Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (51)

Search Parameters:
Authors = Khalil Ur Rehman ORCID = 0000-0003-0540-6344

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2900 KiB  
Article
Regulatory Mechanism of Proanthocyanidins in Grape Peels Using vvi-miR828a and Its Target Gene VvMYBPA1
by Lingqi Yue, Jingjing He, Tian Gan, Songtao Jiu, Muhammad Khalil-Ur-Rehman, Kunyu Liu, Miao Bai, Guoshun Yang and Yanshuai Xu
Plants 2024, 13(12), 1688; https://doi.org/10.3390/plants13121688 - 18 Jun 2024
Cited by 1 | Viewed by 1324
Abstract
Anthocyanins and proanthocyanidins are considered to be essential secondary metabolites in grapes and are used to regulate metabolic processes, while miRNAs are involved in their synthesis of anthocyanins and proanthocyanidins to regulate metabolic processes. The present research work was carried out to investigate [...] Read more.
Anthocyanins and proanthocyanidins are considered to be essential secondary metabolites in grapes and are used to regulate metabolic processes, while miRNAs are involved in their synthesis of anthocyanins and proanthocyanidins to regulate metabolic processes. The present research work was carried out to investigate the underlying regulatory mechanism of target genes in the grape cultivars ‘Italia’ and ‘Benitaka’. miRNA and transnscriptomic sequencing technology were employed to characterize both the profiles of miRNAs and the transcripts of grape peels at 10 and 11 weeks post flowering (10 wpf and 11 wpf). The results revealed that the expression level of vvi-miR828a in ‘Italia’ at 10 and 11 wpf was significantly higher than that in ‘Benitaka’. miRNA-seq analysis predicted MYBPA1 to be the target gene of vvi-miR828a. In transcriptome analysis, the expression level of the VvMYBPA1 gene in ‘Benitaka’ was significantly higher than that in ‘Italia’; in addition, the TPM values (expression levels) of VvMYBPA1 and miR828a also showed an evident negative correlation. The determination of the proanthocyanidin (PA) content in ‘Italia’ and ‘Benitaka’ peels at 11 wpf demonstrated that the PA content of ‘Benitaka’ was significantly higher than that of ‘Italia’. The outcomes of RT-qRCR analysis exhibited that the expression levels of the VdPAL, VdCHS, VdCHI, VdDFR, VdMYB5b, VdANR, and VdMYBPA1 genes related anthocyanin and proanthocyanidin pathways were reduced, while the expression levels of all of the above genes were increased after the transient expression of the VvMYBPA1 vector into grape leaves. The results of the transient overexpression experiment of vvi-miR828a before the veraison period of strawberry fruits showed that vvi-miR828a can significantly slow down the coloration of strawberries. The vvi-miR828a negatively regulates the accumulation of proanthocyanidins in grape fruits by inhibiting the expression of VvMYBPA1. Full article
(This article belongs to the Special Issue Recent Advances in Horticultural Plant Genomics)
Show Figures

Figure 1

9 pages, 2451 KiB  
Article
Harnessing Quantum Capacitance in 2D Material/Molecular Layer Junctions for Novel Electronic Device Functionality
by Bhartendu Papnai, Ding-Rui Chen, Rapti Ghosh, Zhi-Long Yen, Yu-Xiang Chen, Khalil Ur Rehman, Hsin-Yi Tiffany Chen, Ya-Ping Hsieh and Mario Hofmann
Nanomaterials 2024, 14(11), 972; https://doi.org/10.3390/nano14110972 - 3 Jun 2024
Viewed by 1895
Abstract
Two-dimensional (2D) materials promise advances in electronic devices beyond Moore’s scaling law through extended functionality, such as non-monotonic dependence of device parameters on input parameters. However, the robustness and performance of effects like negative differential resistance (NDR) and anti-ambipolar behavior have been limited [...] Read more.
Two-dimensional (2D) materials promise advances in electronic devices beyond Moore’s scaling law through extended functionality, such as non-monotonic dependence of device parameters on input parameters. However, the robustness and performance of effects like negative differential resistance (NDR) and anti-ambipolar behavior have been limited in scale and robustness by relying on atomic defects and complex heterojunctions. In this paper, we introduce a novel device concept that utilizes the quantum capacitance of junctions between 2D materials and molecular layers. We realized a variable capacitance 2D molecular junction (vc2Dmj) diode through the scalable integration of graphene and single layers of stearic acid. The vc2Dmj exhibits NDR with a substantial peak-to-valley ratio even at room temperature and an active negative resistance region. The origin of this unique behavior was identified through thermoelectric measurements and ab initio calculations to be a hybridization effect between graphene and the molecular layer. The enhancement of device parameters through morphology optimization highlights the potential of our approach toward new functionalities that advance the landscape of future electronics. Full article
Show Figures

