Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Authors = Kamil Synoradzki ORCID = 0000-0003-1019-1982

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1344 KiB  
Review
From Molecular Biology to Novel Immunotherapies and Nanomedicine in Uveal Melanoma
by Kamil J. Synoradzki, Natalia Paduszyńska, Malgorzata Solnik, Mario Damiano Toro, Krzysztof Bilmin, Elżbieta Bylina, Piotr Rutkowski, Yacoub A. Yousef, Claudio Bucolo, Sandrine Anne Zweifel, Michele Reibaldi, Michal Fiedorowicz and Anna M. Czarnecka
Curr. Oncol. 2024, 31(2), 778-800; https://doi.org/10.3390/curroncol31020058 - 1 Feb 2024
Cited by 7 | Viewed by 4906
Abstract
Molecular biology studies of uveal melanoma have resulted in the development of novel immunotherapy approaches including tebentafusp—a T cell–redirecting bispecific fusion protein. More biomarkers are currently being studied. As a result, combined immunotherapy is being developed as well as immunotherapy with bifunctional checkpoint [...] Read more.
Molecular biology studies of uveal melanoma have resulted in the development of novel immunotherapy approaches including tebentafusp—a T cell–redirecting bispecific fusion protein. More biomarkers are currently being studied. As a result, combined immunotherapy is being developed as well as immunotherapy with bifunctional checkpoint inhibitory T cell engagers and natural killer cells. Current trials cover tumor-infiltrating lymphocytes (TIL), vaccination with IKKb-matured dendritic cells, or autologous dendritic cells loaded with autologous tumor RNA. Another potential approach to treat UM could be based on T cell receptor engineering rather than antibody modification. Immune-mobilizing monoclonal T cell receptors (TCR) against cancer, called ImmTAC TM molecules, represent such an approach. Moreover, nanomedicine, especially miRNA approaches, are promising for future trials. Finally, theranostic radiopharmaceuticals enabling diagnosis and therapy with the same molecule bring hope to this research. Full article
Show Figures

Figure 1

30 pages, 2212 KiB  
Review
Imaging of Uveal Melanoma—Current Standard and Methods in Development
by Małgorzata Solnik, Natalia Paduszyńska, Anna M. Czarnecka, Kamil J. Synoradzki, Yacoub A. Yousef, Tomasz Chorągiewicz, Robert Rejdak, Mario Damiano Toro, Sandrine Zweifel, Katarzyna Dyndor and Michał Fiedorowicz
Cancers 2022, 14(13), 3147; https://doi.org/10.3390/cancers14133147 - 27 Jun 2022
Cited by 46 | Viewed by 6189
Abstract
Uveal melanoma is the most common primary intraocular malignancy in adults, characterized by an insidious onset and poor prognosis strongly associated with tumor size and the presence of distant metastases, most commonly in the liver. Contrary to most tumor identification, a biopsy followed [...] Read more.
Uveal melanoma is the most common primary intraocular malignancy in adults, characterized by an insidious onset and poor prognosis strongly associated with tumor size and the presence of distant metastases, most commonly in the liver. Contrary to most tumor identification, a biopsy followed by a pathological exam is used only in certain cases. Therefore, an early and noninvasive diagnosis is essential to enhance patients’ chances for early treatment. We reviewed imaging modalities currently used in the diagnostics of uveal melanoma, including fundus imaging, ultrasonography (US), optical coherence tomography (OCT), single-photon emission computed tomography (SPECT), fundus fluorescein angiography (FFA), indocyanine green angiography (ICGA), fundus autofluorescence (FAF), as well as positron emission tomography/computed tomography (PET/CT) or magnetic resonance imaging (MRI). The principle of imaging techniques is briefly explained, along with their role in the diagnostic process and a summary of their advantages and limitations. Further, the experimental data and the advancements in imaging modalities are explained. We describe UM imaging innovations, show their current usage and development, and explain the possibilities of utilizing such modalities to diagnose uveal melanoma in the future. Full article
(This article belongs to the Special Issue Uveal Melanoma: From Diagnosis to Therapy)
Show Figures

