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Abstract: Breast cancer ranks among the leading causes of death for women globally, making it
imperative to swiftly and precisely detect the condition to ensure timely treatment and enhanced
chances of recovery. This study focuses on transfer learning with 3D U-Net models to classify
ductal carcinoma, the most frequent subtype of breast cancer, in histopathology imaging. In this
research work, a dataset of 162 microscopic images of breast cancer specimens is utilized for breast
histopathology analysis. Preprocessing the original image data includes shrinking the images,
standardizing the intensities, and extracting patches of size 50 × 50 pixels. The retrieved patches
were employed to construct a basic 3D U-Net model and a refined 3D U-Net model that had been
previously trained on an extensive medical image segmentation dataset. The findings revealed that
the fine-tuned 3D U-Net model (97%) outperformed the simple 3D U-Net model (87%) in identifying
ductal cancer in breast histopathology imaging. The fine-tuned model exhibited a smaller loss (0.003)
on the testing data (0.041) in comparison to the simple model. The disparity in the training and
testing accuracy reveals that the fine-tuned model may have overfitted to the training data indicating
that there is room for improvement. To progress in computer-aided diagnosis, the research study also
adopted various data augmentation methodologies. The experimental approach that was put forward
achieved state-of-the-art performance, surpassing the benchmark techniques used in previous studies
in the same field, and exhibiting greater accuracy. The presented scheme has promising potential for
better cancer detection and diagnosis in practical applications of mammography.

Keywords: ductal carcinoma; breast cancer detection; MRI; transfer learning; U-Nets; intelligent
healthcare; computer-aided diagnosis

1. Introduction

Globally, approximately two million new cases of breast cancer are diagnosed each
year [1–3]. Early diagnosis is crucial for the effective treatment of breast cancer, which is
one of the most widespread types of cancer among women [4,5]. The most common form
of breast cancer is ductal carcinoma, accounting for around 80% of cases, and it originates
in the cells lining the milk ducts [6,7].
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1.1. Background

Conventional techniques for diagnosing ductal carcinoma involve a biopsy as well as
imaging examinations such as digital mammography, digital breast tomosynthesis, ultra-
sound, and magnetic resonance imaging (MRI) [8–10]. However, these imaging methods
can be difficult to interpret when the malignancy is tiny or hardly identifiable [11–13].
There is a growing need for quick and accurate diagnoses due to a larger patient pool,
which has increased the burden for radiologists and highlighted the importance of machine
learning (ML) models [14–16].

ML models trained on medical imaging data have demonstrated promising results
for the diagnosis of ductal carcinoma [11], hence aiding radiologists in effective disease
detection and classification. These models can be used to automate the examination of
imaging data, leading to more precise diagnoses with less time spent [12]. However, the
effectiveness of such models depends crucially on the access to labeled databases of medical
images [17,18].

1.2. Motivation

The overfitting and low performance of ML models are common when annotated data
are limited. Transfer learning is a common method used to overcome this problem [19].
An effective ML model that is pre-trained on a larger imaging dataset can be retrained
on a new smaller dataset for the same task using transfer learning [20,21]. The model
performance and accuracy can be improved by fine-tuning it on the smaller dataset which
utilizes the pre-trained model’s robust foundation of information learned from the larger
dataset [22–25]. This approach is used in this study, which employs transfer learning to
enhance the accuracy of 3D U-Net models for ductal carcinoma classification in breast cancer
imaging. A well-known deep learning (DL) architecture for medical image segmentation,
the 3D U-Net model, has already undergone extensive training on a sizable dataset.

1.3. Research Question

What is the potential of transfer learning with 3D U-Net models for enhancing the
classification of ductal carcinoma in breast cancer imaging, and how can its performance
be compared to traditional ML methods and other DL techniques?

(a) Explore the impact of different pre-training datasets and hyperparameter settings on
the performance of transfer learning with 3D U-Net models, as well as its potential
application in the detection and diagnosis of other types of breast cancer and medical
imaging applications.