Figure 1

10 pages, 633 KiB  
Communication
Immune-Escape Mutations Are Prevalent among Patients with a Coexistence of HBsAg and Anti-HBs in a Tertiary Liver Center in the United States
by Mukarram Jamat Ali, Pir Ahmed Shah, Khalil Ur Rehman, Satinder Kaur, Vera Holzmayer, Gavin A. Cloherty, Mary C. Kuhns and Daryl T. Y. Lau
Viruses 2024, 16(5), 713; https://doi.org/10.3390/v16050713 - 30 Apr 2024
Cited by 4 | Viewed by 2008
Abstract
The concurrent seropositivity of HBsAg and anti-HBs has been described among patients with chronic hepatitis B (CHB), but its prevalence is variable. HBV S-gene mutations can affect the antigenicity of HBsAg. Patients with mutations in the ‘α’ determinant region of the S gene [...] Read more.
The concurrent seropositivity of HBsAg and anti-HBs has been described among patients with chronic hepatitis B (CHB), but its prevalence is variable. HBV S-gene mutations can affect the antigenicity of HBsAg. Patients with mutations in the ‘α’ determinant region of the S gene can develop severe HBV reactivation under immunosuppression. In this study at a tertiary liver center in the United States, we evaluated the frequency and virological characteristics of the HBsAg mutations among CHB patients with the presence of both HBsAg and anti-HBs. In this cohort, 45 (2.1%) of 2178 patients were identified to have a coexistence of HBsAg and anti-HBs, and 24 had available sera for the genome analysis of the Pre-S1, Pre-S2, and S regions. The frequency of mutations in the S gene was significantly higher among those older than 50 years (mean 8.5 vs. 5.4 mutations per subject, p = 0.03). Twelve patients (50%) had mutations in the ‘α‘ determinant region of the S gene. Mutations at amino acid position 126 were most common in eight subjects. Three had a mutation at position 133. Only one patient had a mutation at position 145—the classic vaccine-escape mutation. Despite the universal HBV vaccination program, the vaccine-escape mutant is rare in our cohort of predominantly Asian patients. Full article
(This article belongs to the Special Issue Viral Genetic Variation)
Show Figures

Figure 1

22 pages, 6394 KiB  
Article
Functionalization of Na2Ca2Si3O9/Ca8Si5O18 Nanostructures with Chitosan and Terephthalaldehyde Crosslinked Chitosan for Effective Elimination of Pb(II) Ions from Aqueous Media
by Eida S. Al-Farraj, Abdullah N. Alotaibi, Ehab A. Abdelrahman, Fawaz A. Saad, Khalil ur Rehman, Faisal K. Algethami and Reem K. Shah
Inorganics 2024, 12(4), 113; https://doi.org/10.3390/inorganics12040113 - 15 Apr 2024
Cited by 3 | Viewed by 2262
Abstract
Lead poses significant health risks to humans, including neurological and developmental impairments, particularly in children. Additionally, lead pollution in the environment can contaminate soil, water, and air, endangering wildlife and ecosystems. Therefore, this study reports the straightforward fabrication of Na2Ca2 [...] Read more.
Lead poses significant health risks to humans, including neurological and developmental impairments, particularly in children. Additionally, lead pollution in the environment can contaminate soil, water, and air, endangering wildlife and ecosystems. Therefore, this study reports the straightforward fabrication of Na2Ca2Si3O9/Ca8Si5O18 nanostructures (NaCaSilicate) utilizing a sol-gel technique. Additionally, the produced nanostructures underwent further modification with chitosan (CS@NaCaSilicate) and chitosan crosslinked with terephthalaldehyde (CCS@NaCaSilicate), resulting in new nanocomposite materials. These samples were developed to efficiently extract Pb(II) ions from aqueous media through complexation and ion exchange mechanisms. Furthermore, the maximum adsorption capacity for Pb(II) ions by the NaCaSilicate, CS@NaCaSilicate, and CCS@NaCaSilicate samples is 185.53, 245.70, and 359.71 mg/g, respectively. The uptake of Pb(II) ions was characterized as spontaneous, exothermic, and chemical, with the best description provided by the Langmuir equilibrium isotherm and the pseudo-second-order kinetic model. Furthermore, a 9 M hydrochloric acid solution effectively eliminated Pb(II) ions from the synthesized samples, attaining a desorption efficacy surpassing 99%. Additionally, the fabricated samples exhibited efficient reusability across five successive cycles of adsorption and desorption for capturing Pb(II) ions. Full article
Show Figures

