Characterization of Plant Growth-Promoting Traits and Inoculation Effects on Triticum durum of Actinomycetes Isolates under Salt Stress Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Actinomycetes Strains
2.2. Estimation of PGP Traits under Salt Stress
2.2.1. Hydrocyanic Acid and Ammonia Production
2.2.2. Phosphate Solubilization Ability
2.2.3. Production of Indole-3-Acetic Acid
2.3. Estimation of 1-Aminocyclopropane-1-Carboxylate (ACC) Deaminase Activity
2.4. Greenhouse Experiment on Triticum durum
2.4.1. Chlorophyll Measurement
2.4.2. Proline Determination
2.5. Statistical Analysis
3. Results
3.1. Actinomycetes Strains
- Nocardiopsis aegyptica (MG597543)—H14;
- Nocardiopsis aegyptica (MG597572)—S2;
- Nocardiopsis alba (MG597576)—J21;
- Nocardiopsis dassonvillei subsp. dassonvillei (MG597514)—D14;
- Nocardiopsis dassonvillei subsp. dassonvillei (MG597502)—T45.
- Streptomyces albidoflavus (MG597552)—H12;
- Streptomyces ambofaciens (MG597599)—J27;
- Streptomyces anulatus (MG597579)—J13;
- Streptomyces iakyrus (MG597593)—G10;
- Streptomyces thinghirensis (MG597560)—K23;
- Streptomyces thinghirensis (MG597590)—J4;
- Streptomyces xantholiticus (MG597545)—K12;
- Streptomyces xantholiticus (MG597582)—G22;
- Streptomyces xantholiticus (MG597585)—G33;
3.2. Hydrocyanic Acid and Ammonia Production under Salt Stress
3.3. Phosphate Solubilization under Salt Stress
3.4. Indole Acetic Acid Production under Salt Stress
3.5. Estimation of 1-Aminocyclopropane-1-Carboxylate (ACC) Deaminase Activity
3.6. Greenhouse Experiment on T. durum
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Fatima, T.; Arora, N.K. Plant Growth-Promoting Rhizospheric Microbes for Remediation of Saline Soils. In Phyto and Rhizo Remediation; Springer: Berlin/Heidelberg, Germany, 2019; pp. 121–146. [Google Scholar]
- Bharti, N.; Yadav, D.; Barnawal, D.; Maji, D.; Kalra, A. Exiguobacterium Oxidotolerans, a Halotolerant Plant Growth Promoting Rhizobacteria, Improves Yield and Content of Secondary Metabolites in Bacopa Monnieri (L.) Pennell under Primary and Secondary Salt Stress. World J. Microbiol. Biotechnol. 2013, 29, 379–387. [Google Scholar] [CrossRef] [PubMed]
- Etesami, H.; Glick, B.R. Halotolerant Plant Growth–Promoting Bacteria: Prospects for Alleviating Salinity Stress in Plants. Environ. Exp. Bot. 2020, 178, 104124. [Google Scholar] [CrossRef]
- Mahmoud, O.M.B.; Hidri, R.; Talbi-Zribi, O.; Taamalli, W.; Abdelly, C.; Djébali, N. Auxin and Proline Producing Rhizobacteria Mitigate Salt-Induced Growth Inhibition of Barley Plants by Enhancing Water and Nutrient Status. S. Afr. J. Bot. 2020, 128, 209–217. [Google Scholar] [CrossRef]
- Silini, A.; Cherif-Silini, H.; Yahiaoui, B. Growing Varieties Durum Wheat (Triticum Durum) in Response to the Effect of Osmolytes and Inoculation by Azotobacter Chroococcum under Salt Stress. Afr. J. Microbiol. Res. 2016, 10, 387–399. [Google Scholar]
- FAO. 2015 Global Soil Partnership—World Soil Charter. Available online: http://www.fao.org/3/mn442e/mn442e.pdf (accessed on 13 August 2020).