(b) Consider the potential challenges and opportunities associated with integrating trans-
fer learning with 3D U-Net models into existing clinical workflows for breast cancer
imaging and computer-aided diagnosis.

1.4. Research Design

The research design of this work is as follows:

(a) This study explores the potential of transfer learning in enhancing the classification of
ductal carcinoma using 3D U-Net models in breast cancer imaging.

(b) To overcome the issue of limited annotated data, this research investigates the effec-
tiveness of fine-tuning a pre-trained 3D U-Net model on a publicly accessible dataset
for breast cancer imaging.

(c) The evaluation of the fine-tuned 3D U-Net model on a separate testing dataset, demon-
strating the effectiveness of transfer learning in improving the accuracy of ductal
carcinoma classification.

(d) The demonstration of the potential for the proposed approach to serve as a valuable
tool for radiologists and medical practitioners in the computer-aided diagnosis and
treatment of cancers.
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This study contributes to the fields of medical imaging and computer-aided diagnosis
by showing how transfer learning may be used to boost the accuracy of ML models for
detecting ductal carcinoma in breast cancer scans. The published studies addressing the
research questions are summarized in Section 2. The adopted methodology is outlined in
Section 3 which explains the procedure for image preprocessing, model fine-tuning, and
model evaluation. The research findings are presented in Section 4 which includes the
outcomes of the optimized transfer-learning-based 3D U-Net model and its comparison
with the basic model. The study is concluded in Section 5 with a discussion of the primary
findings and their implications for future research in the medical imaging and computer-
aided diagnosis fields.

2. Related Work

Breast cancer patients can benefit from the use of nuclear medicine imaging in two
ways: locating and categorizing axillary lymph nodes, and performing distant staging [22].
Recent advances in the digitalization of imaging processes and artificial intelligence have
opened the horizon for the potential application of DL in breast cancer imaging and
mammography [26–28]. DL has recently found application in various fields, such as lesion
identification and segmentation, image reconstruction and generation, risk evaluation for
cancer, and forecasting therapeutic outcomes [29–31].

Numerous research endeavors have examined the efficacy of convolutional neural
networks (CNN) in detecting and categorizing breast cancer [32,33], with the U-Net archi-
tecture being a prominent CNN model used for medical imaging, specifically for image
segmentation tasks [34]. The U-Net comprises an encoder that extracts features from
the input image and a decoder that generates a segmentation mask of equal size to the
input image.

More recently, the U-Net architecture has been expanded to 3D for volumetric medical
imaging data. Transfer learning is a widely adopted approach in deep learning for medical
image analysis [35]. Several studies have applied DL and transfer learning techniques
to breast cancer imaging using 3D U-Net models [36–38]. Choi et al. [39] and Yarabarla
et al. [40] utilized transfer learning with a 3D U-Net model to enhance the segmentation
of breast tumors in MRI scans. Their approach involved training the model on a sizable
dataset of abdominal CT scans and fine-tuning it on a smaller dataset of breast MRI scans.
In another investigation conducted by Madani et al. [34], the use of transfer learning with
a 3D U-Net model yielded a higher accuracy and specificity in classifying breast cancer
histopathological images compared to traditional ML techniques.

Similarly, Nassif et al. [22] used the same approach of using a 3D U-Net model with
transfer learning to classify breast cancer subtypes using diffusion-weighted MRI scans and
achieved a higher accuracy and sensitivity compared to traditional approaches. Govinda
et al. [21] applied the same approach for the segmentation of breast tumors in ultrasound
images with higher accuracy and the Dice similarity coefficient (a measure of segmentation
accuracy). Conclusively, the studies discussed indicate that 3D U-Net models with transfer
learning have the potential to improve the accuracy of breast cancer diagnosis across
various medical imaging modalities. By leveraging these techniques, researchers may be
able to develop more accurate and efficient methods for detecting and diagnosing breast
cancer, ultimately leading to improved patient outcomes. Table 1 shows the details of a
few studies which employed this state-of-the-art technique of using a 3D U-Net model for
computer-aided diagnosis.

