Zinc and Potassium Fertilizer Synergizes Plant Nutrient Availability and Affects Growth, Yield, and Quality of Wheat Genotypes
Abstract
:1. Introduction
2. Material and Methods
2.1. Soil Analysis
2.2. Grain Analysis
- Moisture Content:Moisture content in the wheat grains was determined in each sample by the method given by AACC [19] method No. 44-15.
- Crude Protein:Crude protein content in the grains was determined using the Kjeldhal method. After the determination of the percent nitrogen, the protein was calculated by multiplying it with a factor of 5.7.
- Dry Gluten:Dry gluten on a weight basis was determined gravimetrically and the calculation was carried out by the following formula [19].
- Zinc Uptake:After the determination of Zn using an atomic absorption spectrometer the uptake by the wheat grain was calculated by using the Chapman and Pratt [20] method. The following formula was used:
- Potassium Uptake:Potassium concentration in the grain was determined using the flame photometer, while the uptake by the grain was calculated by using the following formula:
2.3. Agronomic Parameters
2.4. Statistical Analysis
3. Results
3.1. Agronomic Parameters of Wheat as Affected by the Application of Zinc and Potassium Fertilizers
3.1.1. Plant Height
3.1.2. Number of Tillers per Plant
3.1.3. Spike Length
3.1.4. Number of Grains per Spike
3.1.5. Thousand-Grain Weight
3.1.6. Grain Yield
3.1.7. Biological Yield
3.1.8. Harvest Index
3.2. Qualitative Parameters of Wheat as Affected by the Application of Zinc and Potassium Fertilizers
3.2.1. Grain Zn Uptake
3.2.2. Grain K Uptake
3.2.3. Dry Gluten Content
3.2.4. Crude Protein
3.2.5. Grain Moisture Content
3.2.6. Soil Potassium Content
3.2.7. Soil Zinc Content
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bashir, M.A.; Rehim, A.; Liu, J.; Imran, M.; Liu, H.; Suleman, M.; Naveed, S. Soil survey techniques determine nutrient status in soil profile and metal retention by calcium carbonate. Catena 2019, 173, 141–149. [Google Scholar] [CrossRef]
- Naeem, M. Exploring the role of Zinc in maize (Zea mays L.) through soil and foliar application. Univers. J. Agric. Res. 2015, 3, 69–75. [Google Scholar]
- Chen, X.P.; Zhang, Y.Q.; Tong, Y.P.; Xue, Y.F.; Liu, D.Y.; Zhang, W.; Deng, Y.; Meng, Q.F.; Yue, S.C.; Yan, P.; et al. Harvesting more grain Zinc of wheat for human health. Sci. Rep. 2017, 7, 7016. [Google Scholar] [CrossRef] [Green Version]
- Welch, R.M.; Graham, R. Breeding for micronutrients in staple food crops from a human nutrition perspective. J. Exp. Bot. 2004, 55, 353–364. [Google Scholar] [CrossRef] [Green Version]
- Cakmak, I.; Pfeiffer, W.H.; McClafferty, B. Biofortification of durum wheat with Zinc and iron. Cereal Chem. 2010, 87, 10–20. [Google Scholar] [CrossRef] [Green Version]
- Gibson, R.S. Zinc deficiency and human health: Etiology, health consequences, and future solutions. Plant Soil 2012, 361, 291–299. [Google Scholar] [CrossRef]
- IDRC. Facts and Figures on Food and Biodiversity. Canada: IDRC Communications, International Development Research Centre. 2010. Available online: https://www.idrc.ca/en/research-in-action/facts-figures-food-and-biodiversity (accessed on 1 January 2023).
