Biodiesel Production by Single and Mixed Immobilized Lipases Using Waste Cooking Oil
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Physicochemical Properties of WCOs
3.2. Production and Immobilization of Bacterial Lipases
3.3. Optimization of Biodiesel Synthesis Process from WCO
3.4. Reuse of Immobilized Lipases
3.5. Storage Stability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Erchamo, Y.S.; Mamo, T.T.; Workneh, G.A.; Mekonnen, Y.S. Improved biodiesel production from waste cooking oil with mixed methanol–ethanol using enhanced eggshell-derived CaO nano-catalyst. Sci. Rep. 2021, 11, 6708. [Google Scholar] [CrossRef] [PubMed]
- Banković–Ilić, I.B.; Miladinović, M.R.; Stamenković, O.S.; Veljković, V.B. Application of nano CaO–based catalysts. Renew. Sustain. Energy Rev. 2017, 72, 746–760. [Google Scholar] [CrossRef]
- Yang, X.-X.; Wang, Y.-T.; Yang, Y.-T.; Feng, E.-Z.; Luo, J.; Zhang, F.; Yang, W.-J.; Bao, G.-R. Catalytic transesterification to biodiesel at room temperature over several solid bases. Energy Convers. Manag. 2018, 164, 112–121. [Google Scholar] [CrossRef]
- Arachchige, U. Production of Biodiesel from Waste Cooking Oil in Laboratory Scale: A Review. Int. J. Sci. Eng. Sci. 2021, 5, 28–34. [Google Scholar]
- Moecke, E.H.S.; Feller, R.; dos Santos, H.A.; Machado, M.D.M.; Cubas, A.L.V.; Dutra, A.; Santos, L.L.V.; Soares, S.R. Biodiesel production from waste cooking oil for use as fuel in artisanal fishing boats: Integrating environmental, economic and social aspects. J. Clean. Prod. 2016, 135, 679–688. [Google Scholar] [CrossRef]
- Rahadianti, E.S.; Yerizam, Y.; Martha, M. Biodiesel Production from Waste Cooking Oil. Indones. J. Fundam. Appl. Chem. 2018, 3, 77–82. [Google Scholar] [CrossRef]
- Chandra, P.; Enespa; Singh, R.; Arora, P.K. Microbial lipases and their industrial applications: A comprehensive review. Microb. Cell Fact. 2020, 19, 169. [Google Scholar] [CrossRef]
- Narwal, S.; Gupta, R. Biodiesel production by transesterification using immobilized lipase. Biotechnol. Lett. 2013, 35, 479–490. [Google Scholar] [CrossRef]
- Mohamad, N.R.; Che Marzuki, N.H.; Buang, N.A.; Huyop, F.; Wahab, R.A. An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnol. Biotechnol. Equip. 2015, 29, 205–220. [Google Scholar] [CrossRef]
- Sheldon, R.A. Cross-linked enzyme aggregates (CLEA®s): Stable and recyclable biocatalysts. Biochem. Soc. Trans. 2007, 35 Pt 6, 1583–1587. [Google Scholar] [CrossRef] [Green Version]
- Remonatto, D.; Miotti, R.H., Jr.; Monti, R.; Bassan, J.C.; de Paula, A.V. Applications of immobilized lipases in enzymatic reactors: A review. Process Biochem. 2022, 114, 1–20. [Google Scholar] [CrossRef]
- Ghamgui, H.; Miled, N.; Karra-Chaâbouni, M.; Gargouri, Y. Immobilization studies and biochemical properties of free and immobilized Rhizopus oryzae lipase onto CaCO3: A comparative study. Biochem. Eng. J. 2007, 37, 34–41. [Google Scholar] [CrossRef]
- Lee, C.H.; Jin, E.S.; Lee, J.H.; Hwang, E.T. Immobilization and Stabilization of Enzyme in Biomineralized Calcium Carbonate Microspheres. Front. Bioeng. Biotechnol. 2020, 8, 553591. [Google Scholar] [CrossRef]
- Ben Bacha, A.; Abid, I.; Nehdi, I.; Horchani, H. Hydrolysis of oils in the Wadi Hanifah River in Saudi Arabia by free and immobilized Staphylococcus aureus ALA1 lipase. Environ. Prog. Sustain. Energy 2019, 38, e13000. [Google Scholar] [CrossRef]