Table 1. Comparative analysis of 3D-U-Net-model-related work.

References Datasets Techniques Results

Sugimoto et al. [23] Cancer Imaging Archive
(TCIA) Fine-tuning

Improved ductal carcinoma
classification using fine-tuned 3D

U-NET model.
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Table 1. Cont.

References Datasets Techniques Results

Al-Shargabi et al. [26] Digital Database for Screening
Mammography (DDSM) Feature Extraction Feature extraction from 3D U-NET

improves carcinoma classification.

Islam et al. [31] IN-breast Multi-task learning
Multi-task 3D U-NET improves

both carcinoma classification and
segmentation.

Khamparia et al. [36] Breast Cancer
Histopathological Image

Unsupervised domain
adaptation

Unsupervised adaptation of 3D
U-NET improves carcinoma

classification.

3. Methodology

Fine-tuning the 3D U-Net model requires preprocessing the breast histopathology
image dataset to ensure data usability. The images are scaled to a uniform size, and their
brightness is normalized before the fine-tuning of the pre-trained 3D U-Net model for
better classification of ductal carcinoma. To fine-tune the model, the initial layers’ weights
are frozen, and only the later layers are trained using breast cancer imaging data. The
accuracy of the tuned model is determined using a different testing dataset. Accuracy,
sensitivity, specificity, and other measures of performance were computed as part of the
evaluation process. The study compares the performance of the fine-tuned model with the
newly trained 3D U-Net model to demonstrate the classification accuracy enhancement
achieved through transfer learning. Image regions that are prioritized by the model during
classification are located with the use of the model’s visualizations which were used to
gain insight into the 3D U-Net model’s behavior. Figure 1 represents the flowchart for the
adopted procedure in this work.
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3.1. Dataset Description

Invasive ductal carcinoma (IDC) accounts for nearly all cases of breast cancer. Patholo-
gists pay close attention to the areas that contain the IDC when determining the aggres-
siveness of a specimen as it is mounted over the test slide of the microscope. Therefore, a
common preprocessing step for automatic aggressiveness assessment is the delineating of
the precise zones of IDC within a whole-mount slide of the microscope. These 162 images
of breast cancer (BCa) specimens are initially digitized at 40× magnification level from the
original microscope slides. They are divided into 277,524 patches of size 50 × 50 pixels.
In this total, the IDC-positive class sample count is 78,786 and IDC-negative class sample
count is 198,738. The example images of the dataset are displayed in Figure 2.
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Figure 2. The test images in the breast histopathological imaging dataset for both classes.

Both the healthy and malignant breast tissues with IDC can be observed on the
microscopic slides. The 3D U-Net model receives the preprocessed patches as input. The
characteristics of both malignant and healthy tissue are learned by the model during
training with the IDC-positive and IDC-negative patches. When the model is fine-tuned,
its IDC detection performance is assessed using a testing dataset. Figure 3 displays the
distribution of patches across different classes in the dataset. The colors represent the
different classes or categories of ductal carcinoma in the target variable with blue indicating
category 0 and orange representing category 1. The class labels “0” and “1” are assigned to
IDC-negative (healthy tissues) and IDC-positive (malignant tissues), respectively.
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3.2. Image Preprocessing
3.2.1. Resizing

The images are resized to ensure that the model receives inputs of consistent size. A
standard size for all the input images is adopted in this step. This step is important to
ensure that the model can effectively learn from the images. The equation for resizing an
image depends upon the method used for resizing. Two common methods for resizing an
image are the nearest neighbor and bilinear interpolation.

Nearest neighbor interpolation:

Let us consider an image with dimensions (M× N), and we want to resize it to
(M′ × N′). The new pixel value at location (i, j) in the resized image can be given by the
following relations using nearest neighbor interpolation:

x′ = i ∗ M′

M
, y′ = j ∗ N′

N
(1)

The nearest neighbor to (x′, y′) in the original image is then rounded to the nearest
integer and used as the value for (i, j) in the resized image.