- Stein, A.J. Global impacts of human mineral malnutrition. Plant Soil 2010, 335, 133–154. [Google Scholar] [CrossRef]
- de Campos, M.K.; de Carvalho, K.; de Souza, F.S.; Marur, C.J.; Pereira, L.F.; Bespalhok Filho, J.C.; Vieira, L.G. Drought tolerance and antioxidant enzymatic activity in transgenic ‘Swingle’citrumelo plants over-accumulating proline. Environ. Exp. Bot. 2011, 72, 242–250. [Google Scholar] [CrossRef] [Green Version]
- Zhao, F.-J.; McGrath, S. Biofortification and phytoremediation. Curr. Opin. Plant Biol. 2009, 12, 373–380. [Google Scholar] [CrossRef]
- Rehman, A.; Farooq, M.; Ozturk, L.; Asif, M.; Siddique, K.H. Zinc nutrition in wheat-based cropping systems. Plant Soil 2018, 422, 283–315. [Google Scholar] [CrossRef]
- Raza, H.M.; Bashir, M.A.; Rehim, A.; Jan, M.U.; Raza, Q.U.; Berlyn, G.P. Potassium and Zinc co-fertilization provide new insights to improve maize (Zea mays L.) physiology and productivity. Pak. J. Bot 2021, 53, 2059–2065. [Google Scholar] [CrossRef] [PubMed]
- Ryan, J.; Estefan, G.; Rashid, A. Soil and Plant Analysis Laboratory Manual; ICARDA: Beirut, Lebanon, 2001. [Google Scholar]
- Nelson, D.A.; Sommers, L. Total carbon, organic carbon, and organic matter. Methods Soil Anal. Part 2 Chem. Microbiol. Prop. 1983, 9, 539–579. [Google Scholar]
- Gee, G.W.; Bauder, J.; Klute, A. Methods of Soil Analysis, Part 1, Physical and Mineralogical Methods; Soil Science Society of America, American Society of Agronomy: Madison, WI, USA, 1986. [Google Scholar]
- Richards, L.A. Diagnosis and Improvement of Saline and Alkali Soils; US Department of Agriculture: Washington, DC, USA, 1954; Volume 78.
- Regional Salinity Laboratory (U.S.). Diagnosis and improvement of saline and alkali soils. In Agriculture Handbook; US Department of Agriculture: Washington, DC, USA, 1954; Volume 60, pp. 83–100. [Google Scholar]
- Soltanpour, P. Use of ammonium bicarbonate DTPA soil test to evaluate elemental availability and toxicity. Commun. Soil Sci. Plant Anal. 1985, 16, 323–338. [Google Scholar] [CrossRef]
- American Association of Cereal Chemists. Approved Methods Committee. Approved Methods of the American Association of Cereal Chemists; American Association of Cereal Chemists: St. Paul, MN, USA, 2000; Volume 1. [Google Scholar]
- Chapman, H.D.; Pratt, P. Methods of analysis for soils, plants and waters. Soil Sci. 1962, 93, 68. [Google Scholar] [CrossRef] [Green Version]
- Steel, R.G.D.; Torrie, J. Principles and Procedures of Statistics, a Biometrical Approach; McGraw-Hill Kogakusha, Ltd.: New York, NY, USA, 1980. [Google Scholar]
- Aboyeji, C.; Dunsin, O.; Adekiya, A.O.; Chinedum, C.; Suleiman, K.O.; Okunlola, F.O.; Aremu, C.O.; Owolabi, I.O.; Olofintoye, T.A. Zinc sulphate and boron-based foliar fertilizer effect on growth, yield, minerals, and heavy metal composition of groundnut (Arachis hypogaea L.) grown on an alfisol. Int. J. Agron. 2019, 2019, 5347870. [Google Scholar] [CrossRef] [Green Version]
- Yassen, A.; El-Nour, E.A.; Shedeed, S. Response of wheat to foliar spray with urea and micronutrients. J. Am. Sci. 2010, 6, 14–22. [Google Scholar]
- Oosterhuis, D.M.; Weir, B. Foliar fertilization of cotton. Physiol. Cotton 2010, 272–288. [Google Scholar] [CrossRef]
- Habib, M. Effect of foliar application of Zn and Fe on wheat yield and quality. Afr. J. Biotechnol. 2009, 8, 6795–6798. [Google Scholar]
