Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (89)

Search Parameters:
Authors = Mohd Mustafa Al Bakri Abdullah

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3878 KiB  
Article
Wettability of Sn-3.0Ag-0.5Cu Solder Reinforced with TiO2 and Al2O3 Nanoparticles at Different Reflow Times
by Nur Haslinda Mohamed Muzni, Ervina Efzan Mhd Noor and Mohd Mustafa Al Bakri Abdullah
Nanomaterials 2023, 13(20), 2811; https://doi.org/10.3390/nano13202811 - 23 Oct 2023
Cited by 6 | Viewed by 2074
Abstract
This study investigated the influence of reinforcing 0.50 wt.% of titanium oxide (TiO2) and aluminium oxide (Al2O3) nanoparticles on the wettability performance of a Sn-3.0Ag-0.5Cu (SAC305) solder alloy. The thermal properties of the SAC305 nanocomposite solder are [...] Read more.
This study investigated the influence of reinforcing 0.50 wt.% of titanium oxide (TiO2) and aluminium oxide (Al2O3) nanoparticles on the wettability performance of a Sn-3.0Ag-0.5Cu (SAC305) solder alloy. The thermal properties of the SAC305 nanocomposite solder are comparable with thos of an SAC305 solder with a peak temperature window within a range of 240 to 250 °C. The wetting behaviour of the non-reinforced and reinforced SAC305 nanocomposite solder was determined and measured using the contact angle and spreading area and the relationships between them were studied. There is an increment in the spreading area (5.6 to 7.32 mm) by 30.71% and a reduction in the contact angle (26.3 to 18.6°) by 14.29% with an increasing reflow time up to 60 s when reinforcing SAC305 solder with 0.50 wt.% of TiO2 and Al2O3 nanoparticles. The SAC305 nanocomposite solder has a better wetting performance compared with the SAC305 solder. As the reflow time increased, the spreading area increased and the contact angle decreased, which restricted intermetallic compound growth and thus improved wettability performance Full article
Show Figures

Figure 1

13 pages, 4403 KiB  
Article
Effect of the Sintering Mechanism on the Crystallization Kinetics of Geopolymer-Based Ceramics
by Nur Bahijah Mustapa, Romisuhani Ahmad, Mohd Mustafa Al Bakri Abdullah, Wan Mastura Wan Ibrahim, Andrei Victor Sandu, Ovidiu Nemes, Petrica Vizureanu, Christina W. Kartikowati and Puput Risdanareni
Materials 2023, 16(17), 5853; https://doi.org/10.3390/ma16175853 - 26 Aug 2023
Cited by 4 | Viewed by 1870
Abstract
This research aims to study the effects of the sintering mechanism on the crystallization kinetics when the geopolymer is sintered at different temperatures: 200 °C, 400 °C, 600 °C, 800 °C, 1000 °C, and 1200 °C for a 3 h soaking time with [...] Read more.
This research aims to study the effects of the sintering mechanism on the crystallization kinetics when the geopolymer is sintered at different temperatures: 200 °C, 400 °C, 600 °C, 800 °C, 1000 °C, and 1200 °C for a 3 h soaking time with a heating rate of 5 °C/min. The geopolymer is made up of kaolin and sodium silicate as the precursor and an alkali activator, respectively. Characterization of the nepheline produced was carried out using XRF to observe the chemical composition of the geopolymer ceramics. The microstructures and the phase characterization were determined by using SEM and XRD, respectively. The SEM micrograph showed the microstructural development of the geopolymer ceramics as well as identifying reacted/unreacted regions, porosity, and cracks. The maximum flexural strength of 78.92 MPa was achieved by geopolymer sintered at 1200 °C while the minimum was at 200 °C; 7.18 MPa. The result indicates that the flexural strength increased alongside the increment in the sintering temperature of the geopolymer ceramics. This result is supported by the data from the SEM micrograph, where at the temperature of 1000 °C, the matrix structure of geopolymer-based ceramics starts to become dense with the appearance of pores. Full article
(This article belongs to the Special Issue Obtaining and Characterization of New Materials, Volume IV)
Show Figures