- Ben Bacha, A.; Alonazi, M.; Alanazi, H.; Alharbi, M.G.; Jallouli, R.; Karray, A. Biochemical Study of Bacillus stearothermophilus Immobilized Lipase for Oily Wastewater Treatment. Processes 2022, 10, 2220. [Google Scholar] [CrossRef]
- Binhayeeding, N.; Klomklao, S.; Prasertsan, P.; Sangkharak, K. Improvement of biodiesel production using waste cooking oil and applying single and mixed immobilised lipases on polyhydroxyalkanoate. Renew. Energy 2020, 162, 1819–1827. [Google Scholar] [CrossRef]
- Guldhe, A.; Singh, B.; Mutanda, T.; Permaul, K.; Bux, F. Advances in synthesis of biodiesel via enzyme catalysis: Novel and sustainable approaches. Renew. Sustain. Energy Rev. 2015, 41, 1447–1464. [Google Scholar] [CrossRef]
- Kuepethkaew, S.; Sangkharak, K.; Benjakul, S.; Klomklao, S. Optimized synthesis of biodiesel using lipase from Pacific white shrimp (Litopenaeus vannamei) hepatopancreas. Renew. Energy 2017, 104, 139–147. [Google Scholar] [CrossRef]
- Ahmad, M.; Ahmed, S.; Hassan, F.-U.; Arshad, M.; Khan, M.; Ahmad, M.; Sultana, S. Base catalyzed transesterification of sunflower oil biodiesel. Afr. J. Biotechnol. 2010, 9, 8630–8635. [Google Scholar]
- Asadi, M.; Hooper, J.F.; Lupton, D.W. Biodiesel synthesis using integrated acid and base catalysis in continuous flow. Tetrahedron 2016, 72, 3729–3733. [Google Scholar] [CrossRef]
- Carlini, M.; Castellucci, S.; Cocchi, S. A Pilot-Scale Study of Waste Vegetable Oil Transesterification with Alkaline and Acidic Catalysts. Energy Procedia 2014, 45, 198–206. [Google Scholar] [CrossRef] [Green Version]
- Gnanaprakasam, A.; Sivakumar, V.M.; Surendhar, A.; Thirumarimurugan, M.; Kannadasan, T. Recent Strategy of Biodiesel Production from Waste Cooking Oil and Process Influencing Parameters: A Review. J. Energy 2013, 2013, 926392. [Google Scholar] [CrossRef]
- Nasaruddin, R.R.; Alam, M.Z.; Jami, M.S. Enzymatic biodiesel production from sludge palm oil (SPO) using locally produced Candida cylindracea lipase. Afr. J. Biotechnol. 2013, 12, 4966–4974. [Google Scholar] [CrossRef] [Green Version]
- Tran, D.-T.; Chen, C.-L.; Chang, J.-S. Effect of solvents and oil content on direct transesterification of wet oil-bearing microalgal biomass of Chlorella vulgaris ESP-31 for biodiesel synthesis using immobilized lipase as the biocatalyst. Bioresour. Technol. 2013, 135, 213–221. [Google Scholar] [CrossRef]
- Yücel, Y. Biodiesel production from pomace oil by using lipase immobilized onto olive pomace. Bioresour. Technol. 2011, 102, 3977–3980. [Google Scholar] [CrossRef] [PubMed]
- Anjai, P.A.; Singh, V.B.N. Biodiesel production by esterification of free fatty acid over sulfated zirconia. Renew. Energy 2013, 51, 227–233. [Google Scholar] [CrossRef]
- Sánchez-Bayo, A.; Morales, V.; Rodríguez, R.; Vicente, G.; Bautista, L.F. Biodiesel Production (FAEEs) by Heterogeneous Combi-Lipase Biocatalysts Using Wet Extracted Lipids from Microalgae. Catalysts 2019, 9, 296. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; Yoo, H.-Y.; Suh, Y.J.; Han, S.O.; Park, C.; Kim, S.W. Process development using co-immobilized lipases for biodiesel production. Int. Proc. Chem. Biol. Environ. Eng. 2012, 28, 171–174. [Google Scholar]