- Sultana, S.; Paul, S.C.; Parveen, S.; Alam, S.; Rahman, N.; Jannat, B.; Hoque, S.; Rahman, M.T.; Karim, M.M. Isolation and Identification of Salt-Tolerant Plant-Growth-Promoting Rhizobacteria and Their Application for Rice Cultivation under Salt Stress. Can. J. Microbiol. 2020, 66, 144–160. [Google Scholar] [CrossRef] [PubMed]
- Egamberdieva, D.; Kucharova, Z.; Davranov, K.; Berg, G.; Makarova, N.; Azarova, T.; Chebotar, V.; Tikhonovich, I.; Kamilova, F.; Validov, S.Z. Bacteria Able to Control Foot and Root Rot and to Promote Growth of Cucumber in Salinated Soils. Biol. Fertil. Soils 2011, 47, 197–205. [Google Scholar] [CrossRef]
- Evelin, H.; Kapoor, R.; Giri, B. Arbuscular Mycorrhizal Fungi in Alleviation of Salt Stress: A Review. Ann. Bot. 2009, 104, 1263–1280. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Lozano, J.M.; Porcel, R.; Azcón, C.; Aroca, R. Regulation by Arbuscular Mycorrhizae of the Integrated Physiological Response to Salinity in Plants: New Challenges in Physiological and Molecular Studies. J. Exp. Bot. 2012, 63, 4033–4044. [Google Scholar] [CrossRef] [Green Version]
- Ashraf, M.; Harris, P.J.C. Potential Biochemical Indicators of Salinity Tolerance in Plants. Plant Sci. 2004, 166, 3–16. [Google Scholar] [CrossRef]
- Baniaghil, N.; Arzanesh, M.H.; Ghorbanli, M.; Shahbazi, M. The Effect of Plant Growth Promoting Rhizobacteria on Growth Parameters, Antioxidant Enzymes and Microelements of Canola under Salt Stress. J. Appl. Environ. Biol. Sci. 2013, 3, 17–27. [Google Scholar]
- Yang, J.; Kloepper, J.W.; Ryu, C.-M. Rhizosphere Bacteria Help Plants Tolerate Abiotic Stress. Trends Plant Sci. 2009, 14, 1–4. [Google Scholar] [CrossRef]
- Bai, Y.; Zhou, X.; Smith, D.L. Enhanced Soybean Plant Growth Resulting from Coinoculation of Bacillus Strains with Bradyrhizobium Japonicum. Crop Sci. 2003, 43, 1774–1781. [Google Scholar] [CrossRef]
- Egamberdieva, D.; Davranov, K.; Wirth, S.; Hashem, A.; Abd_Allah, E.F. Impact of Soil Salinity on the Plant-Growth–Promoting and Biological Control Abilities of Root Associated Bacteria. Saudi J. Biol. Sci. 2017, 24, 1601–1608. [Google Scholar] [CrossRef] [PubMed]
- Jha, Y.; Subramanian, R.B.; Patel, S. Combination of Endophytic and Rhizospheric Plant Growth Promoting Rhizobacteria in Oryza Sativa Shows Higher Accumulation of Osmoprotectant against Saline Stress. Acta Physiol. Plant. 2011, 33, 797–802. [Google Scholar] [CrossRef]
- Goswami, M.; Suresh, D. Plant Growth-Promoting Rhizobacteria—Alleviators of Abiotic Stresses in Soil: A Review. Pedosphere 2020, 30, 40–61. [Google Scholar] [CrossRef]
- Ilangumaran, G.; Smith, D.L. Plant Growth Promoting Rhizobacteria in Amelioration of Salinity Stress: A Systems Biology Perspective. Front. Plant Sci. 2017, 8, 1768. [Google Scholar] [CrossRef]
- Zahir, Z.A.; Nadeem, S.M.; Khan, M.Y.; Binyamin, R.; Waqas, M.R. Role of Halotolerant Microbes in Plant Growth Promotion under Salt Stress Conditions. In Saline Soil-Based Agriculture by Halotolerant Microorganisms; Springer: Berlin/Heidelberg, Germany, 2019; pp. 209–253. [Google Scholar]
- Burg, M.B.; Ferraris, J.D.; Dmitrieva, N.I. Cellular Response to Hyperosmotic Stresses. Physiol. Rev. 2007, 87, 1441–1474. [Google Scholar] [CrossRef]
- Jha, B.; Singh, V.K.; Weiss, A.; Hartmann, A.; Schmid, M. Zhihengliuella Somnathii Sp. Nov., a Halotolerant Actinobacterium from the Rhizosphere of a Halophyte Salicornia Brachiata. Int. J. Syst. Evol. Microbiol. 2015, 65, 3137–3142. [Google Scholar] [CrossRef]
- Jha, B.; Gontia, I.; Hartmann, A. The Roots of the Halophyte Salicornia Brachiata Are a Source of New Halotolerant Diazotrophic Bacteria with Plant Growth-Promoting Potential. Plant Soil 2012, 356, 265–277. [Google Scholar] [CrossRef]
- Mahmood, A.; Kataoka, R.; Turgay, O.C.; Yaprak, A.E. Halophytic Microbiome in Ameliorating the Stress. In Ecophysiology, Abiotic Stress Responses and Utilization of Halophytes; Springer: Berlin/Heidelberg, Germany, 2019; pp. 171–194. [Google Scholar]
- Kaushal, M.; Wani, S.P. Rhizobacterial-Plant Interactions: Strategies Ensuring Plant Growth Promotion under Drought and Salinity Stress. Agric. Ecosyst. Environ. 2016, 231, 68–78. [Google Scholar] [CrossRef]