- Ali, I.; Khan, A.A.; Munsif, F.; He, L.; Khan, A.; Ullah, S.; Saeed, W.; Iqbal, A.; Adnan, M.; Ligeng, J. Optimizing rates and application time of Potassium fertilizer for improving growth, grain nutrients content and yield of wheat cro. Open Agric. 2019, 4, 500–508. [Google Scholar] [CrossRef]
- Sadeghi, F.; Rezeizad, A.; Rahimi, M. Effect of Zinc and magnesium fertilizers on the yield and some characteristics of wheat (Triticum aestivum L.) seeds in two years. Int. J. Agron. 2021, 2021, 8857222. [Google Scholar] [CrossRef]
- Sher, A.; Sarwar, B.; Sattar, A.; Ijaz, M.; Ul-Allah, S.; Hayat, M.T.; Manaf, A.; Qayyum, A.; Zaheer, A.; Iqbal, J. Exogenous application of Zinc sulphate at heading stage of wheat improves the yield and grain Zinc biofortification. Agronomy 2022, 12, 734. [Google Scholar] [CrossRef]
- Prajapati, A.; Patel, K.; Chauhan, Z.; Patel, C.; Chaudhari, P. Effect of Zinc fertilization on growth, yield and quality of wheat (Triticum aestivum L.). Pharma Innov. J. 2022, 11, 1399–1402. [Google Scholar]
- Zeng, Q. Experimental study on the efficiency of K fertilizer applied to cotton in areas with cinnamon soil or aquic soil. China Cottons 1996, 23, 12. [Google Scholar]
- Al-Hiti, M.; Al-Ubaidi, M. Study of Yield and its Components for Several Genotypes of Durum Wheat (Triticum durum L.) Newly Derived Under Three Seeding Rate in the Conditions of Anbar Governorate. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021. [Google Scholar]
- Hasanuzzaman, M.; Bhuyan, M.B.; Nahar, K.; Hossain, M.S.; Mahmud, J.A.; Hossen, M.S.; Masud, A.A.; Moumita Fujita, M. Potassium: A vital regulator of plant responses and tolerance to abiotic stresses. Agronomy 2018, 8, 31. [Google Scholar] [CrossRef] [Green Version]
- Jat, G.; Majumdar, S.P.; Jat, N.K.; Mazumdar, S.P. Effect of Potassium and Zinc fertilizer on crop yield, nutrient uptake and distribution of Potassium and Zinc fractions in Typic Ustipsamment. Indian J. Agric. Sci. 2014, 84, 832–838. [Google Scholar]
- Brhane, H.; Mamo, T.; Teka, K. Optimum Potassium fertilization level for growth, yield and nutrient uptake of wheat (Triticum aestivum) in Vertisols of Northern Ethiopia. Cogent Food Agric. 2017, 3, 1347022. [Google Scholar] [CrossRef]
- Firdous, S.; Agarwal, B.; Chhabra, V. Zinc-fertilization effects on wheat yield and yield components. J. Pharmacogn. Phytochem. 2018, 7, 3497–3499. [Google Scholar]
- Al-Taher, F.M.; Al-Naser, H. The Effect of different Levels of Potassium on the Productivity of Genotypes of Wheat Triticum aestivum L. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021. [Google Scholar]
- Zhang, Y.Q.; Deng, Y.; Chen, R.Y.; Cui, Z.L.; Chen, X.P.; Yost, R.; Zhang, F.S.; Zou, C.Q. The reduction in Zinc concentration of wheat grain upon increased Phosphorus-fertilization and its mitigation by foliar Zinc application. Plant Soil 2012, 361, 143–152. [Google Scholar] [CrossRef]
- Roushani, G.A.; Narayanasamy, G. Effects of Potassium on temporal growth of root and shoot of wheat and its uptake in different soils. Int. J. Plant Prod. 2010, 4, 25–32. [Google Scholar]
- Hafeez, M.B.; Ramzan, Y.; Khan, S.; Ibrar, D.; Bashir, S.; Zahra, N.; Rashid, N.; Nadeem, M.; Shair, H.; Ahmad, J.; et al. Application of Zinc and iron-based fertilizers improves the growth attributes, productivity, and grain quality of two wheat (Triticum aestivum) cultivars. Front. Nutr. 2021, 8, 1036. [Google Scholar] [CrossRef]