- Ramos, M.D.; Miranda, L.P.; Fernandez-Lafuente, R.; Kopp, W.; Tardioli, P.W. Improving the Yields and Reaction Rate in the Ethanolysis of Soybean Oil by Using Mixtures of Lipase CLEAs. Molecules 2019, 24, 4392. [Google Scholar] [CrossRef] [Green Version]
- Shahedi, M.; Yousefi, M.; Habibi, Z.; Mohammadi, M.; As’Habi, M.A. Co-immobilization of Rhizomucor miehei lipase and Candida antarctica lipase B and optimization of biocatalytic biodiesel production from palm oil using response surface methodology. Renew. Energy 2019, 141, 847–857. [Google Scholar] [CrossRef]
- Kumari, A.; Mahapatra, P.; Garlapati, V.K.; Banerjee, R. Enzymatic transesterification of Jatropha oil. Biotechnol. Biofuels 2009, 2, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demirbas, A. Progress and recent trends in biodiesel fuels. Energy Convers. Manag. 2009, 50, 14–34. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, X.-D.; Sun, L.; Xu, M.; Zhou, W.-G.; Liang, X.-H. Solid superacid catalyzed fatty acid methyl esters production from acid oil. Appl. Energy 2010, 87, 2369–2373. [Google Scholar] [CrossRef]
- Kaieda, M.; Samukawa, T.; Kondo, A.; Fukuda, H. Effect of Methanol and water contents on production of biodiesel fuel from plant oil catalyzed by various lipases in a solvent-free system. J. Biosci. Bioeng. 2001, 91, 12–15. [Google Scholar] [CrossRef] [PubMed]
- Su, F.; Li, G.-L.; Fan, Y.-L.; Yan, Y.-J. Enhancing biodiesel production via a synergic effect between immobilized Rhizopus oryzae lipase and Novozym 435. Fuel Process. Technol. 2015, 137, 298–304. [Google Scholar] [CrossRef]
- Atadashi, I.; Aroua, M.; Aziz, A.A.; Sulaiman, N. The effects of water on biodiesel production and refining technologies: A review. Renew. Sustain. Energy Rev. 2012, 16, 3456–3470. [Google Scholar] [CrossRef]
- Yang, W.; He, Y.; Xu, L.; Zhang, H.; Yan, Y. A new extracellular thermo-solvent-stable lipase from Burkholderia ubonensis SL-4: Identification, characterization and application for biodiesel production. J. Mol. Catal. B Enzym. 2016, 126, 76–89. [Google Scholar] [CrossRef]
- Maceiras, R.; Vega, M.; Costa, C.; Ramos, P.; Márquez, M. Effect of methanol content on enzymatic production of biodiesel from waste frying oil. Fuel 2009, 88, 2130–2134. [Google Scholar] [CrossRef]
- Li, Q.; Yan, Y. Production of biodiesel catalyzed by immobilized Pseudomonas cepacia lipase from Sapium sebiferum oil in micro-aqueous phase. Appl. Energy 2010, 87, 3148–3154. [Google Scholar] [CrossRef]
- Ognjanovic, N.; Bezbradica, D.; Knezevic-Jugovic, Z. Enzymatic conversion of sunflower oil to biodiesel in a solvent-free system: Process optimization and the immobilized system stability. Bioresour. Technol. 2009, 100, 5146–5154. [Google Scholar] [CrossRef]
- Raita, M.; Champreda, V.; Laosiripojana, N. Biocatalytic ethanolysis of palm oil for biodiesel production using microcrystalline lipase in tert-butanol system. Process Biochem. 2010, 45, 829–834. [Google Scholar] [CrossRef]
- Zhang, D.-H.; Yuwen, L.-X.; Peng, L.-J. Parameters Affecting the Performance of Immobilized Enzyme. J. Chem. 2013, 2013, 946248. [Google Scholar] [CrossRef] [Green Version]
- Gharat, N.; Rathod, V.K. Ultrasound assisted enzyme catalyzed transesterification of waste cooking oil with dimethyl carbonate. Ultrason. Sonochemistry 2013, 20, 900–905. [Google Scholar] [CrossRef] [PubMed]