- Numan, M.; Bashir, S.; Khan, Y.; Mumtaz, R.; Shinwari, Z.K.; Khan, A.L.; Khan, A.; Ahmed, A.-H. Plant Growth Promoting Bacteria as an Alternative Strategy for Salt Tolerance in Plants: A Review. Microbiol. Res. 2018, 209, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Pereira, N.C.M.; Galindo, F.S.; Gazola, R.P.D.; Dupas, E.; Rosa, P.A.L.; Mortinho, E.S. Corn Yield and Phosphorus Use Efficiency Response to Phosphorus Rates Associated With Plant Growth Promoting Bacteria. Front. Environ. Sci. 2020, 8, 40. [Google Scholar] [CrossRef]
- Rath, K.M.; Fierer, N.; Murphy, D.V.; Rousk, J. Linking Bacterial Community Composition to Soil Salinity along Environmental Gradients. ISME J. 2019, 13, 836–846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ZHANG, W.; Chong, W.; Rui, X.; WANG, L. Effects of Salinity on the Soil Microbial Community and Soil Fertility. J. Integr. Agric. 2019, 18, 1360–1368. [Google Scholar] [CrossRef]
- Smati, M.; Kitouni, M. Diversity of Actinobacteria in the Marshes of Ezzemoul and Djendli in Northeastern Algeria. Eur. J. Ecol. 2019, 5, 41–53. [Google Scholar] [CrossRef] [Green Version]
- Djebaili, R.; Pellegrini, M.; Smati, M.; Gallo, M.D.; Kitouni, M. Actinomycete Strains Isolated from Saline Soils: Plant-Growth-Promoting Traits and Inoculation Effects on Solanum Lycopersicum. Sustainability 2020, 12, 4617. [Google Scholar] [CrossRef]
- Pochon, J.; Tardieux, P. Techniques d’analyse En Microbiologie Du Sol; Editions de la Tourelle: Paris, France, 1962; Volume 11. [Google Scholar]
- Donate-Correa, J.; León-Barrios, M.; Pérez-Galdona, R. Screening for Plant Growth-Promoting Rhizobacteria in Chamaecytisus Proliferus (Tagasaste), a Forage Tree-Shrub Legume Endemic to the Canary Islands. Plant Soil 2005, 266, 261–272. [Google Scholar] [CrossRef]
- Cappuccino, J.G.; Sherman, N. Biochemical Activities of Microorganisms. In Microbiology—A Laboratory Manual; The Benjamin/Cummings Publishing Co., Inc.: Menlo Park, CA, USA, 1996. [Google Scholar]
- Pikovskaya, R.I. Mobilization of Phosphorus in Soil in Connection with Vital Activity of Some Microbial Species. Mikrobiologiya 1948, 17, 362–370. [Google Scholar]
- Olsen, S.R.; Sommers, L.E. Phosphorus. In Methods of Soil Analysis Part 2 Chemical and Microbiological Properties; Page, A.L., Ed.; (Soil Science Society of America); American Society of Agronomy: Madison, WI, USA, 1982; pp. 403–430. [Google Scholar]
- Khiangte, L.; Lalfakzuala, R. In Vitro Production of Growth Regulator (IAA) and Phosphatase by Phosphate Solubilizing Bacteria. Sci. Technol. J 2011, 5, 32–35. [Google Scholar] [CrossRef] [Green Version]
- Leaungvutiviroj, C.; Ruangphisarn, P.; Hansanimitkul, P.; Shinkawa, H.; Sasaki, K. Development of a New Biofertilizer with a High Capacity for N2 Fixation, Phosphate and Potassium Solubilization and Auxin Production. Biosci. Biotechnol. Biochem. 2010, 74, 1098–1101. [Google Scholar] [CrossRef] [Green Version]
- Nautiyal, C.S. An Efficient Microbiological Growth Medium for Screening Phosphate Solubilizing Microorganisms. FEMS Microbiol. Lett. 1999, 170, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Ponmurugan, P.; Gopi, C. In Vitro Production of Growth Regulators and Phosphatase Activity by Phosphate Solubilizing Bacteria. Afr. J. Biotechnol. 2006, 5, 348–350. [Google Scholar]
- Wahyudi, A.T.; Priyanto, J.A.; Afrista, R.; Kurniati, D.; Astuti, R.I.; Akhdiya, A. Plant Growth Promoting Activity of Actinomycetes Isolated from Soybean Rhizosphere. Online J. Biol. Sci. 2019, 19, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Gordon, S.A.; Weber, R.P. Colorimetric Estimation of Indoleacetic Acid. Plant Physiol. 1951, 26, 192. [Google Scholar] [CrossRef] [Green Version]
- Brígido, C.; Duan, J.; Glick, B.R. Methods to Study 1-Aminocyclopropane-1-Carboxylate (ACC) Deaminase in Plant Growth-Promoting Bacteria. In Handbook for Azospirillum; Springer: Berlin/Heidelberg, Germany, 2015; pp. 287–305. [Google Scholar]
- Dworkin, M.; Foster, J.W. Experiments with Some Microorganisms Which Utilize Ethane and Hydrogen. J. Bacteriol. 1958, 75, 592. [Google Scholar] [CrossRef] [Green Version]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Ayadi, M.; Cavez, D.; Miled, N.; Chaumont, F.; Masmoudi, K. Identification and Characterization of Two Plasma Membrane Aquaporins in Durum Wheat (Triticum Turgidum L. Subsp. Durum) and Their Role in Abiotic Stress Tolerance. Plant Physiol. Biochem. 2011, 49, 1029–1039. [Google Scholar] [CrossRef] [PubMed]