Bilinear interpolation:

Bilinear interpolation is a more sophisticated method for resizing an image. The
resizing process employs a technique that estimates the value of a pixel in the resized image
by taking a weighted average of its 4 nearest pixels. The equation for bilinear interpolation
is given as follows:

x′ = i ∗ M′

M
, y′ = j ∗ N′

N
, x = f loor

(
x′
)
, y = f loor

(
y′
)

(2)

The value of (i, j) in the resized image can then be calculated as follows:
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f ′(i, j) = (1− (x′ − x)) ∗ (1− (y′ − y)) ∗ f (x, y) + (x′ − x) ∗ (1− (y′ − y))
∗ f (x + 1, y) + (1− (x′ − x)) ∗ (y′ − y) ∗ f (x, y + 1)

+(x′ − x) ∗ (y′ − y) ∗ f (x + 1, y + 1)
(3)

where f (x, y) is the pixel value at (x, y) position in the original image, and f ′(i, j) is the
pixel value at (i, j) position in the resized image.

3.2.2. Intensity Normalization

The intensities of the images are normalized to ensure that the model is not influenced
by large variations in brightness or contrast. This step is important because the images
are scanned at different times under different conditions which can result in brightness
and contrast variations. Intensity normalization is a common preprocessing step in image
analysis to correct for variations in intensity levels between different images. One common
approach for intensity normalization is to stretch or shrink the intensity range of the image
so that it covers a specified range, such as [0, 255] for 8-bit images. The equation for
intensity normalization is given below:

f ′(i, j) = ( f (i, j)−min) ∗ (newmax − newmin)

(max−min) + newmin
(4)

where f (i, j) is the pixel intensity at (i, j) position in the original image, f ′(i, j) is the
same pixel intensity in the normalized image, [min, max] is the intensity range for the
input image, and [newmin, newmax] is the intensity range required in the output for the
normalized image. For example, if an image of intensity distribution [0, 200] is required to
be intensity-normalized for [0, 255], then the following mathematical relation is applicable
for this transformation:

f ′(i, j) = ( f (i, j)− 0) ∗ (255− 0)
(200− 0)

+ 0 (5)

This equation maps the original intensity values to the desired intensity range in a
linear manner. Figure 4 shows the sample image of the dataset with its color histograms.
The pixel intensity distribution in the form of RGB channels is displayed. The colors in
the histogram represent pixel intensities for three channels (red, green, and blue) in color
images of the breast cancer dataset.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 21 
 

𝑓 (𝑖, 𝑗) =  1 − (𝑥 −  𝑥) ∗  1 − (𝑦 −  𝑦) ∗  𝑓(𝑥, 𝑦) + (𝑥 −  𝑥) ∗  1 − (𝑦 −  𝑦)∗  𝑓(𝑥 +  1, 𝑦) + 1 − (𝑥 −  𝑥) ∗  (𝑦 −  𝑦) ∗  𝑓(𝑥, 𝑦 +  1)+ (𝑥 −  𝑥) ∗  (𝑦 −  𝑦) ∗  𝑓(𝑥 +  1, 𝑦 +  1) 
(3)

where 𝑓(𝑥, 𝑦) is the pixel value at (𝑥, 𝑦) position in the original image, and 𝑓′(𝑖, 𝑗) is 
the pixel value at (𝑖, 𝑗) position in the resized image. 

3.2.2. Intensity Normalization 
The intensities of the images are normalized to ensure that the model is not influ-

enced by large variations in brightness or contrast. This step is important because the im-
ages are scanned at different times under different conditions which can result in bright-
ness and contrast variations. Intensity normalization is a common preprocessing step in 
image analysis to correct for variations in intensity levels between different images. One 
common approach for intensity normalization is to stretch or shrink the intensity range of 
the image so that it covers a specified range, such as [0, 255] for 8-bit images. The equation 
for intensity normalization is given below: 𝑓 (𝑖, 𝑗) =  (𝑓(𝑖, 𝑗) −  min) ∗ (𝑛𝑒𝑤 −  𝑛𝑒𝑤 )(max −  min)  +  𝑛𝑒𝑤  (4)