Figure 1

43 pages, 9248 KiB  
Review
Producing Metal Powder from Machining Chips Using Ball Milling Process: A Review
by Leong Kean Wei, Shayfull Zamree Abd Rahim, Mohd Mustafa Al Bakri Abdullah, Allice Tan Mun Yin, Mohd Fathullah Ghazali, Mohd Firdaus Omar, Ovidiu Nemeș, Andrei Victor Sandu, Petrica Vizureanu and Abdellah El-hadj Abdellah
Materials 2023, 16(13), 4635; https://doi.org/10.3390/ma16134635 - 27 Jun 2023
Cited by 57 | Viewed by 11700
Abstract
In the pursuit of achieving zero emissions, exploring the concept of recycling metal waste from industries and workshops (i.e., waste-free) is essential. This is because metal recycling not only helps conserve natural resources but also requires less energy as compared to the production [...] Read more.
In the pursuit of achieving zero emissions, exploring the concept of recycling metal waste from industries and workshops (i.e., waste-free) is essential. This is because metal recycling not only helps conserve natural resources but also requires less energy as compared to the production of new products from virgin raw materials. The use of metal scrap in rapid tooling (RT) for injection molding is an interesting and viable approach. Recycling methods enable the recovery of valuable metal powders from various sources, such as electronic, industrial, and automobile scrap. Mechanical alloying is a potential opportunity for sustainable powder production as it has the capability to convert various starting materials with different initial sizes into powder particles through the ball milling process. Nevertheless, parameter factors, such as the type of ball milling, ball-to-powder ratio (BPR), rotation speed, grinding period, size and shape of the milling media, and process control agent (PCA), can influence the quality and characteristics of the metal powders produced. Despite potential drawbacks and environmental impacts, this process can still be a valuable method for recycling metals into powders. Further research is required to optimize the process. Furthermore, ball milling has been widely used in various industries, including recycling and metal mold production, to improve product properties in an environmentally friendly way. This review found that ball milling is the best tool for reducing the particle size of recycled metal chips and creating new metal powders to enhance mechanical properties and novelty for mold additive manufacturing (MAM) applications. Therefore, it is necessary to conduct further research on various parameters associated with ball milling to optimize the process of converting recycled copper chips into powder. This research will assist in attaining the highest level of efficiency and effectiveness in particle size reduction and powder quality. Lastly, this review also presents potential avenues for future research by exploring the application of RT in the ball milling technique. Full article
Show Figures

Figure 1

17 pages, 7365 KiB  
Article
Effects of Multiple Reflow on the Formation of Primary Crystals in Sn-3.5Ag and Solder Joint Strength: Experimental and Finite Element Analysis
by Siti Farahnabilah Muhd Amli, Mohd Arif Anuar Mohd Salleh, Mohd Sharizal Abdul Aziz, Hideyuki Yasuda, Kazuhiro Nogita, Mohd Mustafa Al Bakri Abdullah, Ovidiu Nemes, Andrei Victor Sandu and Petrica Vizureanu
Materials 2023, 16(12), 4360; https://doi.org/10.3390/ma16124360 - 13 Jun 2023
Cited by 4 | Viewed by 2662
Abstract
The growth and formation of primary intermetallics formed in Sn-3.5Ag soldered on copper organic solderability preservative (Cu-OSP) and electroless nickel immersion gold (ENIG) surface finish after multiple reflows were systematically investigated. Real-time synchrotron imaging was used to investigate the microstructure, focusing on the [...] Read more.
The growth and formation of primary intermetallics formed in Sn-3.5Ag soldered on copper organic solderability preservative (Cu-OSP) and electroless nickel immersion gold (ENIG) surface finish after multiple reflows were systematically investigated. Real-time synchrotron imaging was used to investigate the microstructure, focusing on the in situ growth behavior of primary intermetallics during the solid–liquid–solid interactions. The high-speed shear test was conducted to observe the correlation of microstructure formation to the solder joint strength. Subsequently, the experimental results were correlated with the numerical Finite Element (FE) modeling using ANSYS software to investigate the effects of primary intermetallics on the reliability of solder joints. In the Sn-3.5Ag/Cu-OSP solder joint, the well-known Cu6Sn5 interfacial intermetallic compounds (IMCs) layer was observed in each reflow, where the thickness of the IMC layer increases with an increasing number of reflows due to the Cu diffusion from the substrate. Meanwhile, for the Sn-3.5Ag/ENIG solder joints, the Ni3Sn4 interfacial IMC layer was formed first, followed by the (Cu, Ni)6Sn5 IMC layer, where the formation was detected after five cycles of reflow. The results obtained from real-time imaging prove that the Ni layer from the ENIG surface finish possessed an effective barrier to suppress and control the Cu dissolution from the substrates, as there is no sizeable primary phase observed up to four cycles of reflow. Thus, this resulted in a thinner IMC layer and smaller primary intermetallics, producing a stronger solder joint for Sn-3.5Ag/ENIG even after the repeated reflow process relative to the Sn-3.5Ag/Cu-OSP joints. Full article
(This article belongs to the Special Issue New Trends in Sustainable Building Materials)
Show Figures