- Maleki, M.; Naghavi, M.R.; Alizadeh, H.; Poostini, K.; Abd Mishani, C. Comparison of Protein Changes in the Leaves of Two Bread Wheat Cultivars with Different Sensitivity under Salt Stress. Annu. Res. Rev. Biol. 2014, 4, 1784–1797. [Google Scholar] [CrossRef]
- Ouerghi, Z.; Rémy, R.; Ouelhazi, L.; Ayadi, A.; Brulfert, J. Two-Dimensional Electrophoresis of Soluble Leaf Proteins, Isolated from Two Wheat Species (Triticum Durum and Triticum Aestivum) Differing in Sensitivity towards NaCl. Electrophor. Int. J. 2000, 21, 2487–2491. [Google Scholar] [CrossRef]
- Arnon, D.I. Copper Enzymes in Isolated Chloroplasts. Polyphenoloxidase in Beta Vulgaris. Plant Physiol. 1949, 24, 1. [Google Scholar] [CrossRef] [Green Version]
- Naidu, B.P.; Cameron, D.F.; Konduri, S.V. Improving Drought Tolerance of Cotton by Glycinebetaine Application and Selection. In Proceedings of the 9th Australian Agronomy Conference, Wagga Wagga, Australia, 20–23 July 1998. [Google Scholar]
- Bhise, K.K.; Dandge, P.B. Mitigation of Salinity Stress in Plants Using Plant Growth Promoting Bacteria. Symbiosis 2019, 79, 191–204. [Google Scholar] [CrossRef]
- Dong, W.; Liu, X.; Lv, J.; Gao, T.; Song, Y. The Expression of Alfalfa MsPP2CA1 Gene Confers ABA Sensitivity and Abiotic Stress Tolerance on Arabidopsis Thaliana. Plant Physiol. Biochem. 2019, 143, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Hmaeid, N.; Wali, M.; Mahmoud, O.M.-B.; Pueyo, J.J.; Ghnaya, T.; Abdelly, C. Efficient Rhizobacteria Promote Growth and Alleviate NaCl-Induced Stress in the Plant Species Sulla Carnosa. Appl. Soil Ecol. 2019, 133, 104–113. [Google Scholar] [CrossRef]
- Läuchli, A.; Grattan, S.R. Plant Growth and Development under Salinity Stress. In Advances in Molecular Breeding toward Drought and Salt Tolerant Crops; Springer: Berlin/Heidelberg, Germany, 2007; pp. 1–32. [Google Scholar]
- Yildirim, E.; Turan, M.; Ekinci, M.; Dursun, A.; Cakmakci, R. Plant Growth Promoting Rhizobacteria Ameliorate Deleterious Effect of Salt Stress on Lettuce. Sci. Res. Essays 2011, 6, 4389–4396. [Google Scholar]
- Tolba, S.T.; Ibrahim, M.; Amer, E.A.; Ahmed, D.A. First Insights into Salt Tolerance Improvement of Stevia by Plant Growth-Promoting Streptomyces Species. Arch. Microbiol. 2019, 201, 1295–1306. [Google Scholar] [CrossRef]
- Dhillon, J.; Torres, G.; Driver, E.; Figueiredo, B.; Raun, W.R. World Phosphorus Use Efficiency in Cereal Crops. Agron. J. 2017, 109, 1670–1677. [Google Scholar] [CrossRef] [Green Version]
- Fink, J.R.; Inda, A.V.; Bavaresco, J.; Sánchez-Rodríguez, A.R.; Barrón, V.; Torrent, J.; Bayer, C. Diffusion and Uptake of Phosphorus, and Root Development of Corn Seedlings, in Three Contrasting Subtropical Soils under Conventional Tillage or No-Tillage. Biol. Fertil. Soils 2016, 52, 203–210. [Google Scholar] [CrossRef]
- Jiang, H.; Wang, T.; Chi, X.; Wang, M.; Chen, N.; Chen, M.; Pan, L.; Qi, P. Isolation and Characterization of Halotolerant Phosphate Solubilizing Bacteria Naturally Colonizing the Peanut Rhizosphere in Salt-Affected Soil. Geomicrobiol. J. 2020, 37, 110–118. [Google Scholar] [CrossRef]
- Lollato, R.P.; Figueiredo, B.M.; Dhillon, J.S.; Arnall, D.B.; Raun, W.R. Wheat Grain Yield and Grain-Nitrogen Relationships as Affected by N, P, and K Fertilization: A Synthesis of Long-Term Experiments. Field Crop. Res. 2019, 236, 42–57. [Google Scholar] [CrossRef]
- Zhang, Y.; Thomas, C.L.; Xiang, J.; Long, Y.; Wang, X.; Zou, J.; Luo, Z.; Ding, G.; Cai, H.; Graham, N.S. QTL Meta-Analysis of Root Traits in Brassica Napus under Contrasting Phosphorus Supply in Two Growth Systems. Sci. Rep. 2016, 6, 33113. [Google Scholar] [CrossRef]
- Rojas-Tapias, D.; Moreno-Galván, A.; Pardo-Díaz, S.; Obando, M.; Rivera, D.; Bonilla, R. Effect of Inoculation with Plant Growth-Promoting Bacteria (PGPB) on Amelioration of Saline Stress in Maize (Zea Mays). Appl. Soil Ecol. 2012, 61, 264–272. [Google Scholar] [CrossRef]
- Suleman, M.; Yasmin, S.; Rasul, M.; Yahya, M.; Atta, B.M.; Mirza, M.S. Phosphate Solubilizing Bacteria with Glucose Dehydrogenase Gene for Phosphorus Uptake and Beneficial Effects on Wheat. PLoS ONE 2018, 13, e0204408. [Google Scholar] [CrossRef] [Green Version]
- Sadeghi, A.; Karimi, E.; Dahaji, P.A.; Javid, M.G.; Dalvand, Y.; Askari, H. Plant Growth Promoting Activity of an Auxin and Siderophore Producing Isolate of Streptomyces under Saline Soil Conditions. World J. Microbiol. Biotechnol. 2012, 28, 1503–1509. [Google Scholar] [CrossRef]