Figure 1

21 pages, 1756 KiB  
Review
New Perspectives for Eye-Sparing Treatment Strategies in Primary Uveal Melanoma
by Krzysztof Bilmin, Kamil J. Synoradzki, Anna M. Czarnecka, Mateusz J. Spałek, Tamara Kujawska, Małgorzata Solnik, Piotr Merks, Mario Damiano Toro, Robert Rejdak and Michał Fiedorowicz
Cancers 2022, 14(1), 134; https://doi.org/10.3390/cancers14010134 - 28 Dec 2021
Cited by 19 | Viewed by 4911
Abstract
Uveal melanoma is the most common intraocular malignancy and arises from melanocytes in the choroid, ciliary body, or iris. The current eye-sparing treatment options include surgical treatment, plaque brachytherapy, proton beam radiotherapy, stereotactic photon radiotherapy, or photodynamic therapy. However, the efficacy of these [...] Read more.
Uveal melanoma is the most common intraocular malignancy and arises from melanocytes in the choroid, ciliary body, or iris. The current eye-sparing treatment options include surgical treatment, plaque brachytherapy, proton beam radiotherapy, stereotactic photon radiotherapy, or photodynamic therapy. However, the efficacy of these methods is still unsatisfactory. This article reviews several possible new treatment options and their potential advantages in treating localized uveal melanoma. These methods may be based on the physical destruction of the cancerous cells by applying ultrasounds. Two examples of such an approach are High-Intensity Focused Ultrasound (HIFU)—a promising technology of thermal destruction of solid tumors located deep under the skin and sonodynamic therapy (SDT) that induces reactive oxygen species. Another approach may be based on improving the penetration of anti-cancer agents into UM cells. The most promising technologies from this group are based on enhancing drug delivery by applying electric current. One such approach is called transcorneal iontophoresis and has already been shown to increase the local concentration of several different therapeutics. Another technique, electrically enhanced chemotherapy, may promote drug delivery from the intercellular space to cells. Finally, new advanced nanoparticles are developed to combine diagnostic imaging and therapy (i.e., theranostics). However, these methods are mostly at an early stage of development. More advanced and targeted preclinical studies and clinical trials would be needed to introduce some of these techniques to routine clinical practice. Full article
(This article belongs to the Special Issue Therapies of Uveal Melanoma)
Show Figures

Figure 1

23 pages, 3780 KiB  
Review
TP53 in Biology and Treatment of Osteosarcoma
by Kamil Jozef Synoradzki, Ewa Bartnik, Anna M. Czarnecka, Michał Fiedorowicz, Wiktoria Firlej, Anna Brodziak, Agnieszka Stasinska, Piotr Rutkowski and Paweł Grieb
Cancers 2021, 13(17), 4284; https://doi.org/10.3390/cancers13174284 - 25 Aug 2021
Cited by 44 | Viewed by 6364
Abstract
The TP53 gene is mutated in 50% of human tumors. Oncogenic functions of mutant TP53 maintain tumor cell proliferation and tumor growth also in osteosarcomas. We collected data on TP53 mutations in patients to indicate which are more common and describe their role [...] Read more.
The TP53 gene is mutated in 50% of human tumors. Oncogenic functions of mutant TP53 maintain tumor cell proliferation and tumor growth also in osteosarcomas. We collected data on TP53 mutations in patients to indicate which are more common and describe their role in in vitro and animal models. We also describe animal models with TP53 dysfunction, which provide a good platform for testing the potential therapeutic approaches. Finally, we have indicated a whole range of pharmacological compounds that modulate the action of p53, stabilize its mutated versions or lead to its degradation, cause silencing or, on the contrary, induce the expression of its functional version in genetic therapy. Although many of the described therapies are at the preclinical testing stage, they offer hope for a change in the approach to osteosarcoma treatment based on TP53 targeting in the future. Full article
(This article belongs to the Special Issue Targeted Treatment for Soft Tissue Sarcoma and Bone Sarcoma)
Show Figures