Figure 1

21 pages, 5863 KiB  
Article
Calcium Ferrite Nanoparticles: A Simple Synthesis Approach for the Effective Disposal of Congo Red Dye from Aqueous Environments
by Nada S. Al-Kadhi, Ghadah M. Al-Senani, Faisal K. Algethami, Reem K. Shah, Fawaz A. Saad, Alaa M. Munshi, Khalil ur Rehman, Lotfi Khezami and Ehab A. Abdelrahman
Inorganics 2024, 12(3), 69; https://doi.org/10.3390/inorganics12030069 - 24 Feb 2024
Cited by 9 | Viewed by 3240
Abstract
Congo red dye is classified as a toxic chemical and can be harmful if ingested, inhaled, or in contact with the skin or eyes. It can cause irritation, allergic reactions, and skin sensitization in some individuals. Thus, in this paper, CaFe2O [...] Read more.
Congo red dye is classified as a toxic chemical and can be harmful if ingested, inhaled, or in contact with the skin or eyes. It can cause irritation, allergic reactions, and skin sensitization in some individuals. Thus, in this paper, CaFe2O4 nanoparticles were produced by a simple Pechini sol-gel approach and used as an adsorbent material for the efficient disposal of Congo red dye from aqueous solutions. The maximum adsorption capacity of the CaFe2O4 towards Congo red dye is 318.47 mg/g. Furthermore, the synthesized CaFe2O4 nanoparticles exhibit an average crystal size of 24.34 nm. Scanning electron microscopy (SEM) examination showed that the CaFe2O4 nanoparticles are basically ball-like particles with a mean grain size of 540.54 nm. Moreover, transmission electron microscopy (TEM) examination showed that the CaFe2O4 sample revealed aggregated spherical particles with a mean diameter of 27.48 nm. The Energy-dispersive X-ray spectroscopy (EDS) pattern reveals that the produced CaFe2O4 nanoparticles are composed of Ca, Fe, and O elements, with an atomic ratio of 1:2:4 of these elements, respectively. The disposal of Congo red dye by the synthesized CaFe2O4 nanoparticles is chemical, spontaneous, exothermic, perfectly aligned with the pseudo-second-order kinetic model, and exhibited excellent conformity with the Langmuir equilibrium isotherm. Full article
Show Figures

Figure 1

26 pages, 11301 KiB  
Article
Fast Tracking of Maximum Power in a Shaded Photovoltaic System Using Ali Baba and the Forty Thieves (AFT) Algorithm
by Khalil Ur Rehman, Injila Sajid, Shiue-Der Lu, Shafiq Ahmad, Hwa-Dong Liu, Farhad Ilahi Bakhsh, Mohd Tariq, Adil Sarwar and Chang-Hua Lin
Processes 2023, 11(10), 2946; https://doi.org/10.3390/pr11102946 - 10 Oct 2023
Cited by 7 | Viewed by 1694
Abstract
Photovoltaic (PV) generation systems that are partially shaded have a non-linear operating curve that is highly dependent on temperature and irradiance conditions. Shading from surrounding objects like clouds, trees, and buildings creates partial shading conditions (PSC) that can cause hot spot formation on [...] Read more.
Photovoltaic (PV) generation systems that are partially shaded have a non-linear operating curve that is highly dependent on temperature and irradiance conditions. Shading from surrounding objects like clouds, trees, and buildings creates partial shading conditions (PSC) that can cause hot spot formation on PV panels. To prevent this, bypass diodes are installed in parallel across each panel, resulting in a global maximum power point (GMPP) and multiple local maximum power points (LMPPs) on the power-voltage (P-V) curve. Traditional methods for maximum power point tracking (MPPT), such as perturb and observe (P&O) and incremental conductance (INC), converge for LMPPs on the P-V curve, but metaheuristic algorithms can track the GMPP effectively. This paper proposes a new, efficient, and robust GMPP tracking technique based on a nature-inspired algorithm called Ali Baba and the Forty Thieves (AFT). Utilizing the AFT algorithm for MPPT in PV systems has several novel features and advantages, including its adaptability, exploration-exploitation balance, simplicity, efficiency, and innovative approach. These characteristics make AFT a promising choice for enhancing the efficiency of PV systems under varied circumstances. The performance of the proposed method in tracking the GMPP is evaluated using a simulation model under MATLAB/Simulink environment, the achieved simulation results are compared to particle swarm optimization (PSO). The proposed method is also tested in real-time using the Hardware-in-the-loop (HIL) emulator to validate the achieved simulation results. The findings indicate that the proposed AFT-based GMPP tracking method performs better under complex partial irradiance conditions than PSO. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

