelmalek
Molecules 2022, 27(24), 8736; https://doi.org/10.3390/molecules27248736 - 9 Dec 2022
Cited by 11 | Viewed by 3731
Abstract
Biodiesel is one of the important biofuels as an alternative to petroleum-based diesel fuels. In the current study, enzymatic transesterification reaction was carried out for the production of biodiesel from waste cooking oil (WCO) and experimental conditions were optimized, in order to reach [...] Read more.
Biodiesel is one of the important biofuels as an alternative to petroleum-based diesel fuels. In the current study, enzymatic transesterification reaction was carried out for the production of biodiesel from waste cooking oil (WCO) and experimental conditions were optimized, in order to reach maximum biodiesel yield. Bacillus stearothermophilus and Staphylococcus aureus lipase enzymes were individually immobilized on CaCO3 to be used as environmentally friendly catalysts for biodiesel production. The immobilized lipases exhibited better stability than free ones and were almost fully active after 60 days of storage at 4 °C. A significant biodiesel yield of 97.66 ± 0.57% was achieved without any pre-treatment and at 1:6 oil/methanol molar ratio, 1% of the enzyme mixture (a 1:1 ratio mixture of both lipase), 1% water content, after 24 h at 55 °C reaction temperature. The biocatalysts retained 93% of their initial activities after six cycles. The fuel and chemical properties such as the cloud point, viscosity at 40 °C and density at 15 °C of the produced biodiesel complied with international specifications (EN 14214) and, therefore, were comparable to those of other diesels/biodiesels. Interestingly, the resulting biodiesel revealed a linolenic methyl ester content of 0.55 ± 0.02% and an ester content of 97.7 ± 0.21% which is in good agreement with EN14214 requirements. Overall, using mixed CaCO3-immobilized lipases to obtain an environmentally friendly biodiesel from WCO is a promising and effective alternative for biodiesel production catalysis. Full article
(This article belongs to the Special Issue Food-Waste as a Sustainable Source of Chemicals and Materials)
Show Figures

Figure 1

19 pages, 4052 KiB  
Article
Isolation and Characterization of Chi-like Salmonella Bacteriophages Infecting Two Salmonella enterica Serovars, Typhimurium and Enteritidis
by Addisu D. Teklemariam, Mona G. Alharbi, Rashad R. Al-Hindi, Ibrahim Alotibi, Abdullah A. Aljaddawi, Sheren A. Azhari and Ahmed Esmael
Pathogens 2022, 11(12), 1480; https://doi.org/10.3390/pathogens11121480 - 6 Dec 2022
Cited by 8 | Viewed by 3641
Abstract
Salmonella enterica Serovar Typhimurium and Salmonella enterica Serovar Enteritidis are well-known pathogens that cause foodborne diseases in humans. The emergence of antibiotic-resistant Salmonella serovars has caused serious public health problems worldwide. In this study, two lysogenic phages, STP11 and SEP13, were isolated from [...] Read more.
Salmonella enterica Serovar Typhimurium and Salmonella enterica Serovar Enteritidis are well-known pathogens that cause foodborne diseases in humans. The emergence of antibiotic-resistant Salmonella serovars has caused serious public health problems worldwide. In this study, two lysogenic phages, STP11 and SEP13, were isolated from a wastewater treatment plant in Jeddah, KSA. Transmission electron microscopic images revealed that both phages are new members of the genus “Chivirus” within the family Siphoviridae. Both STP11 and SEP13 had a lysis time of 90 min with burst sizes of 176 and 170 PFU/cell, respectively. The two phages were thermostable (0 °C ≤ temperature < 70 °C) and pH tolerant at 3 ≤ pH < 11. STP11 showed lytic activity for approximately 42.8% (n = 6), while SEP13 showed against 35.7% (n = 5) of the tested bacterial strains. STP11 and STP13 have linear dsDNA genomes consisting of 58,890 bp and 58,893 bp nucleotide sequences with G + C contents of 57% and 56.5%, respectively. Bioinformatics analysis revealed that the genomes of phages STP11 and SEP13 contained 70 and 71 ORFs, respectively. No gene encoding tRNA was detected in their genome. Of the 70 putative ORFs of phage STP11, 27 (38.6%) were assigned to functional genes and 43 (61.4%) were annotated as hypothetical proteins. Similarly, 29 (40.8%) of the 71 putative ORFs of phage SEP13 were annotated as functional genes, whereas the remaining 42 (59.2%) were assigned as nonfunctional proteins. Phylogenetic analysis of the whole genome sequence demonstrated that the isolated phages are closely related to Chi-like Salmonella viruses. Full article
Show Figures