where 𝑓(𝑖, 𝑗) is the pixel intensity at (𝑖, 𝑗) position in the original image, 𝑓′(𝑖, 𝑗) is the 
same pixel intensity in the normalized image, [min, max  is the intensity range for the 
input image, and [𝑛𝑒𝑤 , 𝑛𝑒𝑤  is the intensity range required in the output for the 
normalized image. For example, if an image of intensity distribution [0, 200] is required 
to be intensity-normalized for [0, 255], then the following mathematical relation is appli-
cable for this transformation: 𝑓 (𝑖, 𝑗) =  (𝑓(𝑖, 𝑗) −  0) ∗ (255 −  0)(200 −  0) +  0 (5)

This equation maps the original intensity values to the desired intensity range in a 
linear manner. Figure 4 shows the sample image of the dataset with its color histograms. 
The pixel intensity distribution in the form of RGB channels is displayed. The colors in the 
histogram represent pixel intensities for three channels (red, green, and blue) in color im-
ages of the breast cancer dataset. 

 
Figure 4. Visualization of the pixel intensity of the sample image in the form of RGB channels. 

  

Figure 4. Visualization of the pixel intensity of the sample image in the form of RGB channels.



Appl. Sci. 2023, 13, 4255 8 of 20

3.2.3. Data Augmentation

Data augmentation methods are employed on the images to expand the dataset size
and prevent overfitting. The images undergo various transformations such as rotation,
flipping, scaling, and translation to augment the dataset. This method is effective for
expanding the dataset size by generating new samples from existing samples. This can help
to prevent overfitting and enhance the generalization capability of an ML model. For a
pixel intensity f (x, y) at (x, y) position in an input image, the mathematical representations
for these data augmentation techniques are presented below.

a Rotation:

The equation for rotating an image by an angle θ is given as

f ′(x, y) = f (xcos(θ)− ysin(θ), xsin(θ) + ycos(θ)) (6)

where f ′(x, y) here is the new pixel intensity in the rotated image at the same position.

b Flipping:

The equation for flipping an image horizontally or vertically is given below:

Horizontalflip : f ′(x, y) = f (x,−y), Verticalflip : f ′(x, y) = f (−x, y) (7)

where f ′(x, y) here is the new pixel intensity in the flipped image at the same position.

c Scaling:

The equation for scaling an image by a factor of s is given as

f ′(x, y) = f (sx, sy) (8)

where f ′(x, y) here is the new pixel intensity in the scaled image at the same position.

d Translation:

The equation for translating an image by a displacement (dx, dy) is given by

f ′(x, y) = f (x + dx, y + dy) (9)

where f ′(x, y) here is the new pixel intensity in the translated image at the same position.
These equations provide a general framework for performing data augmentation on images,
but the specific implementation details may vary depending on the software and hardware
used. Figure 5 shows the dataset samples which are augmented with the above data
augmentation techniques.

3.2.4. Extraction of Patches

Small segments of size 50 × 50 pixels are obtained from the images of the entire
mounted slide and then classified into two categories, namely, IDC-positive or IDC-negative.
This step is performed to provide the model with smaller and more focused inputs that
contained the regions of interest (IDC regions). The extraction of patches from an image
can be formalized as a process of selecting and cropping regions of a larger image into
smaller, overlapping, or non-overlapping segments.

