Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Authors = Mahmoud Kitouni

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1109 KiB  
Article
Isolation of Actinobacteria from Date Palm Rhizosphere with Enzymatic, Antimicrobial, Antioxidant, and Protein Denaturation Inhibitory Activities
by Maria Smati, Amina Bramki, Fatima Zohra Makhlouf, Rihab Djebaili, Beatrice Farda, Fatima Zohra Abdelhadi, Nahla Abdelli, Mahmoud Kitouni and Marika Pellegrini
Biomolecules 2025, 15(1), 65; https://doi.org/10.3390/biom15010065 - 5 Jan 2025
Viewed by 1382
Abstract
Arid ecosystems constitute a promising source of actinobacteria producing new bioactive molecules. This study aimed to explore different biological activities of actinomycetes isolated from the rhizosphere of Phoenix dactylifera L. in the Ghardaia region, Algeria. A total of 18 actinobacteria were isolated and [...] Read more.
Arid ecosystems constitute a promising source of actinobacteria producing new bioactive molecules. This study aimed to explore different biological activities of actinomycetes isolated from the rhizosphere of Phoenix dactylifera L. in the Ghardaia region, Algeria. A total of 18 actinobacteria were isolated and studied for their enzymatic and antimicrobial activities. All isolates shared cellulase and catalase activity; most of them produced amylase (94%), esterase (84%), lecithinase and lipoproteins (78%), caseinase (94%), and gelatinase (72%). The isolates could coagulate (56%) or peptonize (28%) skim milk. Overall, 72% of the isolates exhibited significant antibacterial activity against at least one test bacteria, while 56% demonstrated antifungal activity against at least one test fungi. Based on enzyme production and antimicrobial activity, isolate SGI16 was selected for secondary metabolite extraction by ethyl acetate. The crude extract of SGI16 was analyzed using DPPH and BSA denaturation inhibition tests, revealing significant antioxidant power (IC50 = 7.24 ± 0.21 μg mL−1) and protein denaturation inhibitory capacity (IC50 = 492.41 ± 0.47 μg mL−1). Molecular identification based on 16S rDNA analysis showed that SGI16 belonged to the genus Streptomyces. The findings highlight that date palms’ rhizosphere actinobacteria are a valuable source of biomolecules of biotechnological interest. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

15 pages, 1827 KiB  
Article
Biocontrol of Soil-Borne Pathogens of Solanum lycopersicum L. and Daucus carota L. by Plant Growth-Promoting Actinomycetes: In Vitro and In Planta Antagonistic Activity
by Rihab Djebaili, Marika Pellegrini, Claudia Ercole, Beatrice Farda, Mahmoud Kitouni and Maddalena Del Gallo
Pathogens 2021, 10(10), 1305; https://doi.org/10.3390/pathogens10101305 - 12 Oct 2021
Cited by 34 | Viewed by 4165
Abstract
Biotic stress caused by pathogenic microorganisms leads to damage in crops. Tomato and carrot are among the most important vegetables cultivated worldwide. These plants are attacked by several pathogens, affecting their growth and productivity. Fourteen plant growth-promoting actinomycetes (PGPA) were screened for their [...] Read more.
Biotic stress caused by pathogenic microorganisms leads to damage in crops. Tomato and carrot are among the most important vegetables cultivated worldwide. These plants are attacked by several pathogens, affecting their growth and productivity. Fourteen plant growth-promoting actinomycetes (PGPA) were screened for their in vitro biocontrol activity against Solanum lycopersicum and Daucus carota microbial phytopathogens. Their antifungal activity was evaluated against Fusarium oxysporum f. sp. radicis-lycopersici (FORL) and Rhizoctonia solani (RHS). Antibacterial activity was evaluated against Pseudomonas syringae, Pseudomonas corrugata, Pseudomonas syringae pv. actinidiae, and Pectobacterium carotovorum subsp. carotovorum. Strains that showed good in vitro results were further investigated in vitro (cell-free supernatants activity, scanning electron microscope observations of fungal inhibition). The consortium of the most active PGPA was then utilized as biocontrol agents in planta experiments on S. lycopersicum and D. carota. The Streptomyces albidoflavus H12 and Nocardiopsis aegyptica H14 strains showed the best in vitro biocontrol activities. The diffusible and volatile compounds and cell-free supernatants of these strains showed both antifungal (in vitro inhibition up to 85%, hyphal desegregation and fungicidal properties) and antibacterial activity (in vitro inhibition >25 mm and bactericidal properties). Their consortium was also able to counteract the infection symptoms of microbial phytopathogens during in planta experiments, improving plant status. The results obtained highlight the efficacy of the selected actinomycetes strains as biocontrol agents of S. lycopersicum and D. carota. Full article
(This article belongs to the Special Issue Biological Control of Phytopathogens: Mechanisms and Applications)
Show Figures