Figure 1

16 pages, 1490 KiB  
Article
Dietary Supplementation of Silybum marianum Seeds Improved Growth Performance and Upregulated Associated Gene Expression of Muscovy Ducklings (Cairina moschata)
by Osama El-Garhy, Fathia A. Soudy, Yousef M. Alharbi, Fahad A. Alshanbari, Mona S. Almujaydil, Raghad M. Alhomaid, Omar A. Ahmed-Farid, Shereen A. Mohamed, Hoda A. S. El-Garhy, Hassan Barakat and Ayman G. EL Nagar
Antioxidants 2022, 11(11), 2300; https://doi.org/10.3390/antiox11112300 - 21 Nov 2022
Cited by 7 | Viewed by 2421
Abstract
The effect of feeding on diets supplemented with Silybum marianum L. dry seeds (SMS) on growth performance, mortality percentage, biochemical parameters, the expression profile of related genes, and genotoxic effect in Muscovy ducklings was evaluated during a brooding period of 4 weeks. Two [...] Read more.
The effect of feeding on diets supplemented with Silybum marianum L. dry seeds (SMS) on growth performance, mortality percentage, biochemical parameters, the expression profile of related genes, and genotoxic effect in Muscovy ducklings was evaluated during a brooding period of 4 weeks. Two hundred and forty one-day-old Muscovy ducks were randomly assigned to four treatment groups (60 ducklings/group), the first group fed on basal diet with no additives (control), and the second (4 g kg−1), third (8 g kg−1), and fourth (12 g kg−1) groups fed the basal diet supplemented with 0, 4, 8, and 12 g kg−1 diet SMS, respectively. A substantial improvement in live body weight (LBW), body weight gain (BWG), and growth rate (GR), and a decrease in feed conversion ratios (FCR) and mortality rate were shown in ducks fed a diet supplemented with either 8 g kg−1 or 12 g kg−1 SMS compared to the other groups. Relevant improvements in liver function, oxidative stress markers, purinergic cell energy, and brain appetite were recorded on ducklings fed diets supplemented with SMS. Moreover, diets which included 8 or 12 g kg−1 SMS positively upregulated the expression of growth hormone gene (GH) and antioxidant genes (SOD1, SOD2, and CAT). These results are consistent with the increase in liver activity SOD and CAT enzymes, resulting in less DNA fragmentation. Consequently, all the aforementioned improvements in biochemical parameters and gene expression profiling may explain the superiority of the treated ducklings compared with the control group. Conclusively, the SMS could be used as a natural feed additive to promote health status and improve the growth performance of small grower ducks during the brooding period. Full article
(This article belongs to the Special Issue Oxidative Stress, Reactive Oxygen Species and Animal Nutrition)
Show Figures

Figure 1

19 pages, 966 KiB  
Review
The “Big Six”: Hidden Emerging Foodborne Bacterial Pathogens
by Mona G. Alharbi, Rashad R. Al-Hindi, Ahmed Esmael, Ibrahim A. Alotibi, Sheren A. Azhari, Mazen S. Alseghayer and Addisu D. Teklemariam
Trop. Med. Infect. Dis. 2022, 7(11), 356; https://doi.org/10.3390/tropicalmed7110356 - 7 Nov 2022
Cited by 28 | Viewed by 7506
Abstract
Non-O157 Shiga toxin-producing Escherichia coli (STEC) are emerging serogroups that often result in diseases ranging from diarrhea to severe hemorrhagic colitis in humans. The most common non-O157 STEC are O26, O45, O103, O111, O121, and O145. These serogroups are known by the name [...] Read more.
Non-O157 Shiga toxin-producing Escherichia coli (STEC) are emerging serogroups that often result in diseases ranging from diarrhea to severe hemorrhagic colitis in humans. The most common non-O157 STEC are O26, O45, O103, O111, O121, and O145. These serogroups are known by the name “big six” because they cause severe illness and death in humans and the United States Department of Agriculture declared these serogroups as food contaminants. The lack of fast and efficient diagnostic methods exacerbates the public impact of the disease caused by these serogroups. Numerous outbreaks have been reported globally and most of these outbreaks were caused by ingestion of contaminated food or water as well as direct contact with reservoirs. Livestock harbor a variety of non-O157 STEC serovars that can contaminate meat and dairy products, or water sources when used for irrigation. Hence, effective control and prevention approaches are required to safeguard the public from infections. This review addresses the disease characteristics, reservoirs, the source of infections, the transmission of the disease, and major outbreaks associated with the six serogroups (“big six”) of non-O157 STEC encountered all over the globe. Full article
(This article belongs to the Section Infectious Diseases)
Show Figures

Figure 1

Back to TopTop