If f (x, y) is the pixel intensity value at (x, y) position in the original image and P is the
patch length, then the equation for extracting a patch centered at location (x, y) is given as

f ′(i, j) = f
(

x− (P− 1)
2 + i

, y− (P− 1)
2 + j

)
(10)

where i = 0, 1, . . . , P− 1 and j = 0, 1, . . . , P− 1.
This equation crops a patch of size P× P centered at location (x, y) from the original

image. The patches can be extracted in an overlapping or non-overlapping manner depend-
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ing on the desired level of spatial resolution. If the patches are extracted in an overlapping
manner, then the equation for the next patch can be given as

f ′′ (i, j) = f
(

x− (P− 1)
2 + i + d

, y− (P− 1)
2 + j + d

)
(11)

where d is the overlap distance between the patches.
This equation crops a patch of size P× P centered at location (x + d, y + d) from the

original image which overlaps with the previous patch. The extraction of patches can be
performed in a sliding-window manner to ensure that all regions of the image are covered.
Figure 6 shows the preprocessed data sample, while the class-labeled samples are shown in
Figure 7.
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3.3. D U-Net Model for Classification

3D U-Net models are a type of DL model which are commonly employed for medical
picture segmentation and classification applications. They are developed from the well-
known 2D U-Net structure and then further developed to deal with 3D data. Frequently, 3D
CNN models are composed of two separate pathways. The first one is the contracting path
which consists of convolutional and max pooling layers. The other one is the expanding
path that includes transposed convolutional and up-sampling layers. The missed links
between the contracting and expanding paths in the network allow the spatial information
to be preserved from the contracting path. The 3D U-Net model produces a segmentation
map or a label for categorizing the data when a 3D data volume is given to it. The model
is trained on a larger annotated dataset with the parameters being tuned to minimize a
loss function. The model is put through its paces by feeding it an unseen 3D volume and
seeing what comes out the other end, a segmentation map and/or a classification label. A
3D U-Net model can have its architecture tailored to the needs of a particular application.
The size and capacity of a CNN can be adjusted by tweaking various parameters, such
as the number of layers, the number of filters assigned to each layer, the stride value,
and the kernel size utilized in each layer. For ductal carcinoma classification, a 3D U-Net
model undergoes a training process to distinguish between IDC-positive and IDC-negative
regions in histopathological images. The entire model is trained using a supervised learning
strategy by employing cross-entropy as the loss function. Figure 8 shows the 3D U-Net
classifier architecture.

The main mathematical operations for the 3D U-Net classification model are convolu-
tion, max pooling, up-sampling, and transposed convolution.

Convolution:

Given an input feature map X with dimensions batch size, depth, height, width, and
channels, and a kernel W with dimensions depth, height, width, input channels, and output
channels, the convolution operation is given as

Y = Conv3D(X, W) = sumn
i (X[i, j, k, l, m] ∗W[i, j, k, m, n]) (12)

where m and n are the indices of input and output channels, respectively.

Max Pooling:

Given an input feature map X with dimensions batch size, depth, height, width, and
channels, the following relationship gives the max pooling operation:

Y = MaxPool3D(X) = max(X[i : i + stride, j : j + stride, k : k + stride, l : l : channels]) (13)
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where stride is the pooling stride and the max pooling operation selects the maximum
value in a stride3 region.

Up-sampling:

Given an input feature map X with dimensions batch size, depth, height, width, and
channels, and a scaling factor s, the up-sampling operation is given as

Y = Upsample3D(X, s) = X[i, j, k, l, m] (14)

where i, j, k are in [0, s), l is in [0, channels), m is in [0, batchsize), and the up-sampling
operation expands the feature map spatial dimensions by factor s.

Transposed Convolution:

Given an input feature map X with dimensions batch size, depth, height, width, and
channels, and a kernel W with dimensions depth, height, width, output channels, and
input channels, the transposed convolution process is described as follows:

Y = ConvTranspose3D(X, W) = sumn
i (X[i, j, k, l, m] ∗W[i, j, k, n, m]) (15)

where m and n are the indices of input and output channels, respectively. The transposed
convolution operation can be considered as a convolution operation followed by an up-
sampling operation, where the up-sampling is achieved by inserting zeros between the
input pixels and then convolving the resulting matrix with a filter kernel. These operations
form the building blocks of a 3D U-Net model for ductal carcinoma classification and are
repeated multiple times to form the contracting and expanding paths of the model.
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3.4. Fine-Tuning of 3D U-Nets