- Turk, M.E.; Celik, N.E.; Bayram, G.A.; Budakli, E.M. Effects of nitrogen and Potassium fertilization on yield and nutritional quality of rangeland. Asian J. Chem. 2007, 19, 2341–2348. [Google Scholar]
- Sameen, A.; Niaz, A.; Anjum, F. Chemical composition of three wheat (Triticum aestivum L.) varieties as affected by NPK doses. Int. J. Agri. Biol. 2002, 4, 537–539. [Google Scholar]
- Tariq, M.U.; Saeed, A.; Nisar, M.; Mian, I.A.; Afzal, M. Effect of Potassium rates and sources on the growth performance and on chloride accumulation of maize in two different textured soils of Haripur, Hazara division. Sarhad J. Agric. 2011, 27, 415–422. [Google Scholar]
- Wang, S.; Li, M.; Liu, K.; Tian, X.; Li, S.; Chen, Y.; Jia, Z. Effects of Zn, macronutrients, and their interactions through foliar applications on winter wheat grain nutritional quality. PLoS ONE 2017, 12, e0181276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Soil Parameters | Soil Texture | Soil pH | Soil EC (mScm−1) | Bulk Density (gcm−3) | Organic Matter (%) | Total Nitrogen (%) | Extractable Phosphorus (mg kg−1) | Extractable Potassium (mg kg−1) | Soil Zinc Content (mg kg−1) |
---|---|---|---|---|---|---|---|---|---|
Value | Silty Clay | 7.94 | 1.45 | 1.35 | 0.58 | 0.035 | 6.11 | 141 | 1.54 |
Treatment | Plant Height (cm) | No. of Tillers per Plant | Spike Length (cm) | No. of Grains per Spike | ||||
---|---|---|---|---|---|---|---|---|
Hashim-08 | Landrace | Hashim-08 | Landrace | Hashim-08 | Landrace | Hashim-08 | Landrace | |
Control | 86.12 d | 107.88 a | 14.07 de | 9.99 g | 10.07 efg | 8.05 h | 41.20 g | 31.16 k |
K2O @ 60 kg ha−1 | 87.29 d | 109.51 a | 15.13 cd | 11.50 fg | 10.16 efg | 8.70 h | 43.67 f | 32.90 ijk |
K2O @ 90 kg ha−1 | 90.93 bc | 110.85 a | 17.08 bc | 12.15 ef | 10.77 bcde | 8.77 h | 46.90 bcd | 34.59 hi |
Zn @ 3 kg ha−1 | 86.04 d | 110.28 a | 15.20 cd | 10.81 fg | 10.48 cdef | 9.58 g | 44.71 ef | 32.36 jk |
Zn @ 5 kg ha−1 | 88.87 bcd | 109.19 a | 15.45 cd | 10.94 fg | 11.09 abcd | 10.07 efg | 45.84 de | 33.97 hij |
Zn @ 3 kg ha−1 + K2O @ 60 kg ha−1 | 90.96 bc | 110.57 a | 19.02 ab | 11.67 fg | 11.23 abc | 9.81 fg | 46.58 cde | 32.81 ijk |
Zn @ 3 kg ha−1 + K2O @ 90 kg ha−1 | 92.06 b | 111.50 a | 19.34 a | 12.33 ef | 11.64 a | 10.38 def | 48.52 ab | 34.39 hi |
Zn @ 5 kg ha−1 + K2O @ 60 kg ha−1 | 89.64 bcd | 110.74 a | 17.03 bc | 11.73 fg | 11.38 ab | 10.00 efg | 47.93 abc | 33.29 ij |
Zn @ 5 kg ha−1 + K2O @ 90 kg ha−1 | 90.99 bc | 111.04 a | 20.36 a | 12.46 ef | 11.83 a | 10.51 cdef | 49.01 a | 35.84 h |
LSD Interaction | 3.8658 | 2.0611 | 0.7583 | 1.9355 |
Treatment | Thousand Grain Weight (g) | Grain Yield (kg ha−1) | Biological Yield (kg ha−1) | Harvest Index | ||||
---|---|---|---|---|---|---|---|---|
Hashim-08 | Landrace | Hashim-08 | Landrace | Hashim-08 | Landrace | Hashim-08 | Landrace | |
Control | 41.20 jk | 40.55 k | 4119.75 e | 2992.50 j | 9947.25 f | 10,492.50 e | 41.43 bcd | 28.56 h |
K2O @ 60 kg ha−1 | 42.98 efgh | 41.64 fghi | 4297.75 cd | 3345.50 i | 10,072.75 f | 10,916.50 cd | 42.67 a | 30.66 efg |
K2O @ 90 kg ha−1 | 44.40 abcd | 42.54 fghi | 4440.00 ab | 3416.50 hi | 10,440.00 e | 11,446.50 a | 42.53 abc | 29.84 gh |
Zn @ 3 kg ha−1 | 42.48 fghi | 42.57 fghi | 4247.50 d | 3387.00 i | 10,247.50 ef | 11,374.75 ab | 41.44 bcd | 29.77 gh |
Zn @ 5 kg ha−1 | 42.13 ghij | 41.96 hij | 4213.00 de | 3446.50 hi | 10,213.00 ef | 11,095.50 bc | 41.25 d | 31.12 ef |