Figure 1

23 pages, 2367 KiB  
Review
Effect of Sintering Mechanism towards Crystallization of Geopolymer Ceramic—A Review
by Nur Bahijah Mustapa, Romisuhani Ahmad, Wan Mastura Wan Ibrahim, Mohd Mustafa Al Bakri Abdullah, Nuttawit Wattanasakulpong, Ovidiu Nemeș, Andrei Victor Sandu, Petrica Vizureanu, Ioan Gabriel Sandu, Christina W. Kartikowati and Puput Risdanareni
Materials 2023, 16(11), 4103; https://doi.org/10.3390/ma16114103 - 31 May 2023
Cited by 8 | Viewed by 2729
Abstract
Globally, there is an increasing need for ceramic materials that have a variety of applications in the environment, for precision tools, and for the biomedical, electronics, and environmental industries. However, in order to obtain remarkable mechanical qualities, ceramics have to be manufactured at [...] Read more.
Globally, there is an increasing need for ceramic materials that have a variety of applications in the environment, for precision tools, and for the biomedical, electronics, and environmental industries. However, in order to obtain remarkable mechanical qualities, ceramics have to be manufactured at a high temperature of up to 1600 °C over a long heating period. Furthermore, the conventional approach presents issues with agglomeration, irregular grain growth, and furnace pollution. Many researchers have developed an interest in using geopolymer to produce ceramic materials, focusing on improving the performances of geopolymer ceramics. In addition to helping to lower the sintering temperature, it also improves the strength and other properties of the ceramics. Geopolymer is a product of polymerization involving aluminosilicate sources such as fly ash, metakaolin, kaolin, and slag through activation using an alkaline solution. The sources of the raw materials, the ratio of the alkaline solution, the sintering time, the calcining temperature, the mixing time, and the curing time may have significant impacts on the qualities. Therefore, this review aims to study the effects of sintering mechanisms on the crystallization of geopolymer ceramics, concerning the strength achieved. A future research opportunity is also presented in this review. Full article
Show Figures

Figure 1

26 pages, 978 KiB  
Review
Recent Advances in Synthesis of Graphite from Agricultural Bio-Waste Material: A Review
by Yee Wen Yap, Norsuria Mahmed, Mohd Natashah Norizan, Shayfull Zamree Abd Rahim, Midhat Nabil Ahmad Salimi, Kamrosni Abdul Razak, Ili Salwani Mohamad, Mohd Mustafa Al-Bakri Abdullah and Mohd Yusry Mohamad Yunus
Materials 2023, 16(9), 3601; https://doi.org/10.3390/ma16093601 - 8 May 2023
Cited by 29 | Viewed by 7766
Abstract
Graphitic carbon is a valuable material that can be utilized in many fields, such as electronics, energy storage and wastewater filtration. Due to the high demand for commercial graphite, an alternative raw material with lower costs that is environmentally friendly has been explored. [...] Read more.
Graphitic carbon is a valuable material that can be utilized in many fields, such as electronics, energy storage and wastewater filtration. Due to the high demand for commercial graphite, an alternative raw material with lower costs that is environmentally friendly has been explored. Amongst these, an agricultural bio-waste material has become an option due to its highly bioactive properties, such as bioavailability, antioxidant, antimicrobial, in vitro and anti-inflammatory properties. In addition, biomass wastes usually have high organic carbon content, which has been discovered by many researchers as an alternative carbon material to produce graphite. However, there are several challenges associated with the graphite production process from biomass waste materials, such as impurities, the processing conditions and production costs. Agricultural bio-waste materials typically contain many volatiles and impurities, which can interfere with the synthesis process and reduce the quality of the graphitic carbon produced. Moreover, the processing conditions required for the synthesis of graphitic carbon from agricultural biomass waste materials are quite challenging to optimize. The temperature, pressure, catalyst used and other parameters must be carefully controlled to ensure that the desired product is obtained. Nevertheless, the use of agricultural biomass waste materials as a raw material for graphitic carbon synthesis can reduce the production costs. Improving the overall cost-effectiveness of this approach depends on many factors, including the availability and cost of the feedstock, the processing costs and the market demand for the final product. Therefore, in this review, the importance of biomass waste utilization is discussed. Various methods of synthesizing graphitic carbon are also reviewed. The discussion ranges from the conversion of biomass waste into carbon-rich feedstocks with different recent advances to the method of synthesis of graphitic carbon. The importance of utilizing agricultural biomass waste and the types of potential biomass waste carbon precursors and their pre-treatment methods are also reviewed. Finally, the gaps found in the previous research are proposed as a future research suggestion. Overall, the synthesis of graphite from agricultural bio-waste materials is a promising area of research, but more work is needed to address the challenges associated with this process and to demonstrate its viability at scale. Full article
(This article belongs to the Special Issue Recycling and Processing of Waste Materials)
Show Figures