25 pages, 9431 KiB  
Article
Facile Synthesis and Characterization of Novel Nanostructures for the Efficient Disposal of Crystal Violet Dye from Aqueous Media
by Ehab A. Abdelrahman, Faisal K. Algethami, Huda S. AlSalem, Mona S. Binkadem, Fawaz A. Saad, Gharieb S. El-Sayyad, Nadeem Raza and Khalil ur Rehman
Inorganics 2023, 11(8), 339; https://doi.org/10.3390/inorganics11080339 - 17 Aug 2023
Cited by 19 | Viewed by 2054
Abstract
An excessive accumulation of crystal violet dye in the human body results in an accelerated heart rate, tetraplegia, eye irritation, and long-term damage to the transparent mucous membrane that protects the eyeballs. Accordingly, in this paper, sodium manganese silicate/sodium manganese silicate hydroxide hydrate [...] Read more.
An excessive accumulation of crystal violet dye in the human body results in an accelerated heart rate, tetraplegia, eye irritation, and long-term damage to the transparent mucous membrane that protects the eyeballs. Accordingly, in this paper, sodium manganese silicate/sodium manganese silicate hydroxide hydrate was easily fabricated as a novel type of nanostructures for the successful disposal of crystal violet dye from aqueous solutions. The formed sodium manganese silicate/sodium manganese silicate hydroxide hydrate nanostructures after the hydrothermal treatment of the gel produced from the interaction of Mn(II) ions with Si(IV) ions at 180 °C for 6, 12, 18, and 24 h were abbreviated as MS1, MS2, MS3, and MS4, respectively. The XRD showed that the average crystallite size of the MS1, MS2, MS3, and MS4 samples is 8.38, 7.43, 4.25, and 8.76 nm, respectively. The BET surface area of the MS1, MS2, MS3, and MS4 samples is 41.58, 46.15, 58.25, and 39.69 m2/g, respectively. The MS1, MS2, MS3, and MS4 samples consist of spherical and irregular shapes with average grain sizes of 157.22, 88.06, 43.75, and 107.08 nm, respectively. The best adsorption conditions of the crystal violet dye employing the MS1, MS2, MS3, and MS4 products were achieved at pH = 8, contact time = 140 min, and solution temperature = 298 kelvin. The linear pseudo-2nd-order model as well as the linear Langmuir isotherm better describe the disposal of the crystal violet dye using the MS1, MS2, MS3, and MS4 adsorbents. The studied thermodynamic parameters indicated that the disposal of the crystal violet dye employing the MS1, MS2, MS3, and MS4 adsorbents is spontaneous, exothermic, and chemical. The maximum disposal capacities of the MS1, MS2, MS3, and MS4 adsorbents towards crystal violet dye are 342.47, 362.32, 411.52, and 310.56 mg/g, respectively. Full article
Show Figures