Figure 1

27 pages, 1465 KiB  
Review
Molecular Biology of Osteosarcoma
by Anna M. Czarnecka, Kamil Synoradzki, Wiktoria Firlej, Ewa Bartnik, Pawel Sobczuk, Michal Fiedorowicz, Pawel Grieb and Piotr Rutkowski
Cancers 2020, 12(8), 2130; https://doi.org/10.3390/cancers12082130 - 31 Jul 2020
Cited by 274 | Viewed by 20244
Abstract
Osteosarcoma (OS) is the most frequent primary bone cancer in children and adolescents and the third most frequent in adults. Many inherited germline mutations are responsible for syndromes that predispose to osteosarcomas including Li Fraumeni syndrome, retinoblastoma syndrome, Werner syndrome, Bloom syndrome or [...] Read more.
Osteosarcoma (OS) is the most frequent primary bone cancer in children and adolescents and the third most frequent in adults. Many inherited germline mutations are responsible for syndromes that predispose to osteosarcomas including Li Fraumeni syndrome, retinoblastoma syndrome, Werner syndrome, Bloom syndrome or Diamond–Blackfan anemia. TP53 is the most frequently altered gene in osteosarcoma. Among other genes mutated in more than 10% of OS cases, c-Myc plays a role in OS development and promotes cell invasion by activating MEK–ERK pathways. Several genomic studies showed frequent alterations in the RB gene in pediatric OS patients. Osteosarcoma driver mutations have been reported in NOTCH1, FOS, NF2, WIF1, BRCA2, APC, PTCH1 and PRKAR1A genes. Some miRNAs such as miR-21, -34a, -143, -148a, -195a, -199a-3p and -382 regulate the pathogenic activity of MAPK and PI3K/Akt-signaling pathways in osteosarcoma. CD133+ osteosarcoma cells have been shown to exhibit stem-like gene expression and can be tumor-initiating cells and play a role in metastasis and development of drug resistance. Although currently osteosarcoma treatment is based on adriamycin chemoregimens and surgery, there are several potential targeted therapies in development. First of all, activity and safety of cabozantinib in osteosarcoma were studied, as well as sorafenib and pazopanib. Finally, novel bifunctional molecules, of potential imaging and osteosarcoma targeting applications may be used in the future. Full article
(This article belongs to the Special Issue Bone and Soft Tissue Tumors)
Show Figures

Figure 1

17 pages, 3374 KiB  
Article
TP53-Deficient Angiosarcoma Expression Profiling in Rat Model
by Urszula Smyczyńska, Damian Strzemecki, Anna M. Czarnecka, Wojciech Fendler, Michał Fiedorowicz, Marlena Wełniak-Kamińska, Magdalena Guzowska, Kamil Synoradzki, Łukasz Cheda, Zbigniew Rogulski and Paweł Grieb
Cancers 2020, 12(6), 1525; https://doi.org/10.3390/cancers12061525 - 10 Jun 2020
Cited by 4 | Viewed by 4196
Abstract
Sarcomas are a heterogeneous group of malignant tumors, that develop from mesenchymal cells. Sarcomas are tumors associated with poor prognosis and expected short overall survival. Efforts to improve treatment efficacy and treatment outcomes of advanced and metastatic sarcoma patients have not led to [...] Read more.
Sarcomas are a heterogeneous group of malignant tumors, that develop from mesenchymal cells. Sarcomas are tumors associated with poor prognosis and expected short overall survival. Efforts to improve treatment efficacy and treatment outcomes of advanced and metastatic sarcoma patients have not led to significant improvements in the last decades. In the Tp53C273X/C273X rat model we therefore aimed to characterize specific gene expression pattern of angiosarcomas with a loss of TP53 function. The presence of metabolically active tumors in several locations including the brain, head and neck, extremities and abdomen was confirmed by magnetic resonance imaging (MRI) and positron emission tomography (PET) examinations. Limb angiosarcoma tumors were selected for microarray expression analysis. The most upregulated pathways in angiosarcoma vs all other tissues were related to cell cycle with mitosis and meiosis, chromosome, nucleosome and telomere maintenance as well as DNA replication and recombination. The downregulated genes were responsible for metabolism, including respiratory chain electron transport, tricarboxylic acid (TCA) cycle, fatty acid metabolism and amino-acid catabolism. Our findings demonstrated that the type of developing sarcoma depends on genetic background, underscoring the importance of developing more malignancy susceptibility models in various strains and species to simulate the study of the diverse genetics of human sarcomas. Full article
(This article belongs to the Special Issue The Study of Cancer Susceptibility Genes)
Show Figures