Figure 1

1 pages, 187 KiB  
Correction
Correction: Luhar et al. Challenges and Impacts of COVID-19 Pandemic on Global Waste Management Systems: A Review. J. Compos. Sci. 2022, 6, 271
by Ismail Luhar, Salmabanu Luhar and Mohd Mustafa Al Bakri Abdullah
J. Compos. Sci. 2023, 7(4), 154; https://doi.org/10.3390/jcs7040154 - 11 Apr 2023
Viewed by 1089
Abstract
In the published publication [...] Full article
15 pages, 3249 KiB  
Article
Preparation of Carbon Nanotubes/Alumina Hybrid-Filled Phenolic Composite with Enhanced Wear Resistance
by Siti Shuhadah Md Saleh, Mohd Firdaus Omar, Hazizan Md Akil, Muhammad Helmi Abdul Kudus, Mohd Mustafa Al Bakri Abdullah, Andrei Victor Sandu, Petrica Vizureanu, Khairul Anwar Abdul Halim, Mohamad Syahmie Mohamad Rasidi, Syarifah Nuraqmar Syed Mahamud, Ion Sandu and Norlin Nosbi
Materials 2023, 16(7), 2772; https://doi.org/10.3390/ma16072772 - 30 Mar 2023
Cited by 4 | Viewed by 2295
Abstract
Hybrid fillers can be produced via various methods, such as physical mixing and chemical modification. However, there is a limited number of studies on the effect of hybridisation on the mechanical performance of hybrid filler-reinforced polymer composites, especially in the context of wear [...] Read more.
Hybrid fillers can be produced via various methods, such as physical mixing and chemical modification. However, there is a limited number of studies on the effect of hybridisation on the mechanical performance of hybrid filler-reinforced polymer composites, especially in the context of wear performance. This study investigated the wear resistance of carbon nanotubes (CNTs)/alumina hybrid-filled phenolic composite, where two hybrid methods were used to produce the CNTs/alumina hybrid filler. The CNTs/alumina (CVD hybrid) was synthesised using the chemical vapour deposition (CVD) method, whereas the CNTs-/alumina (physically hybrid) was prepared using the ball milling method. The CNTs/alumina hybrid filler was then used as a filler in the phenolic composites. The composites were prepared using a hot mounting press and then subjected to a dry sliding wear test using a pin-on-disc (POD) tester. The results show that the composite filled with the CVD hybrid filler (HYB composite) had better wear resistance than the composite filled with physically hybrid filler (PHY composite) and pure phenolic. At 5 wt%, the HYB composite showed a 74.68% reduction in wear, while the PHY composite showed a 56.44% reduction in wear compared to pure phenolic. The HYB composite exhibited the lowest average coefficient of friction (COF) compared to the PHY composite and pure phenolic. The average COF decreased with increasing sliding speeds and applied loads. The phenolic composites’ wear and average COF are in the order HYB composite < PHY composite < pure phenolic under all sliding speeds and applied loads. Full article
(This article belongs to the Special Issue Current and Future Trends in Carbon-Based Materials)
Show Figures