- El-Batal, A.I.; Farrag, A.A.; Elsayed, M.A.; El-Khawaga, A.M. Biodiesel Production by Aspergillus niger Lipase Immobilized on Barium Ferrite Magnetic Nanoparticles. Bioengineering 2016, 3, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, W.; Wang, J. Immobilized lipase on magnetic chitosan microspheres for transesterification of soybean oil. Biomass- Bioenergy 2012, 36, 373–380. [Google Scholar] [CrossRef]
- Kumar, A.; Dhar, K.; Kanwar, S.S.; Arora, P.K. Lipase catalysis in organic solvents: Advantages and applications. Biol. Proced. Online 2016, 18, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehrasbi, M.R.; Mohammadi, J.; Peyda, M.; Mohammadi, M. Covalent immobilization of Candida antarctica lipase on core-shell magnetic nanoparticles for production of biodiesel from waste cooking oil. Renew. Energy 2017, 101, 593–602. [Google Scholar] [CrossRef]
- Sarno, M.; Iuliano, M. Biodiesel production from waste cooking oil. Green Process. Synth. 2019, 8, 828–836. [Google Scholar] [CrossRef]
- Wang, X.; Qin, X.; Li, D.; Yang, B.; Wang, Y. One-step synthesis of high-yield biodiesel from waste cooking oils by a novel and highly methanol-tolerant immobilized lipase. Bioresour. Technol. 2017, 235, 18–24. [Google Scholar] [CrossRef]
- Rushang, M.J.; Michael, J.P. Flow properties of biodiesel fuel blends at low temperatures. Fuel 2007, 86, 143–151. [Google Scholar]
- Brenes, M.; García, A.; Dobarganes, M.C.; Velasco, J.; Romero, C. Influence of Thermal Treatments Simulating Cooking Processes on the Polyphenol Content in Virgin Olive Oil. J. Agric. Food Chem. 2002, 50, 5962–5967. [Google Scholar] [CrossRef]
- Ben Bacha, A.; Moubayed, N.M.S.; Abid, I. Thermostable, alkaline and detergent-tolerant lipase from a newly isolated thermophilic Bacillus stearothermophilus. Indian J. Biochem. Biophys. 2015, 52, 179–188. [Google Scholar] [PubMed]
- Ben Bacha, A.; Moubayed, N.M.; Al-Assaf, A. An organic solvent-stable lipase from a newly isolated Staphylococcus aureus ALA1 strain with potential for use as an industrial biocatalyst. Biotechnol. Appl. Biochem. 2016, 63, 378–390. [Google Scholar] [CrossRef] [PubMed]
- Rosu, R.; Uozaki, Y.; Iwasaki, Y.; Yamane, T. Repeated use of immobilized lipase for monoacylglycerol production by solid-phase glycerolysis of olive oil. J. Am. Oil Chem. Soc. 1997, 74, 445–450. [Google Scholar] [CrossRef]
- Rathelot, J.; Julien, R.; Bosc-Bierne, I.; Gargouri, Y.; Canioni, P.; Sarda, L. Horse pancreatic lipase. Interaction with colipase from various species. Biochimie 1981, 63, 227–234. [Google Scholar] [CrossRef]
- Zheng, S.; Kates, M.; Dubé, M.; McLean, D. Acid-catalyzed production of biodiesel from waste frying oil. Biomass- Bioenergy 2006, 30, 267–272. [Google Scholar] [CrossRef]
- Hadaruga, D.I.; Hădărugă, N.; Hermenean, A.; Riviş, A.; Paslaru, V.; Codina, G. Bionanomaterials: Thermal stability of the oleic acid / α- and β-cyclodextrin complexes. Rev. Chim. 2008, 59, 994–998. [Google Scholar] [CrossRef]
- Sarno, M.; Iuliano, M. Highly active and stable Fe3O4/Au nanoparticles supporting lipase catalyst for biodiesel production from waste tomato. Appl. Surf. Sci. 2019, 474, 135–146. [Google Scholar] [CrossRef]
- Yusoff, M.F.M.; Xu, X.; Guo, Z. Comparison of fatty acid methyl and ethyl esters as biodiesel base stock: A review on processing and production requirements. J. Am. Oil Chem. Siciety 2014, 91, 525–531. [Google Scholar] [CrossRef]