- Gupta, N.; Sahoo, D. Evaluation of in Vitro Solubilization Potential of Phosphate Solubilising Streptomyces Isolated from Phyllosphere of Heritiera Fomes (Mangrove). Afr. J. Microbiol. Res. 2010, 4, 136–142. [Google Scholar]
- Kim, K.Y.; Jordan, D.; Krishnan, H.B. Rahnella Aquatilis, a Bacterium Isolated from Soybean Rhizosphere, Can Solubilize Hydroxyapatite. FEMS Microbiol. Lett. 1997, 153, 273–277. [Google Scholar] [CrossRef]
- Boubekri, K.; Soumare, A.; Mardad, I.; Lyamlouli, K.; Hafidi, M.; Ouhdouch, Y.; Kouisni, L. The Screening of Potassium-and Phosphate-Solubilizing Actinobacteria and the Assessment of Their Ability to Promote Wheat Growth Parameters. Microorganisms 2021, 9, 470. [Google Scholar] [CrossRef]
- Egamberdieva, D.; Lugtenberg, B. Use of Plant Growth-Promoting Rhizobacteria to Alleviate Salinity Stress in Plants. In Use of Microbes for the Alleviation of Soil Stresses, Volume 1; Springer: Berlin/Heidelberg, Germany, 2014; pp. 73–96. [Google Scholar]
- Raval, V.H.; Saraf, M. Biosynthesis and Purification of Indole-3-Acetic Acid by Halotolerant Rhizobacteria Isolated from Little Runn of Kachchh. Biocatal. Agric. Biotechnol. 2020, 23, 101435. [Google Scholar]
- Arora, N.K.; Tewari, S.; Singh, R. Multifaceted Plant-Associated Microbes and Their Mechanisms Diminish the Concept of Direct and indirect PGPRs. In Plant Microbe Symbiosis: Fundamentals and Advances; Springer: Berlin/Heidelberg, Germany, 2013; pp. 411–449. [Google Scholar]
- Egamberdieva, D.; Kucharova, Z. Selection for Root Colonising Bacteria Stimulating Wheat Growth in Saline Soils. Biol. Fertil. Soils 2009, 45, 563–571. [Google Scholar] [CrossRef]
- Sharma, K.; Sharma, S.; Sharma, P.; Prasad, S.R. Role of Indole Acetic Acid (IAA) Producing Rhizobacteria and Its Effect on Plant Growth of Mustard Crop under Salt Stress Condition. Int. J. Curr. Microbiol. App. Sci. 2019, 8, 2439–2445. [Google Scholar] [CrossRef]
- Egamberdieva, D. Alleviation of Salt Stress by Plant Growth Regulators and IAA Producing Bacteria in Wheat. Acta Physiol. Plant. 2009, 31, 861–864. [Google Scholar] [CrossRef]
- AzcON, R.; Barea, J.M. Synthesis of Auxins, Gibberellins and Cytokinins ByAzotobacter Vinelandii AndAzotobacter Beijerinckii Related to Effects Produced on Tomato Plants. Plant Soil 1975, 43, 609–619. [Google Scholar] [CrossRef]
- Li, H.Q.; Jiang, X.W. Inoculation with Plant Growth-Promoting Bacteria (PGPB) Improves Salt Tolerance of Maize Seedling. Russ. J. Plant Physiol. 2017, 64, 235–241. [Google Scholar] [CrossRef]
- Werner, J.E.; Finkelstein, R.R. Arabidopsis Mutants with Reduced Response to NaCl and Osmotic Stress. Physiol. Plant. 1995, 93, 659–666. [Google Scholar] [CrossRef]
- Dodd, I.C.; Pérez-Alfocea, F. Microbial Amelioration of Crop Salinity Stress. J. Exp. Bot. 2012, 63, 3415–3428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, M.A.; Boër, B.; Ȫzturk, M.; Clüsener-Godt, M.; Gul, B.; Breckle, S.-W. Sabkha Ecosystems: Volume V: The Americas; Springer: Berlin/Heidelberg, Germany, 2016; Volume 48. [Google Scholar]
- Liu, W.; Li, R.-J.; Han, T.-T.; Cai, W.; Fu, Z.-W.; Lu, Y.-T. Salt Stress Reduces Root Meristem Size by Nitric Oxide-Mediated Modulation of Auxin Accumulation and Signaling in Arabidopsis. Plant Physiol. 2015, 168, 343–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soleimani, R.; Alikhani, H.A.; Towfighi, H.; Khavazi, K.; Pourbabaee, A.A. Isolated Bacteria from Saline–Sodic Soils Alter the Response of Wheat under High Adsorbed Sodium and Salt Stress. Int. J. Environ. Sci. Technol. 2017, 14, 143–150. [Google Scholar] [CrossRef]
- Anwar, S.; Ali, B.; Sajid, I. Screening of Rhizospheric Actinomycetes for Various In-Vitro and in-Vivo Plant Growth Promoting (PGP) Traits and for Agroactive Compounds. Front. Microbiol. 2016, 7, 1334. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, H.I.; Gomaa, E.Z. Effect of Plant Growth Promoting Bacillus Subtilis and Pseudomonas Fluorescens on Growth and Pigment Composition of Radish Plants (Raphanus Sativus) under NaCl Stress. Photosynthetica 2012, 50, 263–272. [Google Scholar] [CrossRef]
- Plant Growth Promotion by Microbes Ben Lugtenberg—Academia.Edu. Available online: https://www.academia.edu/15172071/Plant_Growth_Promotion_by_Microbes (accessed on 23 August 2020).