Figure 1

14 pages, 9492 KiB  
Article
Effect of Isothermal Annealing on Sn Whisker Growth Behavior of Sn0.7Cu0.05Ni Solder Joint
by Aimi Noorliyana Hashim, Mohd Arif Anuar Mohd Salleh, Muhammad Mahyiddin Ramli, Mohd Mustafa Al Bakri Abdullah, Andrei Victor Sandu, Petrica Vizureanu and Ioan Gabriel Sandu
Materials 2023, 16(5), 1852; https://doi.org/10.3390/ma16051852 - 24 Feb 2023
Cited by 4 | Viewed by 1809
Abstract
This paper presents an assessment of the effect of isothermal annealing of Sn whisker growth behavior on the surface of Sn0.7Cu0.05Ni solder joints using the hot-dip soldering technique. Sn0.7Cu and Sn0.7Cu0.05Ni solder joints with a similar solder coating thickness was aged up to [...] Read more.
This paper presents an assessment of the effect of isothermal annealing of Sn whisker growth behavior on the surface of Sn0.7Cu0.05Ni solder joints using the hot-dip soldering technique. Sn0.7Cu and Sn0.7Cu0.05Ni solder joints with a similar solder coating thickness was aged up to 600 h in room temperature and annealed under 50 °C and 105 °C conditions. Through the observations, the significant outcome was the suppressing effect of Sn0.7Cu0.05Ni on Sn whisker growth in terms of density and length reduction. The fast atomic diffusion of isothermal annealing consequently reduced the stress gradient of Sn whisker growth on the Sn0.7Cu0.05Ni solder joint. It was also established that the smaller (Cu,Ni)6Sn5 grain size and stability characteristic of hexagonal η-Cu6Sn5 considerably contribute to the residual stress diminished in the (Cu,Ni)6Sn5 IMC interfacial layer and are able to suppress the growth of Sn whiskers on the Sn0.7Cu0.05Ni solder joint. The findings of this study provide environmental acceptance with the aim of suppressing Sn whisker growth and upsurging the reliability of the Sn0.7Cu0.05Ni solder joint at the electronic-device-operation temperature. Full article
(This article belongs to the Special Issue Obtaining and Characterization of New Materials, Volume III)
Show Figures

Figure 1

36 pages, 7448 KiB  
Review
Potential of New Sustainable Green Geopolymer Metal Composite (GGMC) Material as Mould Insert for Rapid Tooling (RT) in Injection Moulding Process
by Allice Tan Mun Yin, Shayfull Zamree Abd Rahim, Mohd Mustafa Al Bakri Abdullah, Marcin Nabialek, Abdellah El-hadj Abdellah, Allan Rennie, Muhammad Faheem Mohd Tahir and Aurel Mihail Titu
Materials 2023, 16(4), 1724; https://doi.org/10.3390/ma16041724 - 19 Feb 2023
Cited by 4 | Viewed by 3341
Abstract
The investigation of mould inserts in the injection moulding process using metal epoxy composite (MEC) with pure metal filler particles is gaining popularity among researchers. Therefore, to attain zero emissions, the idea of recycling metal waste from industries and workshops must be investigated [...] Read more.
The investigation of mould inserts in the injection moulding process using metal epoxy composite (MEC) with pure metal filler particles is gaining popularity among researchers. Therefore, to attain zero emissions, the idea of recycling metal waste from industries and workshops must be investigated (waste free) because metal recycling conserves natural resources while requiring less energy to manufacture new products than virgin raw materials would. The utilisation of metal scrap for rapid tooling (RT) in the injection moulding industry is a fascinating and potentially viable approach. On the other hand, epoxy that can endure high temperatures (>220 °C) is challenging to find and expensive. Meanwhile, industrial scrap from coal-fired power plants can be a precursor to creating geopolymer materials with desired physical and mechanical qualities for RT applications. One intriguing attribute of geopolymer is its ability to endure temperatures up to 1000 °C. Nonetheless, geopolymer has a higher compressive strength of 60–80 MPa (8700–11,600 psi) than epoxy (68.95 MPa) (10,000 psi). Aside from its low cost, geopolymer offers superior resilience to harsh environments and high compressive and flexural strength. This research aims to investigate the possibility of generating a new sustainable material by integrating several types of metals in green geopolymer metal composite (GGMC) mould inserts for RT in the injection moulding process. It is necessary to examine and investigate the optimal formulation of GGMC as mould inserts for RT in the injection moulding process. With less expensive and more ecologically friendly components, the GGMC is expected to be a superior choice as a mould insert for RT. This research substantially impacts environmental preservation, cost reduction, and maintaining and sustaining the metal waste management system. As a result of the lower cost of recycled metals, sectors such as mould-making and machining will profit the most. Full article
Show Figures