Graphical abstract

16 pages, 4538 KiB  
Article
Parasite Diversity in a Freshwater Ecosystem
by Amana Shafiq, Farzana Abbas, Muhammad Hafeez-ur-Rehman, Bushra Nisar Khan, Ayesha Aihetasham, Iffat Amin, Hmidullah, Ramzi A. Mothana, Mohammed S. Alharbi, Imran Khan, Atif Ali Khan Khalil, Bashir Ahmad, Nimra Mubeen and Muneeba Akram
Microorganisms 2023, 11(8), 1940; https://doi.org/10.3390/microorganisms11081940 - 29 Jul 2023
Cited by 8 | Viewed by 8710
Abstract
Parasites are a significant component of biodiversity. They negatively affect fish appearance, growth, and reproduction. In this study, the prevalence of infection, diversity, and mean intensity of parasites were examined in 9 freshwater fish species (45 samples per fish species). Ecto-parasites were examined [...] Read more.
Parasites are a significant component of biodiversity. They negatively affect fish appearance, growth, and reproduction. In this study, the prevalence of infection, diversity, and mean intensity of parasites were examined in 9 freshwater fish species (45 samples per fish species). Ecto-parasites were examined on the skin, gills, and fins with a hand lens. Wet mounts were prepared using mucosal scrapings from all the external and internal organs of the sampled fish. Microscopy, muscle compression, and the pepsin-HCL artificial digestion technique were also performed. In this study, 26 species of parasites were identified including three taxa belonging to 9 species of protozoan parasites, 11 treamtodes, and 6 monogenean parasites. The identified protozoan parasites were Entamoeba histolitica, Chilodonella sp., Coccidia sp., Costia sp., Cryptobia sp., Ichthyopthiris-multifilis, Microsporidia, Piscinoodinium sp., and Ichthyobodo necator. The identified trematode parasites were Fasciola gigantica, Echinostoma revolutum, Fasciola hepatica, Haplorchis pumilio, Brachylaima cribbi, Echinostoma cinetorchis, Neascus sp., Deropegus sp., Trematode Soldier, Centrocestus formosanus, and Clinostomum marginatum. The identified monogenean parasites were Dactylogyrus limipopoensis, Dactylogyrus anchoratus, Dactylogyrus myersi, Dactylogyrus vastator, Gyrodactylus salaris, and Ancyrocephalus. The diversity of parasites was maximum at the Okara site. The host’s organs that were targeted for parasitic infection included the intestine, liver, gills, fins, skin, and kidneys. The majority of the parasites were identified in Labeo rohita followed by Hypophthalmichthys molitrix, Ctenopharyngodon idella, Oreochromis niloticus, Cyprinus carpio, and Wallagu attu. Two species appeared to be resistant species because none of the parasites were observed in Notopterus notopterus or Sperata seenghala. This study also concluded that the prevalence of parasites increased with increasing length, size, and age of fish. Full article
(This article belongs to the Special Issue Parasitic Diseases in Livestock)
Show Figures

Figure 1

11 pages, 1099 KiB  
Article
Zinc and Potassium Fertilizer Synergizes Plant Nutrient Availability and Affects Growth, Yield, and Quality of Wheat Genotypes
by Aneela Bashir, Qudrat Ullah Khan, Ahmad Alem, Awatif A. Hendi, Umber Zaman, Shahid Ullah Khan, Khalil ur Rehman, Asghar Ali Khan, Ihsan Ullah, Yasir Anwar and Ehab A. Abdelrahman
Plants 2023, 12(12), 2241; https://doi.org/10.3390/plants12122241 - 7 Jun 2023
Cited by 11 | Viewed by 2950
Abstract
The growth and productivity of wheat crops depend on the availability of essential nutrients such as zinc (Zn) and potassium (K2O), which play critical roles in the plant’s physiological and biochemical processes. This study aimed to investigate the synergizing effect of [...] Read more.
The growth and productivity of wheat crops depend on the availability of essential nutrients such as zinc (Zn) and potassium (K2O), which play critical roles in the plant’s physiological and biochemical processes. This study aimed to investigate the synergizing effect of zinc and potassium fertilizers on uptake of both the nutrients, growth, yield, and quality of the Hashim-08 cultivar and local landrace, during the 2019–2020 growing season in Dera Ismail Khan, Pakistan. The experiment was designed using a split plot pattern in a randomized complete pattern, with main plots for the wheat cultivars and subplots for the fertilizer treatments. Results indicated that both cultivars responded positively to the fertilizer treatments, with the local landrace exhibiting maximum plant height and biological yield, and improved Hashim-08, showing increased agronomic parameters, including the number of tillers and grains and spike length. Application of Zn and K2O fertilizers significantly enhanced agronomic parameters, such as the number of grains per plant, spike length, thousand-grain weight, grain yield, harvest index, Zn uptake of grain, dry gluten content, and grain moisture content, while crude protein and grain potassium remained relatively unchanged. The soil’s Zn and K content dynamics were found to vary among treatments. In conclusion, the combined application of Zn and K2O fertilizers proved beneficial in improving the growth, yield, and quality of wheat crops, with the local landrace exhibiting lower grain yield but greater Zn uptake through fertilizer application. The study’s findings highlight that the local landrace showed good response to the growth and qualitative parameter when compared with the Hashim-08 cultivar. Additionally, the combined application of Zn and K showed a positive relation in terms of nutrient uptake and soil Zn and K content. Full article
Show Figures