- Bhise, K.K.; Bhagwat, P.K.; Dandge, P.B. Plant Growth-Promoting Characteristics of Salt Tolerant Enterobacter Cloacae Strain KBPD and Its Efficacy in Amelioration of Salt Stress in Vigna radiata L. J. Plant Growth Regul. 2017, 36, 215–226. [Google Scholar] [CrossRef]
- Del Carmen Orozco-Mosqueda, M.; Glick, B.R.; Santoyo, G. ACC Deaminase in Plant Growth-Promoting Bacteria (PGPB): An Efficient Mechanism to Counter Salt Stress in Crops. Microbiol. Res. 2020, 235, 126439. [Google Scholar] [CrossRef] [PubMed]
- Abeles, F.B.; Morgan, P.W.; Saltveit, M.E. Ethylene in Plant Biology, 2nd ed.; Academic Press: New York, NY, USA, 1992; Volume 414. [Google Scholar]
- Glick, B.R.; Penrose, D.M.; Li, J. A Model for the Lowering of Plant Ethylene Concentrations by Plant Growth-Promoting Bacteria. J. Theor. Biol. 1998, 190, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Misra, S.; Chauhan, P.S. ACC Deaminase-Producing Rhizosphere Competent Bacillus Spp. Mitigate Salt Stress and Promote Zea Mays Growth by Modulating Ethylene Metabolism. 3 Biotech 2020, 10, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Zahir, Z.A.; Arshad, M.; Frankenberger, W.T. Plant Growth Promoting Rhizobacteria: Applications and Perspectives in Agriculture. Adv. Agron. 2004, 81, 98–169. [Google Scholar]
- Bal, H.B.; Nayak, L.; Das, S.; Adhya, T.K. Isolation of ACC Deaminase Producing PGPR from Rice Rhizosphere and Evaluating Their Plant Growth Promoting Activity under Salt Stress. Plant Soil 2013, 366, 93–105. [Google Scholar] [CrossRef]
- Mohamed, I.; Eid, K.E.; Abbas, M.H.; Salem, A.A.; Ahmed, N.; Ali, M.; Shah, G.M.; Fang, C. Use of Plant Growth Promoting Rhizobacteria (PGPR) and Mycorrhizae to Improve the Growth and Nutrient Utilization of Common Bean in a Soil Infected with White Rot Fungi. Ecotoxicol. Environ. Saf. 2019, 171, 539–548. [Google Scholar] [CrossRef]
- Nagargade, M.; Tyagi, V.; Singh, M.K. Plant Growth-Promoting Rhizobacteria: A Biological Approach toward the Production of Sustainable Agriculture. In Role of Rhizospheric Microbes in Soil; Springer: Berlin/Heidelberg, Germany, 2018; pp. 205–223. [Google Scholar]
- Stefan, M.; Munteanu, N.; Stoleru, V.; Mihasan, M. Effects of Inoculation with Plant Growth Promoting Rhizobacteria on Photosynthesis, Antioxidant Status and Yield of Runner Bean. Rom. Biotechnol. Lett. 2013, 18, 8132–8143. [Google Scholar]
- Orhan, F. Alleviation of Salt Stress by Halotolerant and Halophilic Plant Growth-Promoting Bacteria in Wheat (Triticum Aestivum). Braz. J. Microbiol. 2016, 47, 621–627. [Google Scholar] [CrossRef] [Green Version]
- Shukla, P.S.; Agarwal, P.K.; Jha, B. Improved Salinity Tolerance of Arachishypogaea (L.) by the Interaction of Halotolerant Plant-Growth-Promoting Rhizobacteria. J. Plant Growth Regul. 2012, 31, 195–206. [Google Scholar] [CrossRef]
- Tiwari, J.K.; Munshi, A.D.; Kumar, R.; Pandey, R.N.; Arora, A.; Bhat, J.S.; Sureja, A.K. Effect of Salt Stress on Cucumber: Na+–K+ Ratio, Osmolyte Concentration, Phenols and Chlorophyll Content. Acta Physiol. Plant. 2010, 32, 103–114. [Google Scholar] [CrossRef]