Figure 1

14 pages, 2530 KiB  
Article
Alkaline-Activation Technique to Produce Low-Temperature Sintering Activated-HAp Ceramic
by Wan Mohd Arif W. Ibrahim, Mohd Mustafa Al Bakri Abdullah, Noorina Hidayu Jamil, Hasmaliza Mohamad, Mohd Arif Anuar Mohd Salleh, Andrei Victor Sandu, Petrica Vizureanu, Madalina Simona Baltatu and Patimapon Sukmak
Appl. Sci. 2023, 13(4), 2643; https://doi.org/10.3390/app13042643 - 18 Feb 2023
Cited by 3 | Viewed by 1968
Abstract
The fabrication of hydroxyapatite (HAp) ceramics prepared by existing conventional sintering requires high-temperature sintering of 1250 °C to 1300 °C. In this paper, the activated metakaolin (MK)/HAp specimens were prepared from varied mix design inputs, which were varied solid mixtures (different amounts of [...] Read more.
The fabrication of hydroxyapatite (HAp) ceramics prepared by existing conventional sintering requires high-temperature sintering of 1250 °C to 1300 °C. In this paper, the activated metakaolin (MK)/HAp specimens were prepared from varied mix design inputs, which were varied solid mixtures (different amounts of MK loading in HAp) and liquid-to-solid (L/S) ratios, before being pressed and sintered at 900 °C. Phase analysis, thermal analysis, surface morphology, and tensile strength of the specimens were investigated to study the influences of the Al, Si, Fe, Na, and K composition on the formation of the hydroxyapatite phase and its tensile strength. XRD analysis results show the formation of different phases was obtained from the different mix design inputs HAp (hexagonal and monoclinic), calcium phosphate, sodium calcium phosphate silicate and calcium hydrogen phosphate hydrate. Interestingly, the specimen with the addition of 30 g MK prepared at a 1.25 L/S ratio showed the formation of a monoclinic hydroxyapatite phase, resulting in the highest diametrical tensile strength of 12.52 MPa. Moreover, the increment in the MK amount in the specimens promotes better densification when sintered at 900 °C, which was highlighted in the microstructure study. This may be attributed to the Fe2O3, Na2O, and K2O contents in the MK and alkaline activator, which acted as a self-fluxing agent and contributed to the lower sintering temperature. Therefore, the research revealed that the addition of MK in the activated-HAp system could achieve a stable hydroxyapatite phase and better tensile strength at a low sintering temperature. Full article
(This article belongs to the Special Issue New Materials and Advanced Procedures of Obtaining and Processing II)
Show Figures

Figure 1

24 pages, 14684 KiB  
Article
Study on Polypropylene Twisted Bundle Fiber Reinforced Lightweight Foamed Concrete
by Md Azree Othuman Mydin, Mohd Mustafa Al Bakri Abdullah, Rafiza Abdul Razak, Mohd Nasrun Mohd Nawi, Puput Risdanareni, Poppy Puspitasari, Andrei Victor Sandu, Madalina Simona Baltatu and Petrica Vizureanu
Buildings 2023, 13(2), 541; https://doi.org/10.3390/buildings13020541 - 16 Feb 2023
Cited by 8 | Viewed by 2552
Abstract
Recent industrial developments have focused more and more on the applications of lightweight foamed concrete (LFC) in the construction industry, having advantages over normal-strength concrete. LFC, however, has several drawbacks including brittleness, high porosity, excessive drying shrinkage, rapid cracking, and low deformation resistance. [...] Read more.
Recent industrial developments have focused more and more on the applications of lightweight foamed concrete (LFC) in the construction industry, having advantages over normal-strength concrete. LFC, however, has several drawbacks including brittleness, high porosity, excessive drying shrinkage, rapid cracking, and low deformation resistance. Practical engineering typically chooses steel fiber or polymer fiber to increase the tensile and fracture resistance of LFC. The polypropylene twisted bundle fiber (PTBF) was added to the LFC with varying weight fractions of 0.0%, 0.5%, 1.0%, 1.5%, 2.0% and 2.5%. Three low densities of LFC were prepared, specifically 500 kg/m3, 700 kg/m3 and 900 kg/m3. The mechanical and durability properties of PTBF-reinforced LFC were determined through compression, flexural, splitting tensile, flow table, porosity, and water absorption tests. The results show that the addition of PTBF in LFC significantly improves the strength properties (compressive, flexural, and splitting tensile strengths) and reduces the water absorption capacity and porosity. The optimal weight fraction of PTBF was between 1.5 and 2.0% for mechanical properties enhancement. The inclusion of PTBF increased the ductility of LFC, and the specimens remain intact from loading to failure. The PTBF reduces the original cracks of the LFC and inhibits the development of further cracks in the LFC. Full article
(This article belongs to the Special Issue Novelties in the Production of Mineral Binders and Concrete)
Show Figures