The parameters of a pre-trained model can be fine-tuned by modifying them to
minimize the loss on a different target task. This process allows the model to adapt to the
new task while leveraging the knowledge learned from the pre-training. By adjusting the
parameters, the model can better fit the new data and potentially achieve higher accuracy
on the target task. This technique has demonstrated exceptional performance in various
computer vision applications, particularly in the categorization of medical images. Once
the 3D U-Net model has been trained using a large medical image dataset, the number of
classes for the target task is determined, and the final layer is adjusted or substituted as
needed. The quantity of training data available for the target job determines whether the
model’s pre-trained weights are frozen or fine-tuned. Loss functions, such as cross-entropy
loss for binary or multi-class classification are defined based on the task and then employed
for fine-tuning the 3D U-Net. This model is then retrained by updating the model factors for
loss function minimization with optimization methods such as stochastic gradient descent
(SGD) or Adam on the data from the target task.

A well-tuned 3D U-Net model for medical image categorization can be described
mathematically as follows.

Loss Function:

The loss function calculates the disparity between the predictions made by the model
and the ground-truth labels. In the case of binary classification, the cross-entropy loss
function can be expressed as

Loss = −(y ∗ log(p) + (1− y) ∗ log(1− p)) (16)

where y is the true label and p is the model prediction. For a multi-class classification task,
the cross-entropy loss function is given by

Loss = −sum(yi ∗ log(pi))) (17)

where yi is the true label for class i and pi is the model prediction for class i.

Optimization Algorithm:

The optimization procedure involves updating the model parameters to minimize the
loss function. This is accomplished with optimization algorithms, such as gradient descent,
which iteratively adjust the model’s parameters in the direction of the steepest descent of
the loss function. The gradient descent algorithm can be expressed as an iterative process
where, at each iteration, the model parameters are updated based on the gradient of the
loss function for the given parameters. The gradient descent method can be represented as

w = w− alpha ∗ gradient(Loss) (18)

where w is the model parameters, alpha is the learning rate, and gradient(Loss) is the loss
function gradient for w.

Regularization:

Regularization can be added to the loss function to prevent overfitting and improve
generalization. L2 regularization can be represented as

Loss = Loss + lambda ∗ ||w||2 (19)

where lambda is the regularization coefficient and ||w||2 is the L2 norm of the model
parameters.
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3.5. Performance Evaluation

Performance evaluation of a fine-tuned 3D U-Net model for medical image classifica-
tion can be performed in several ways. Two common metrics employed to calculate the
performance of a binary classification task are training and testing accuracy and confusion
matrix.

Training and Testing Accuracy:

The training and testing accuracies measure classifier capability for correct predictions
of true labels for training and testing data samples, respectively. These metrics can be
calculated as follows:

TrainingAccuracy =
Correctlyclassifiedsamplecount

Totaltrainingsamplecount
(20)

TestingAccuracy =
Correctlyclassifiedsamplecount

Totaltestingsamplecount
(21)

Confusion Matrix:

The confusion chart is a matrix that summarizes the classifier performance with the
comparison of true labels and model predictions. It provides insights into the predictions
made by the classification model. The correctly classified samples of the positive and
negative classes are represented as true positive (TP) and true negative (TN), respectively,
while the wrongly classified samples of the positive and negative classes are represented as
false negative (FN) and false positive (FP), respectively. The values of the confusion matrix
can be calculated as follows:

TP = Number of samples correctly classified as positive

TN = Number of samples correctly classified as negative

FP = Number of samples incorrectly classified as positive

FN = Number of samples incorrectly classified as negative

4. Results & Discussion

The results are generated with the fine-tuned and simple 3D U-Net classifiers over
breast histopathology images in which the fine-tuned models achieved better results in
the classification of ductal carcinoma. The model that underwent fine-tuning exhibited
a training accuracy of 98.99% and a testing accuracy of 97%. The accuracy achieved by
the simple model was 89% during training and 87% during testing. The fine-tuned model
also had a lower loss on the testing data (0.003) compared to the simple model (0.041).
The improved accuracy and decreased loss of the fine-tuned model indicate that utilizing
transfer learning is an efficient approach for enhancing the performance of the 3D U-Net
model. The fine-tuned model was able to improve its performance by leveraging the
learned features from the pre-trained model and adapting them to the new task. This is
because the pre-trained model served as a starting point and provided a foundation of
knowledge that was relevant to the new task. As a result, the fine-tuned model was able to
learn more efficiently and effectively. The detailed results of both models are given below.