Figure 1

20 pages, 8285 KiB  
Article
Enhancing Ductal Carcinoma Classification Using Transfer Learning with 3D U-Net Models in Breast Cancer Imaging
by Saman Khalil, Uroosa Nawaz, Zubariah, Zohaib Mushtaq, Saad Arif, Muhammad Zia ur Rehman, Muhammad Farrukh Qureshi, Abdul Malik, Adham Aleid and Khalid Alhussaini
Appl. Sci. 2023, 13(7), 4255; https://doi.org/10.3390/app13074255 - 27 Mar 2023
Cited by 20 | Viewed by 3385
Abstract
Breast cancer ranks among the leading causes of death for women globally, making it imperative to swiftly and precisely detect the condition to ensure timely treatment and enhanced chances of recovery. This study focuses on transfer learning with 3D U-Net models to classify [...] Read more.
Breast cancer ranks among the leading causes of death for women globally, making it imperative to swiftly and precisely detect the condition to ensure timely treatment and enhanced chances of recovery. This study focuses on transfer learning with 3D U-Net models to classify ductal carcinoma, the most frequent subtype of breast cancer, in histopathology imaging. In this research work, a dataset of 162 microscopic images of breast cancer specimens is utilized for breast histopathology analysis. Preprocessing the original image data includes shrinking the images, standardizing the intensities, and extracting patches of size 50 × 50 pixels. The retrieved patches were employed to construct a basic 3D U-Net model and a refined 3D U-Net model that had been previously trained on an extensive medical image segmentation dataset. The findings revealed that the fine-tuned 3D U-Net model (97%) outperformed the simple 3D U-Net model (87%) in identifying ductal cancer in breast histopathology imaging. The fine-tuned model exhibited a smaller loss (0.003) on the testing data (0.041) in comparison to the simple model. The disparity in the training and testing accuracy reveals that the fine-tuned model may have overfitted to the training data indicating that there is room for improvement. To progress in computer-aided diagnosis, the research study also adopted various data augmentation methodologies. The experimental approach that was put forward achieved state-of-the-art performance, surpassing the benchmark techniques used in previous studies in the same field, and exhibiting greater accuracy. The presented scheme has promising potential for better cancer detection and diagnosis in practical applications of mammography. Full article
Show Figures

Figure 1

19 pages, 3340 KiB  
Article
Non-Newtonian Mixed Convection Magnetized Flow with Heat Generation and Viscous Dissipation Effects: A Prediction Application of Artificial Intelligence
by Khalil Ur Rehman and Wasfi Shatanawi
Processes 2023, 11(4), 986; https://doi.org/10.3390/pr11040986 - 23 Mar 2023
Cited by 12 | Viewed by 1978
Abstract
A non-Newtonian stagnation point fluid flow towards two different inclined heated surfaces is mathematically formulated with pertinent effects, namely mixed convection, viscous dissipation, thermal radiations, heat generation, and temperature-dependent thermal conductivity. Mass transfer is additionally considered by the use of a concentration equation. [...] Read more.
A non-Newtonian stagnation point fluid flow towards two different inclined heated surfaces is mathematically formulated with pertinent effects, namely mixed convection, viscous dissipation, thermal radiations, heat generation, and temperature-dependent thermal conductivity. Mass transfer is additionally considered by the use of a concentration equation. The flow narrating equations are solved numerically by using the shooting method along with the Runge–Kutta scheme. A total of 80 samples are considered for five different inputs, namely the velocities ratio parameter, temperature Grashof number, Casson fluid parameter, solutal Grashof number, and magnetic field parameter. A total of 70% of the data are used for training the network; 15% of the data are used for validation; and 15% of the data are used for testing. The skin friction coefficient (SFC) is the targeted output. Ten neurons are considered in the hidden layer. The artificial networking models are trained by using the Levenberg–Marquardt algorithm. The SFC values are predicted for cylindrical and flat surfaces by using developed artificial neural networking (ANN) models. SFC shows decline values for the velocity ratio parameter, concentration Grashof number, Casson fluid parameter, and solutal Grashof number. In an absolute sense, owning to a prediction by ANN models, we have seen that the SFC values are high in magnitude for the case of an inclined cylindrical surface in comparison with a flat surface. The present results will serve as a helpful source for future studies on the prediction of surface quantities by using artificial intelligence. Full article
(This article belongs to the Special Issue Advances in Numerical Heat Transfer and Fluid Flow (2023))
Show Figures