Figure 1

22 pages, 5827 KiB  
Article
Synthesis of Metakaolin Based Alkali Activated Materials as an Adsorbent at Different Na2SiO3/NaOH Ratios and Exposing Temperatures for Cu2+ Removal
by Masdiyana Ibrahim, Wan Mastura Wan Ibrahim, Mohd Mustafa Al Bakri Abdullah, Marcin Nabialek, Ramadhansyah Putra Jaya, Monthian Setkit, Romisuhani Ahmad and Bartłomiej Jeż
Materials 2023, 16(3), 1221; https://doi.org/10.3390/ma16031221 - 31 Jan 2023
Cited by 11 | Viewed by 3571
Abstract
Water contamination is a major issue due to industrial releases of hazardous heavy metals. Copper ions are among the most dangerous heavy metals owing to their carcinogenicity and harmful effects on the environment and human health. Adsorption of copper ions using alkali activated [...] Read more.
Water contamination is a major issue due to industrial releases of hazardous heavy metals. Copper ions are among the most dangerous heavy metals owing to their carcinogenicity and harmful effects on the environment and human health. Adsorption of copper ions using alkali activated materials synthesized through the polycondensation reaction of an alkali source and aluminosilicates is the most promising technique, and has a high adsorption capability owing to a large surface area and pore volume. This research focuses on the effect of the alkaline activator ratio, which is a sodium silicate to sodium hydroxide ratio. Various exposing temperatures on metakaolin based alkali activated materials on a surface structure with excellent functional properties can be used as adsorbent materials for the removal of copper ions. A variety of mix designs were created with varying sodium silicate to sodium hydroxide ratios, with a fixed sodium hydroxide molarity, metakaolin to alkali activator ratio, hydrogen peroxide, and surfactant content of 10 M, 0.8, 1.00 wt%, and 3.0 wt%, respectively. Most wastewater adsorbents need high sintering temperatures, requiring an energy-intensive and time-consuming manufacturing process. In this way, metakaolin-based alkali activated materials are adsorbent and may be produced easily by solidifying the sample at 60 °C without using much energy. The specific surface area, water absorption, microstructure, phase analysis, functional group analysis, and adsorption capability of copper ions by metakaolin based alkali activated materials as adsorbents were evaluated. The water absorption test on the samples revealed that the sodium silicate to sodium hydroxide 0.5 ratio had the highest water absorption percentage of 36.24%, superior pore size distribution, and homogeneous porosity at 60 °C, with a surface area of 24.6076 m2/g and the highest copper ion uptake of 63.726 mg/g with 95.59% copper ion removal efficiency at adsorption condition of pH = 5, a dosage of 0.15 g, 100 mg/L of the initial copper solution, the temperature of 25 °C, and contact time of 60 min. It is concluded that self-supported metakaolin based alkali activated material adsorbents synthesized at low temperatures effectively remove copper ions in aqueous solutions, making them an excellent alternative for wastewater treatment applications. Full article
(This article belongs to the Section Porous Materials)
Show Figures