Physicochemical Properties | |
---|---|
Property | Average ± SD |
Moisture (%) | 0.09 ± 0.002 |
Saponification Index (mgKOH/g) | 190 ± 3 |
Acid value (%) | 0.85 ± 0.02 |
Free Acid Content (%) | 1.35 ± 0.13 |
Iodine value (g I2/100 g oil) | 68.7 ± 2.51 |
Percentage of Immobilized Lipase Mixture | Biodiesel Yield (%) | |
---|---|---|
B. stearothermophilus | S. aureus | |
100 | 0 | 90 ± 2.64 |
75 | 25 | 89.33 ± 1.15 |
50 | 50 | 92.66 ± 1.15 |
25 | 75 | 90.33 ± 2.51 |
0 | 0 | 88.66 ± 2.31 |
Fatty Acid | Common Name | Olive Oil | WCO | Biodiesel |
---|---|---|---|---|
C8 | Caprylic | - | 0.27 ± 0.02 | 0.38 ± 0.01 |
C10 | Capric | - | 0.05 ± 0.01 | 0.06 ± 0.01 |
C12 | Lauric | - | 0.03 ± 0.01 | 0.02 ± 0.01 |
C14 | Myristic | 0.01 ± 0.02 | 0.01 ± 0.01 | 0.01 ± 0.02 |
C15 | Pentadedecylic | 0.01 ± 0.01 | 0.02 ± 0.01 | 0.02 ± 0.01 |
C16 | Palmitic | 17.00 ± 0.41 | 20.30 ± 0.56 | 25.6 ± 0.23 |
C17 | Margaric | 0.15 ± 0.01 | 0.08 ± 0.01 | 0.11 ± 0.02 |
C18 | Stearic | 2.34 ± 0.11 | 2.04 ± 0.20 | 1.48 ± 0.21 |
C20 | Arachidic | 0.38 ± 0.05 | 0.26 ± 0.04 | 0.08 ± 0.04 |
C22 | Behenic | 0.12 ± 0.04 | 0.25 ± 0.07 | - |
C24 | Lignoceric | 0.05 ± 0.02 | 0.02 ± 0.01 | - |
C16:1ω7 | Palmitoleic | 2.15 ± 0.11 | 1.32 ± 0.02 | 1.77 ± 0.03 |
C17:1 ω7 | - | 0.08 ± 0.02 | 0.03 ± 0.02 | 0.6 ± 0.02 |
C18:1 ω9 | Oleic | 56.66 ± 1.36 | 55.12 ± 0.25 | 57.2 ± 0.25 |
C18:1 ω7 | Cis-vaccenic | 2.95 ± 0.08 | 2.77 ± 0.05 | 2.90 ± 0.10 |
C20:1ω9 | Gondoic | 0.21 ± 0.06 | 0. 3 ± 0.07 | - |
C22:1 ω9 | Erucic | - | - | - |
C18:2 ω6 | Linoleic | 17.17 ± 0.47 | 14.06 ± 0.88 | 6.5 ± 0.86 |
C18:3 ω3 | Linolenic | 0.69 ± 0.05 | 0.39 ± 0.04 | 0.19 ± 0.05 |
Octadenoic Acid 9.10 Epoxy | - | 0.47 ± 0.01 | 0.75 ± 0.04 | |
Stearic Acid Allyl | - | 0.52 ± 0.03 | 0.72 ± 0.03 | |
14-Methylhexadecanoic | - | 0.55 ± 0.02 | 0.71 ± 0.01 | |
Octadecanoic Acid 15.16 Epoxy | - | 0.68 ± 0.01 | 0.81 ± 0.02 |
Fuel Properties | Biodiesel Current Study | Biodiesel Standard [50] |
---|---|---|
Density at 15 °C | 805 | 878 |
Viscosity at 40 °C | 2.5 | 1.9–6 |
Flash point °C | >120 | 100–170 |
Cetane number | - | 48–65 |
Moisture content (ppm) | Trace | 0.05% max |
Acid Value (mgKOH/g) | 0.4 | 0.5 |
Polyunsaturated methyl esters (% m/m) | 0 | 0 |
Methanol content (% m/m) | 0.11 | 0.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ben Bacha, A.; Alonazi, M.; Alharbi, M.G.; Horchani, H.; Ben Abdelmalek, I. Biodiesel Production by Single and Mixed Immobilized Lipases Using Waste Cooking Oil. Molecules 2022, 27, 8736. https://doi.org/10.3390/molecules27248736
Ben Bacha A, Alonazi M, Alharbi MG, Horchani H, Ben Abdelmalek I. Biodiesel Production by Single and Mixed Immobilized Lipases Using Waste Cooking Oil. Molecules. 2022; 27(24):8736. https://doi.org/10.3390/molecules27248736
Chicago/Turabian StyleBen Bacha, Abir, Mona Alonazi, Mona G. Alharbi, Habib Horchani, and Imen Ben Abdelmalek. 2022. "Biodiesel Production by Single and Mixed Immobilized Lipases Using Waste Cooking Oil" Molecules 27, no. 24: 8736. https://doi.org/10.3390/molecules27248736
APA StyleBen Bacha, A., Alonazi, M., Alharbi, M. G., Horchani, H., & Ben Abdelmalek, I. (2022). Biodiesel Production by Single and Mixed Immobilized Lipases Using Waste Cooking Oil. Molecules, 27(24), 8736. https://doi.org/10.3390/molecules27248736