Graphical abstract

8 pages, 841 KiB  
Discussion
Citicoline: A Superior Form of Choline?
by Kamil Synoradzki and Paweł Grieb
Nutrients 2019, 11(7), 1569; https://doi.org/10.3390/nu11071569 - 12 Jul 2019
Cited by 37 | Viewed by 17548
Abstract
Medicines containing citicoline (cytidine-diphosphocholine) as an active principle have been marketed since the 1970s as nootropic and psychostimulant drugs available on prescription. Recently, the inner salt variant of this substance was pronounced a food ingredient in the major world markets. However, in the [...] Read more.
Medicines containing citicoline (cytidine-diphosphocholine) as an active principle have been marketed since the 1970s as nootropic and psychostimulant drugs available on prescription. Recently, the inner salt variant of this substance was pronounced a food ingredient in the major world markets. However, in the EU no nutrition or health claim has been authorized for use in commercial communications concerning its properties. Citicoline is considered a dietetic source of choline and cytidine. Cytidine does not have any health claim authorized either, but there are claims authorized for choline, concerning its contribution to normal lipid metabolism, maintenance of normal liver function, and normal homocysteine metabolism. The applicability of these claims to citicoline is discussed, leading to the conclusion that the issue is not a trivial one. Intriguing data, showing that on a molar mass basis citicoline is significantly less toxic than choline, are also analyzed. It is hypothesized that, compared to choline moiety in other dietary sources such as phosphatidylcholine, choline in citicoline is less prone to conversion to trimethylamine (TMA) and its putative atherogenic N-oxide (TMAO). Epidemiological studies have suggested that choline supplementation may improve cognitive performance, and for this application citicoline may be safer and more efficacious. Full article
Show Figures

Figure 1

11 pages, 2476 KiB  
Article
Thermal and Electronic Transport Properties of the Half-Heusler Phase ScNiSb
by Karol Synoradzki, Kamil Ciesielski, Igor Veremchuk, Horst Borrmann, Przemysław Skokowski, Damian Szymański, Yuri Grin and Dariusz Kaczorowski
Materials 2019, 12(10), 1723; https://doi.org/10.3390/ma12101723 - 27 May 2019
Cited by 39 | Viewed by 5499
Abstract
Thermoelectric properties of the half-Heusler phase ScNiSb (space group F 4 ¯ 3m) were studied on a polycrystalline single-phase sample obtained by arc-melting and spark-plasma-sintering techniques. Measurements of the thermopower, electrical resistivity, and thermal conductivity were performed in the wide temperature [...] Read more.
Thermoelectric properties of the half-Heusler phase ScNiSb (space group F 4 ¯ 3m) were studied on a polycrystalline single-phase sample obtained by arc-melting and spark-plasma-sintering techniques. Measurements of the thermopower, electrical resistivity, and thermal conductivity were performed in the wide temperature range 2–950 K. The material appeared as a p-type conductor, with a fairly large, positive Seebeck coefficient of about 240 μV K−1 near 450 K. Nevertheless, the measured electrical resistivity values were relatively high (83 μΩm at 350 K), resulting in a rather small magnitude of the power factor (less than 1 × 10−3 W m−1 K−2) in the temperature range examined. Furthermore, the thermal conductivity was high, with a local minimum of about 6 W m−1 K−1 occurring near 600 K. As a result, the dimensionless thermoelectric figure of merit showed a maximum of 0.1 at 810 K. This work suggests that ScNiSb could be a promising base compound for obtaining thermoelectric materials for energy conversion at high temperatures. Full article
(This article belongs to the Special Issue Heusler and Half-Heusler Compounds)
Show Figures

Figure 1

Back to TopTop