Zn @ 3 kg ha−1 + K2O @ 60 kg ha−1 | 44.08 bcde | 43.39 cdef | 4407.75 bc | 3504.25 gh | 10,407.75 e | 11,504.25 a | 42.35 abcd | 30.46 efg |
Zn @ 3 kg ha−1 + K2O @ 90 kg ha−1 | 44.44 abc | 44.06 bcde | 4443.75 ab | 3617.00 fg | 10,443.75 e | 11,617.00 a | 42.55 abc | 31.13 ef |
Zn @ 5 kg ha−1 + K2O @ 60 kg ha−1 | 44.65 ab | 43.01 efgh | 4464.50 ab | 3659.25 f | 10,464.50 e | 11,659.25 a | 42.66 ab | 31.38 e |
Zn @ 5 kg ha−1 + K2O @ 90 kg ha−1 | 45.44 a | 43.23 defg | 4544.25 a | 3621.50 f | 10,533.50 de | 11,621.50 a | 43.14 a | 31.16 ef |
LSD Interaction | 1.2483 | 113.94 | 330.04 | 1.2177 |
Treatment | Grain Zn Uptake (mg kg−1) | Grain K Uptake (kg ha−1) | Dry Gluten (%) | Crude Protein (%) | Grain Moisture Content (%) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Hashim-08 | Landrace | Hashim-08 | Landrace | Hashim-08 | Landrace | Hashim-08 | Landrace | Hashim-08 | Landrace | |
Control | 26.20 ab | 23.96 b | 128.50 NS | 141.00 | 12.80 a | 12.55 ab | 10.43 NS | 10.84 | 12.66 a | 10.03 d |
K2O @ 60 kg ha−1 | 29.84 ab | 26.97 ab | 143.75 | 148.75 | 11.76 ab | 11.77 ab | 11.09 | 11.20 | 12.37 a | 10.62 c |
K2O @ 90 kg ha−1 | 25.27 ab | 29.66 ab | 160.00 | 165.75 | 11.87 ab | 11.90 ab | 11.25 | 11.55 | 12.67 a | 10.78 c |
Zn @ 3 kg ha−1 | 31.02 ab | 29.01 ab | 136.00 | 140.00 | 12.44 ab | 12.46 ab | 10.98 | 10.99 | 12.41 a | 11.63 b |
Zn @ 5 kg ha−1 | 28.00 ab | 25.60 ab | 138.50 | 147.25 | 12.60 ab | 12.02 ab | 11.00 | 10.98 | 12.58 a | 11.51 b |
Zn @ 3 kg ha−1 + K2O @ 60 kg ha−1 | 31.66 ab | 25.45 ab | 150.75 | 153.75 | 11.61 b | 12.65 ab | 11.19 | 11.07 | 12.46 a | 11.68 b |
Zn @ 3 kg ha−1 + K2O @ 90 kg ha−1 | 28.51 ab | 26.49 ab | 161.75 | 164.25 | 11.93 ab | 11.80 ab | 11.48 | 11.04 | 12.72 a | 11.63 b |
Zn @ 5 kg ha−1 + K2O @ 60 kg ha−1 | 29.59 ab | 32.35 a | 147.25 | 152.50 | 12.42 ab | 11.48 b | 11.17 | 11.41 | 12.47 a | 11.50 b |
Zn @ 5 kg ha−1 + K2O @ 90 kg ha−1 | 31.18 ab | 32.62 a | 155.50 | 161.25 | 11.84 ab | 12.23 ab | 11.41 | 11.27 | 12.66 a | 11.44 b |
LSD Interaction | 7.31 | NS | 1.1759 | NS | 0.5173 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bashir, A.; Khan, Q.U.; Alem, A.; Hendi, A.A.; Zaman, U.; Khan, S.U.; Rehman, K.u.; Khan, A.A.; Ullah, I.; Anwar, Y.; et al. Zinc and Potassium Fertilizer Synergizes Plant Nutrient Availability and Affects Growth, Yield, and Quality of Wheat Genotypes. Plants 2023, 12, 2241. https://doi.org/10.3390/plants12122241
Bashir A, Khan QU, Alem A, Hendi AA, Zaman U, Khan SU, Rehman Ku, Khan AA, Ullah I, Anwar Y, et al. Zinc and Potassium Fertilizer Synergizes Plant Nutrient Availability and Affects Growth, Yield, and Quality of Wheat Genotypes. Plants. 2023; 12(12):2241. https://doi.org/10.3390/plants12122241
Chicago/Turabian StyleBashir, Aneela, Qudrat Ullah Khan, Ahmad Alem, Awatif A. Hendi, Umber Zaman, Shahid Ullah Khan, Khalil ur Rehman, Asghar Ali Khan, Ihsan Ullah, Yasir Anwar, and et al. 2023. "Zinc and Potassium Fertilizer Synergizes Plant Nutrient Availability and Affects Growth, Yield, and Quality of Wheat Genotypes" Plants 12, no. 12: 2241. https://doi.org/10.3390/plants12122241
APA StyleBashir, A., Khan, Q. U., Alem, A., Hendi, A. A., Zaman, U., Khan, S. U., Rehman, K. u., Khan, A. A., Ullah, I., Anwar, Y., & Abdelrahman, E. A. (2023). Zinc and Potassium Fertilizer Synergizes Plant Nutrient Availability and Affects Growth, Yield, and Quality of Wheat Genotypes. Plants, 12(12), 2241. https://doi.org/10.3390/plants12122241