- Yildirim, E.; Turan, M.; Guvenc, I. Effect of Foliar Salicylic Acid Applications on Growth, Chlorophyll, and Mineral Content of Cucumber Grown under Salt Stress. J. Plant Nutr. 2008, 31, 593–612. [Google Scholar] [CrossRef]
- Allam, N.G.; Kinany, R.; El-Refai, E.; Ali, W.Y. Potential Use of Beneficial Salt Tolerant Bacteria for Improving Wheat Productivity Grown in Salinized Soil. J. Microbiol. Res. 2018, 8, 43–53. [Google Scholar]
- Upadhyay, S.K.; Singh, D.P. Effect of Salt-Tolerant Plant Growth-Promoting Rhizobacteria on Wheat Plants and Soil Health in a Saline Environment. Plant Biol. 2015, 17, 288–293. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, S.; Sadeghi, A.; Safaie, N. Streptomyces Alleviate Drought Stress in Tomato Plants and Modulate the Expression of Transcription Factors ERF1 and WRKY70 Genes. Sci. Hortic. 2020, 265, 109206. [Google Scholar] [CrossRef]
- Ashraf, M.; Foolad, M.R. Roles of Glycine Betaine and Proline in Improving Plant Abiotic Stress Resistance. Environ. Exp. Bot. 2007, 59, 206–216. [Google Scholar] [CrossRef]
- Huang, Z.; Zhao, L.; Chen, D.; Liang, M.; Liu, Z.; Shao, H.; Long, X. Salt Stress Encourages Proline Accumulation by Regulating Proline Biosynthesis and Degradation in Jerusalem Artichoke Plantlets. PLoS ONE 2013, 8, e62085. [Google Scholar] [CrossRef] [PubMed]
- Regni, L.; Del Pino, A.M.; Mousavi, S.; Palmerini, C.A.; Baldoni, L.; Mariotti, R.; Mairech, H.; Gardi, T.; D’Amato, R.; Proietti, P. Behavior of Four Olive Cultivars during Salt Stress. Front. Plant Sci. 2019, 10, 867. [Google Scholar] [CrossRef]
- Xiong, Y.-W.; Gong, Y.; Li, X.-W.; Chen, P.; Ju, X.-Y.; Zhang, C.-M.; Yuan, B.; Lv, Z.-P.; Xing, K.; Qin, S. Enhancement of Growth and Salt Tolerance of Tomato Seedlings by a Natural Halotolerant Actinobacterium Glutamicibacter Halophytocola KLBMP 5180 Isolated from a Coastal Halophyte. Plant Soil 2019, 445, 307–322. [Google Scholar] [CrossRef]
Strain | 0 M | 0.25 M | 0.5 M | 0.75 M | 1 M | 1.25 M | 1.5 M |
---|---|---|---|---|---|---|---|
D14 | 24.8 aA | 12.1 cB | 9.1 cCD | 9.1 eEF | 12.7 cB | 17.3 bA | 10.4 dCD |
G10 | 17.2 aF | 10.4 cCD | 12.8 bB | 10.1 cCDE | 10.7 cD | 7.1 dG | 10.5 cCD |
G22 | 23.3 aB | 14.5 bA | 14.4 bA | 11.3 cBC | 10.6 cdDE | 12.1 cB | 9.1 dEF |
G33 | 10.8 cL | 9.0 dEF | 12.4 dEF | 9.7 cdDE | 9.1 dF | 9.9 cdDE | 14.4 aA |
H12 | 18.8 aE | 9.9 dDE | 13.3 dDE | 13.2 bA | 11.3 cCD | 9.9 dDE | 9.2 dEF |
H14 | 22.2 aC | 10.7 cCD | 13.0 cCD | 8.5 dF | 6.6 eG | 6.3 eG | 11.4 cC |
J4 | 12.1 bcK | 11.4 cBC | 7.9 cBC | 12.9 bA | 16.5 aA | 8.4 eF | 10.1 dDE |
J13 | 9.9 deM | 15.0 aA | 11.9 aA | 9.5 deEF | 9.3 eEF | 10.8 cdBCD | 12.8 bB |
J21 | 19.3 aD | 4.6 fG | 8.5 fG | 6.0 eG | 9.1 cF | 11.5 bBC | 8.0 dFG |
J27 | 12.6 aJ | 4.8 dG | 10.0 dG | 10.7 bCD | 11.1 bCD | 11.0 bBCD | 7.3 cGH |
K12 | 10.8 cL | 13.8 aA | 12.3 bB | 10.0 cDE | 12.3 bBC | 11.2 bcBC | 10.0 cDE |
K23 | 14.8 aG | 8.4 eF | 9.9 cDC | 12.1 bAB | 10.5 cDE | 10.0 cdDE | 9.4 deDE |
S2 | 12.9 aI | 8.0 dF | 6.8 eE | 12.4 aAB | 7.3 deG | 9.3 cEF | 10.5 bCD |
T45 | 13.9 aH | 11.5 bcBC | 12.2 bB | 11.3 bcBC | 13.3 aB | 10.7 cCD | 6.5 dH |