Figure 1

20 pages, 2335 KiB  
Article
Characterization of Plant Growth-Promoting Traits and Inoculation Effects on Triticum durum of Actinomycetes Isolates under Salt Stress Conditions
by Rihab Djebaili, Marika Pellegrini, Massimiliano Rossi, Cinzia Forni, Maria Smati, Maddalena Del Gallo and Mahmoud Kitouni
Soil Syst. 2021, 5(2), 26; https://doi.org/10.3390/soilsystems5020026 - 10 Apr 2021
Cited by 19 | Viewed by 4838
Abstract
This study aimed to characterize the halotolerant capability, in vitro, of selected actinomycetes strains and to evaluate their competence in promoting halo stress tolerance in durum wheat in a greenhouse experiment. Fourteen isolates were tested for phosphate solubilization, indole acetic acid, hydrocyanic acid, [...] Read more.
This study aimed to characterize the halotolerant capability, in vitro, of selected actinomycetes strains and to evaluate their competence in promoting halo stress tolerance in durum wheat in a greenhouse experiment. Fourteen isolates were tested for phosphate solubilization, indole acetic acid, hydrocyanic acid, and ammonia production under different salt concentrations (i.e., 0, 0.25, 0.5, 0.75, 1, 1.25, and 1.5 M NaCl). The presence of 1-aminocyclopropane-1-carboxylate deaminase activity was also investigated. Salinity tolerance was evaluated in durum wheat through plant growth and development parameters: shoot and root length, dry and ash-free dry weight, and the total chlorophyll content, as well as proline accumulation. In vitro assays have shown that the strains can solubilize inorganic phosphate and produce indole acetic acid, hydrocyanic acid, and ammonia under different salt concentrations. Most of the strains (86%) had 1-aminocyclopropane-1-carboxylate deaminase activity, with significant amounts of α-ketobutyric acid. In the greenhouse experiment, inoculation with actinomycetes strains improved the morpho-biochemical parameters of durum wheat plants, which also recorded significantly higher content of chlorophylls and proline than those uninoculated, both under normal and stressed conditions. Our results suggest that inoculation of halotolerant actinomycetes can mitigate the negative effects of salt stress and allow normal growth and development of durum wheat plants. Full article
Show Figures