Figure 1

21 pages, 804 KiB  
Article
Environmental Regulation, Fiscal Decentralization, and Agricultural Carbon Intensity: A Challenge to Ecological Sustainability Policies in the United States
by Nihal Ahmed, Zeeshan Hamid, Khalil Ur Rehman, Piotr Senkus, Nisar Ahmed Khan, Aneta Wysokińska-Senkus and Barbara Hadryjańska
Sustainability 2023, 15(6), 5145; https://doi.org/10.3390/su15065145 - 14 Mar 2023
Cited by 18 | Viewed by 3202
Abstract
Investigating the fiscal decentralization’s effect on the carbon intensity of agricultural production may assist the United States in reaching its carbon peak and becoming carbon neutral. This paper delves into the investigation of the spatiotemporal patterns and internal relationships between fiscal decentralization, agricultural [...] Read more.
Investigating the fiscal decentralization’s effect on the carbon intensity of agricultural production may assist the United States in reaching its carbon peak and becoming carbon neutral. This paper delves into the investigation of the spatiotemporal patterns and internal relationships between fiscal decentralization, agricultural carbon intensity, and environmental regulation. The goal was achieved by using the spatial Durbin model using panel data for 49 states of the United States from 2000 to 2019. The study has found that environmental regulations play a significant role in reducing regional carbon emissions in agriculture and contribute positively to carbon emissions control. However, fiscal decentralization, which grants local governments more financial autonomy, has a positive but insignificant impact on carbon emissions, indicating that the prioritization of economic development and carbon control over environmental protection is favored by local governments. In examining the impact of environmental regulations on carbon emissions, the study reveals that fiscal decentralization does not play a substantial role in moderating this relationship. To promote low-carbon agriculture projects and ensure coordinated economic and environmental development, the study recommends optimizing the fiscal decentralization system, formulating different policies for different regions, and regulating the competencies of local governments through an effective examination system. The study concludes that it is crucial to obtain data at the city or county level to accurately understand the relationship between agricultural carbon intensity, environmental regulation, and fiscal decentralization. As a result, the central government must focus on perfecting the fiscal decentralization system, developing a differentiated agricultural carbon emission control system, controlling competition among local governments, and perfecting a political performance assessment system. Full article
Show Figures

Figure 1

16 pages, 2835 KiB  
Essay
RNA-Seq Based Transcriptomic Analysis of Bud Sport Skin Color in Grape Berries
by Wuwu Wen, Haimeng Fang, Lingqi Yue, Muhammad Khalil-Ur-Rehman, Yiqi Huang, Zhaoxuan Du, Guoshun Yang and Yanshuai Xu
Horticulturae 2023, 9(2), 260; https://doi.org/10.3390/horticulturae9020260 - 15 Feb 2023
Cited by 2 | Viewed by 2193
Abstract
The most common bud sport trait in grapevines is the change in color of grape berry skin, and the color of grapes is mainly developed by the composition and accumulation of anthocyanins. Many studies have shown that MYBA is a key gene regulates [...] Read more.
The most common bud sport trait in grapevines is the change in color of grape berry skin, and the color of grapes is mainly developed by the composition and accumulation of anthocyanins. Many studies have shown that MYBA is a key gene regulates the initiation of bud sport color and anthocyanin synthesis in grape peels. In the current study, we used berry skins of ‘Italia’, ‘Benitaka’, ‘Muscat of Alexandria’, ‘Flame Muscat’, ‘Rosario Bianco’, ‘Rosario Rosso’, and ‘Red Rosario’ at the véraison stage (10 weeks post-flowering and 11 weeks post-flowering) as research materials. The relative expressions of genes related to grape berry bud sport skin color were evaluated utilizing RNA-Seq technology. The results revealed that the expressions of the VvMYBA1/A2 gene in the three red grape varieties at the véraison stage were higher than in the three white grape varieties. The VvMYBA1/A2 gene is known to be associated with UFGT in the anthocyanin synthesis pathway. According to the results, VvMYBA1/A2 gene expression could also be associated with the expression of LDOX. In addition, a single gene (gene ID: Vitvi19g01871) displayed the highest expressions in all the samples at the véraison stage for the six varieties. The expression of this gene was much higher in the three green varieties compared to the three red ones. GO molecular function annotation identified it as a putative metallothionein-like protein with the ability to regulate the binding of copper ions to zinc ions and the role of maintaining the internal stable state of copper ions at the cellular level. High expression levels of this screened gene may play an important role in bud sport color of grape berry skin at the véraison stage. Full article
Show Figures