Figure 1

11 pages, 4242 KiB  
Article
Mechanical Performance, Microstructure, and Porosity Evolution of Fly Ash Geopolymer after Ten Years of Curing Age
by Ikmal Hakem A. Aziz, Mohd Mustafa Al Bakri Abdullah, Rafiza Abd Razak, Zarina Yahya, Mohd Arif Anuar Mohd Salleh, Jitrin Chaiprapa, Catleya Rojviriya, Petrica Vizureanu, Andrei Victor Sandu, Muhammad FaheemMohd Tahir, Alida Abdullah and Liyana Jamaludin
Materials 2023, 16(3), 1096; https://doi.org/10.3390/ma16031096 - 27 Jan 2023
Cited by 8 | Viewed by 2224
Abstract
This paper elucidates the mechanical performance, microstructure, and porosity evolution of fly ash geopolymer after 10 years of curing age. Given their wide range of applications, understanding the microstructure of geopolymers is critical for their long-term use. The outcome of fly ash geopolymer [...] Read more.
This paper elucidates the mechanical performance, microstructure, and porosity evolution of fly ash geopolymer after 10 years of curing age. Given their wide range of applications, understanding the microstructure of geopolymers is critical for their long-term use. The outcome of fly ash geopolymer on mechanical performance and microstructural characteristics was compared between 28 days of curing (FA28D) and after 10 years of curing age (FA10Y) at similar mixing designs. The results of this work reveal that the FA10Y has a beneficial effect on strength development and denser microstructure compared to FA28D. The total porosity of FA10Y was also lower than FA28D due to the anorthite formation resulting in the compacted matrix. After 10 years of curing age, the 3D pore distribution showed a considerable decrease in the range of 5–30 µm with the formation of isolated and intergranular holes. Full article
(This article belongs to the Special Issue New Geopolymers Used in Civil Engineering)
Show Figures

Figure 1

29 pages, 1993 KiB  
Review
Solidification/Stabilization Technology for Radioactive Wastes Using Cement: An Appraisal
by Ismail Luhar, Salmabanu Luhar, Mohd Mustafa Al Bakri Abdullah, Andrei Victor Sandu, Petrica Vizureanu, Rafiza Abdul Razak, Dumitru Doru Burduhos-Nergis and Thanongsak Imjai
Materials 2023, 16(3), 954; https://doi.org/10.3390/ma16030954 - 19 Jan 2023
Cited by 23 | Viewed by 4674
Abstract
Across the world, any activity associated with the nuclear fuel cycle such as nuclear facility operation and decommissioning that produces radioactive materials generates ultramodern civilian radioactive waste, which is quite hazardous to human health and the ecosystem. Therefore, the development of effectual and [...] Read more.
Across the world, any activity associated with the nuclear fuel cycle such as nuclear facility operation and decommissioning that produces radioactive materials generates ultramodern civilian radioactive waste, which is quite hazardous to human health and the ecosystem. Therefore, the development of effectual and commanding management is the need of the hour to make certain the sustainability of the nuclear industries. During the management process of waste, its immobilization is one of the key activities conducted with a view to producing a durable waste form which can perform with sustainability for longer time frames. The cementation of radioactive waste is a widespread move towards its encapsulation, solidification, and finally disposal. Conventionally, Portland cement (PC) is expansively employed as an encapsulant material for storage, transportation and, more significantly, as a radiation safeguard to vigorous several radioactive waste streams. Cement solidification/stabilization (S/S) is the most widely employed treatment technique for radioactive wastes due to its superb structural strength and shielding effects. On the other hand, the eye-catching pros of cement such as the higher mechanical strength of the resulting solidified waste form, trouble-free operation and cost-effectiveness have attracted researchers to employ it most commonly for the immobilization of radionuclides. In the interest to boost the solidified waste performances, such as their mechanical properties, durability, and reduction in the leaching of radionuclides, vast attempts have been made in the past to enhance the cementation technology. Additionally, special types of cement were developed based on Portland cement to solidify these perilous radioactive wastes. The present paper reviews not only the solidification/stabilization technology of radioactive wastes using cement but also addresses the challenges that stand in the path of the design of durable cementitious waste forms for these problematical functioning wastes. In addition, the manuscript presents a review of modern cement technologies for the S/S of radioactive waste, taking into consideration the engineering attributes and chemistry of pure cement, cement incorporated with SCM, calcium sulpho–aluminate-based cement, magnesium-based cement, along with their applications in the S/S of hazardous radioactive wastes. Full article
(This article belongs to the Special Issue Obtaining and Characterization of New Materials, Volume III)
Show Figures

Figure 1

Back to TopTop