Figure 1

6 pages, 919 KiB  
Proceeding Paper
Biocontrol Activity of Actinomycetes Strains against Fungal and Bacterial Pathogens of Solanum lycopersicum L. and Daucus carota L.: In Vitro and In Planta Antagonistic Activity
by Rihab Djebaili, Marika Pellegrini, Matteo Bernardi, Maria Smati, Mahmoud Kitouni and Maddalena Del Gallo
Biol. Life Sci. Forum 2021, 4(1), 27; https://doi.org/10.3390/IECPS2020-08863 - 2 Dec 2020
Cited by 9 | Viewed by 2683
Abstract
Plants are affected by various biotic and abiotic stresses due to climate change. Tomato and carrots are important crops that are attacked by various pathogens. Fourteen plant-growth-promoting bacteria (PGPB) belonging to the genera Streptomyces sp. and Nocardiopsis sp. were selected for the biocontrol [...] Read more.
Plants are affected by various biotic and abiotic stresses due to climate change. Tomato and carrots are important crops that are attacked by various pathogens. Fourteen plant-growth-promoting bacteria (PGPB) belonging to the genera Streptomyces sp. and Nocardiopsis sp. were selected for the biocontrol of several common fungal and bacterial pathogens. Antifungal activity was assessed against Fusarium oxysporum f. sp. radicis-lycopersici (FORL) and Rhizoctonia solani (RHS). Antibacterial activity was evaluated against Pseudomonas syringae (PS), Pseudomonas corrugata (PC), Pseudomonas syringae pv. actinidiae (PSA), and Pectobacterium carotovorum subsp. Carotovorum (PCC). In vitro antifungal and antibacterial antagonistic activities were evaluated by the dual culture method. Fungal–bacterial interaction areas were analyzed by scanning electron microscopy (SEM). Cell-free culture filtrates (CFs) from strains showing good biocontrol potential were produced and investigated for their in vitro antifungal and antibacterial activity. The two most effective strains were also combined in consortium and utilized for In Planta pre-emergence biocontrol assays on both S. lycopersicum and D. carota. For each pathogenic strain, four experimental conditions were compared: CNT (no PGPB/no infection), PGPB (with PGPB/no infection), PGPB+INF (with PGPB/with infection), and INF (no PGPB/with infection). Streptomyces albidoflavus strain H12 and Nocardiopsis aegyptica strain H14 showed good in vitro antifungal (inhibition of >50%) and antibacterial (inhibition halo of >10 mm) activity. The SEM micrographs showed deterioration of fungal filaments and modification of hyphal structures. The CFs of both strains were also able to inhibit FORL and RHS in in vitro growth (minimum inhibitory concentration of 0.2–0.8%). In planta biocontrol assessments showed that the consortium was effective in reducing the infection effects of both fungal and bacterial pathogens. Dual consortium allowed regular plant development compared to the control. These results confirm the usefulness of actinomycetes strains as a biocontrol agent and can therefore be an alternative to chemicals used in agriculture. Full article
(This article belongs to the Proceedings of The 1st International Electronic Conference on Plant Science)
Show Figures

Figure 1

19 pages, 4055 KiB  
Article
Actinomycete Strains Isolated from Saline Soils: Plant-Growth-Promoting Traits and Inoculation Effects on Solanum lycopersicum
by Rihab Djebaili, Marika Pellegrini, Maria Smati, Maddalena Del Gallo and Mahmoud Kitouni
Sustainability 2020, 12(11), 4617; https://doi.org/10.3390/su12114617 - 5 Jun 2020
Cited by 48 | Viewed by 6823
Abstract
Excessive use of chemical products in agriculture is causing significant environmental pollution and the loss of lands and fertility of agricultural soils. Plant-growth-promoting bacteria are a valid alternative strategy for sustainable agriculture. The aim of this study was to select actinomycete strains based [...] Read more.
Excessive use of chemical products in agriculture is causing significant environmental pollution and the loss of lands and fertility of agricultural soils. Plant-growth-promoting bacteria are a valid alternative strategy for sustainable agriculture. The aim of this study was to select actinomycete strains based on their plant-growth-promoting traits and to investigate their root association abilities and biostimulant effects on Solanum lycopersicum. The strains were investigated for their phosphate solubilization ability, production of indole-3-acetic acid, hydrocyanic acid, and ammonia, and several enzymatic activities. Bacteria–plant-root associations were studied by scanning electron microscopy. A greenhouse experiment was carried out to assess inoculation effects. Of sixty isolates, fourteen strains showed significant plant-growth-promoting traits. All fourteen strains solubilized phosphate, produced ammonia, and showed several enzymatic activities at different rates. The production of indole-3-acetic acid was shown by nine strains, while hydrocyanic acid production was observed in eleven of them. Scanning electron microscopy revealed that strains have good in vitro plant root association and colonization abilities. In planta inoculation by actinomycete strains positively influenced plant growth parameters. The best results were shown by seven actinomycete strains, suggesting their possible utilization as biofertilizer agents for sustainable agriculture. Full article
Show Figures

Figure 1

Back to TopTop