Figure 1

27 pages, 4662 KiB  
Article
Levenberg–Marquardt Training Technique Analysis of Thermally Radiative and Chemically Reactive Stagnation Point Flow of Non-Newtonian Fluid with Temperature Dependent Thermal Conductivity
by Khalil Ur Rehman, Wasfi Shatanawi and Andaç Batur Çolak
Mathematics 2023, 11(3), 753; https://doi.org/10.3390/math11030753 - 2 Feb 2023
Cited by 10 | Viewed by 1626
Abstract
We have examined the magnetized stagnation point flow of non-Newtonian fluid towards an inclined cylindrical surface. The mixed convection, thermal radiation, viscous dissipation, heat generation, first-order chemical reaction, and temperature-dependent thermal conductivity are the physical effects being carried for better novelty. Mathematical equations [...] Read more.
We have examined the magnetized stagnation point flow of non-Newtonian fluid towards an inclined cylindrical surface. The mixed convection, thermal radiation, viscous dissipation, heat generation, first-order chemical reaction, and temperature-dependent thermal conductivity are the physical effects being carried for better novelty. Mathematical equations are constructed for four different flow regimes. The shooting method is used to evaluate the heat transfer coefficient at the cylindrical surface with and without heat generation/thermal radiation effects. For better examination, we have constructed artificial neural networking models with the aid of the Levenberg–Marquardt training technique and Purelin and Tan-Sig transfer functions. The Nusselt number strength is greater for fluctuations in the Casson fluid parameter, Prandtl number, heat generation, curvature, and Eckert number when thermal radiations are present. Full article
(This article belongs to the Special Issue Computational Fluid Dynamics II)
Show Figures

Figure 1

20 pages, 10178 KiB  
Article
Voriconazole Cyclodextrin Based Polymeric Nanobeads for Enhanced Solubility and Activity: In Vitro/In Vivo and Molecular Simulation Approach
by Mudassir Farooq, Faisal Usman, Mahrukh Naseem, Hanan Y. Aati, Hassan Ahmad, Sirikhwan Manee, Ruqaiya Khalil, Kashif ur Rehman Khan, Muhammad Imran Qureshi and Muhammad Umair
Pharmaceutics 2023, 15(2), 389; https://doi.org/10.3390/pharmaceutics15020389 - 24 Jan 2023
Cited by 12 | Viewed by 3449
Abstract
Hydroxypropyl β-cyclodextrin (HPβCD) based polymeric nanobeads containing voriconazole (VRC) were fabricated by free radical polymerization using N, N′-methylene bisacrylamide (MBA) as a cross-linker, 2-acrylamide-2-methylpropane sulfonic acid (AMPS) as monomer and ammonium persulfate (APS) as reaction promoter. Optimized formulation (CDN5) had a particle [...] Read more.
Hydroxypropyl β-cyclodextrin (HPβCD) based polymeric nanobeads containing voriconazole (VRC) were fabricated by free radical polymerization using N, N′-methylene bisacrylamide (MBA) as a cross-linker, 2-acrylamide-2-methylpropane sulfonic acid (AMPS) as monomer and ammonium persulfate (APS) as reaction promoter. Optimized formulation (CDN5) had a particle size of 320 nm with a zeta potential of −35.5 mV and 87% EE. Scanning electron microscopy (SEM) depicted porous and non-spherical shaped beads. No evidence of chemical interaction was evident in FT-IR studies, whereas distinctive high-intensity VRC peaks were found superimposed in XRD. A stable polymeric network formation was evident in DSC studies owing to a lower breakdown in VRC loaded HPβCD in comparison to blank HPβCD. In vitro release studies showed 91 and 92% drug release for optimized formulation at pH 1.2 and 6.8, respectively, with first-order kinetics as the best-fit model and non-Fickian diffusion as the release mechanism. No evidence of toxicity was observed upon oral administration of HPβCD loaded VRC polymeric nanobeads owing to with cellular morphology of vital organs as observed in histopathology. Molecular docking indicates the amalgamation of the compounds highlighting the hydrophobic patching mediated by nanogel formulation. It can be concluded that the development of polymeric nanobeads can be a promising tool to enhance the solubility and efficacy of hydrophobic drugs such as VRC besides decreased toxicity and for effective management of fungal infections. Full article
(This article belongs to the Special Issue Development of Chitosan/Cyclodextrins in Drug Delivery Field)
Show Figures

Figure 1

Back to TopTop