4.1. Performance of Fine-Tuned 3D U-Net Model

The fine-tuned model showed a high performance in the classification of ductal carci-
noma in breast histopathology images. The model demonstrated its ability to effectively
learn and generalize the features and patterns in the data with 98.99% and 97% training
and testing accuracies, respectively. The lower loss of 0.003 on the testing data also indi-
cates the model’s ability to accurately predict the true class labels. The results indicate
that fine-tuning the 3D U-Net classifier with supplementary training data and adjusted
parameters can lead to improved performance in breast cancer image classification tasks.
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Figure 9 shows the accuracy of the fine-tuned model, while Figure 10 shows its training
and validation losses. Figure 11 displays the confusion matrix to exhibit the cancerous
image classification results. The correctly classified samples as resulting images with the
predicted class labels are shown in Figure 12.
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4.2. Performance of Simple 3D U-Net Model

Figures 13–16 provide comprehensive visual representations for understanding the
performance of the basic 3D U-Net classifier. The accuracies obtained with the basic
model during the training and testing phases are shown in Figure 13, while Figure 14
shows the loss of the model during the testing phase. The confusion matrix in Figure 15
highlights the model’s ability to accurately classify the ductal carcinoma images and
identify any misclassifications. Finally, Figure 16 presents the classification results visually
to demonstrate the model’s performance. These figures provide a detailed comparison
between the two models and allow for a thorough evaluation of their performance.
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Comparatively, our proposed approach has shown promising results. Table 2 presents
a comparison between the current study and the previous innovative studies.
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Table 2. Detailed comparison of prior advanced studies and the proposed work for the classification
of invasive ductal carcinoma.

Reference Dataset Model Accuracy

Obayya et al. [41] Histopathological data
of breasts

AOADL-HBCC 95%

Sugimoto et al. [23] Histopathological data
of breasts

CNN 91.5%

Vidavsky et al. [12] Histopathological data
of breasts

AlexNet 90%

Bhattacharjee et al. [8] Histopathological data
of breasts ResNet 89%

This study Histopathological data
of breasts 3D U-Net 97%

5. Conclusions

This study demonstrates the promising results of transfer learning in enhancing the
categorization of breast histopathology images for invasive ductal carcinoma (a prevalent
subtype of breast cancer) detection. The study improved upon the accuracy of a basic 3D
U-Net model (87%) in identifying ductal cancer by fine-tuning a pre-trained 3D U-Net
model with 97% accuracy. The findings show that transfer learning successfully utilizes
the features gained from a previously trained model to boost performance on a different
task. The outcomes reveal that the classification model can be fine-tuned to a higher extent.
Although the current model has shown good accuracy, there is still room for improvement
as the difference between the training and testing accuracy suggests that the classification
model might have become overly specific to the training data and may not generalize
well. More research in this direction could help push the boundaries of computer-assisted
diagnosis by enhancing the efficiency with training over larger sets of cancer imaging
data. The use of transfer learning and 3D U-Net models in breast cancer imaging can have
significant implications for society. The early and accurate diagnosis of breast cancer can
greatly improve a patient’s chances of successful treatment and recovery. By improving
the accuracy and efficiency of ductal carcinoma classification, healthcare professionals can
make more informed decisions about treatment options and improve patient outcomes.
Additionally, the use of transfer learning and 3D U-Net models can potentially reduce the
workload and increase the productivity of radiologists. This allows for a more efficient
diagnosis and effective treatment of breast cancer patients. Ultimately, this technology has
the potential to make a meaningful impact on society by improving the identification and
treatment of breast cancer and potentially other cancer types as well.
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