Strain | 0 M | 0.25 M | 0.5 M | 0.75 M | 1 M | 1.25 M | 1.5 M |
---|---|---|---|---|---|---|---|
D14 | 10.7 aD | 4.8 bH | - | - | - | - | - |
G10 | 12.2 bcC | 11.3 cCD | 13.8 bC | 25.9 aA | 6.1 dE | 6.4 dD | 6.8 d |
G22 | 12.4 dC | 19.8 bA | 35.6 aA | 18.6 bB | 15.3 cB | 10.7 dB | - |
G33 | 7.2 F | - | - | - | - | - | - |
H12 | - | 4.8 cH | 5.1 cF | 8.2 bE | 10.2 aD | - | - |
H14 | 21.4 aA | 6.9 dFG | 9.7 cE | 12.8 bD | - | - | - |
J4 | - | 9.8 bcDE | 8.7 cE | 10.2 bE | 12.8 aC | - | - |
J13 | 9.5 deE | 8.3 cEF | 11.6 dD | 13.9 cCD | 17.6 bA | 25.4 aA | - |
J21 | - | 6.2 GH | - | - | - | - | - |
J27 | 9.8 cE | 10.2 cCD | 6.4 dF | 15.2 bC | 18.1 aA | - | - |
K12 | 7.6 cF | 11.7 bC | 15.2 aBC | 8.2 cE | 14.7 aB | - | - |
K23 | - | - | - | - | - | - | - |
S2 | - | - | - | - | - | - | - |
T45 | 14.8 abB | 13.9 abB | 15.8 aB | 6.0 cF | 12.9 bC | 8.2 cC | - |
NaCl (M L−1) | Survival Rate (%) | |
---|---|---|
PGPB | CNT | |
0 | 100 | 100 |
0.25 | 100 | 100 |
0.5 | 100 | - |
0.75 | 100 | - |
1 | 21 | - |
1.25 | - | - |
1.5 | - | - |
0 M | 0.25 M | 0.5 M | 0.75 M | 1 M | |
---|---|---|---|---|---|
D14 | 1.9 a | 1.9 a | 1.9 a | 2.1 a | - |
G10 | 1.9 bc | 2.0 ab | 2.2 a | 1.6 c | 0.3 d |
G22 | 1.9 b | 2.4 a | 2.2 a | 0.5 c | - |
G33 | 2.3 a | 1.9 b | 2.2 ab | 2.1 ab | - |
H12 | 1.8 b | 2.0 b | 1.8 b | 7.7 a | - |
H14 | 1.9 a | 2.1 a | 2.1 a | 2.2 a | - |
J4 | 2.0 c | 2.2 c | 3.5 b | 4.1 a | - |
J13 | 2.3 a | 1.0 b | 2.2 a | 2.0 a | - |
J21 | 2.1 a | 2.1 a | 1.8 a | 1.5 a | - |
J27 | 5.5 a | 1.8 b | 1.6 b | 2.3 b | 1.5 b |
K12 | 2.2 a | 1.9 ab | 0.2 c | 2.1 a | 1.7 b |
K23 | 2.0 b | 1.9 b | 2.2 b | 3.2 a | - |
S2 | 2.0 a | 2.0 a | 2.2 a | 1.8 a | - |
T45 | 1.3 b | 2.3 a | 2.3 a | 2.1 a | - |
CNT | 2.5 b | 2.8 a | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Djebaili, R.; Pellegrini, M.; Rossi, M.; Forni, C.; Smati, M.; Del Gallo, M.; Kitouni, M. Characterization of Plant Growth-Promoting Traits and Inoculation Effects on Triticum durum of Actinomycetes Isolates under Salt Stress Conditions. Soil Syst. 2021, 5, 26. https://doi.org/10.3390/soilsystems5020026
Djebaili R, Pellegrini M, Rossi M, Forni C, Smati M, Del Gallo M, Kitouni M. Characterization of Plant Growth-Promoting Traits and Inoculation Effects on Triticum durum of Actinomycetes Isolates under Salt Stress Conditions. Soil Systems. 2021; 5(2):26. https://doi.org/10.3390/soilsystems5020026
Chicago/Turabian StyleDjebaili, Rihab, Marika Pellegrini, Massimiliano Rossi, Cinzia Forni, Maria Smati, Maddalena Del Gallo, and Mahmoud Kitouni. 2021. "Characterization of Plant Growth-Promoting Traits and Inoculation Effects on Triticum durum of Actinomycetes Isolates under Salt Stress Conditions" Soil Systems 5, no. 2: 26. https://doi.org/10.3390/soilsystems5020026
APA StyleDjebaili, R., Pellegrini, M., Rossi, M., Forni, C., Smati, M., Del Gallo, M., & Kitouni, M. (2021). Characterization of Plant Growth-Promoting Traits and Inoculation Effects on Triticum durum of Actinomycetes Isolates under Salt Stress Conditions. Soil Systems, 5(2), 26. https://doi.org/10.3390/soilsystems5020026