Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Authors = Jinyao Ma

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5808 KiB  
Article
Synthesis of Zeolitic Imidazolate Framework-8 from Waste Electrodes via Ball Milling for Efficient Uranium Removal
by Minhua Su, Jinyao Zhu, Ruoning Wu, Jiaqi Pan, Jingran Yang, Jiaxue Zhao, Diyun Chen, Changzhong Liao, Kaimin Shih and Shengshou Ma
Separations 2025, 12(2), 40; https://doi.org/10.3390/separations12020040 - 6 Feb 2025
Cited by 1 | Viewed by 926
Abstract
Developing a cost-effective approach for the remediation of wastewater containing uranyl [U(VI)] ions is essentially important to ecosystems and human health. In this study, a Zn-based ZIF-8 framework was fabricated from wasted batteries through an environmentally friendly ball milling process featuring a distinct [...] Read more.
Developing a cost-effective approach for the remediation of wastewater containing uranyl [U(VI)] ions is essentially important to ecosystems and human health. In this study, a Zn-based ZIF-8 framework was fabricated from wasted batteries through an environmentally friendly ball milling process featuring a distinct microstructure compared to those synthesized from commercial Zn(II) sources. The as-obtained Zn-based ZIF-8 framework can effectively remove U(VI) ions from water, and a high removal efficiency of up to 99% is achieved across different process parameters, including initial dosage, pH values, and the presence of interfering ions. The superior U(VI) removal performance is attributed to the synergistic effect of microstructural features (e.g., crystallite size, specific surface area and pore diameter) and chemical interaction within the framework of Zn-based ZIF-8, resulting in the formation of the U···N chelates. This study integrates waste upcycling and hazardous U(VI) removal in an environmentally sound way, thereby promoting a circular economy. Full article
(This article belongs to the Section Environmental Separations)
Show Figures

Figure 1

25 pages, 3191 KiB  
Review
Interrelation of Natural Polyphenol and Fibrosis in Diabetic Nephropathy
by Ye Ma, Jiakun Wang, Juyue Fan, Huiyang Jia and Jinyao Li
Molecules 2025, 30(1), 20; https://doi.org/10.3390/molecules30010020 - 25 Dec 2024
Cited by 2 | Viewed by 1806
Abstract
Diabetic nephropathy (DN) is a common and serious complication of diabetes mellitus and a major cause of end-stage renal disease (ESRD). Renal fibrosis, which corresponds to excessive deposition of extracellular matrix and leads to scarring, is a characteristic feature of the various progressive [...] Read more.
Diabetic nephropathy (DN) is a common and serious complication of diabetes mellitus and a major cause of end-stage renal disease (ESRD). Renal fibrosis, which corresponds to excessive deposition of extracellular matrix and leads to scarring, is a characteristic feature of the various progressive stages of DN. It can trigger various pathological processes leading to the activation of autophagy, inflammatory responses and a vicious circle of oxidative stress and inflammation. Although it is known that DN can be alleviated by mechanisms linked to antioxidants, reducing inflammation and improving autophagy, how to improve DN by reducing fibrosis using natural polyphenols needs to be studied further. Nowadays, natural polyphenolic compounds with excellent safety and efficacy are playing an increasingly important role in drug discovery. Therefore, this review reveals the multiple mechanisms associated with fibrosis in DN, as well as the different signaling pathways (including TGF-β/SMAD, mTORC1/p70S6K, JAK/STAT/SOCS and Wnt/β-catenin) and the potential role in the fibrotic niche. In parallel, we summarize the types of polyphenolic compounds and their pharmacodynamic effects, and finally evaluate the use of polyphenols to modulate relevant targets and pathways, providing potential research directions for polyphenols to improve DN. In summary, the problem of long-term monotherapy resistance can be reduced with natural polyphenols, while reducing the incidence of toxic side effects. In addition, potential targets and their inhibitors can be identified through these pathways, offering potential avenues of research for natural polyphenols in the pharmacological treatment of multisite fibrosis. Full article
Show Figures

Figure 1

16 pages, 2086 KiB  
Article
Homosalate and ERK Knockdown in the Modulation of Aurelia coerulea Metamorphosis by Regulating the PI3K Pathway and ERK Pathway
by Jinhong Chen, Xiaoyu Geng, Bingbing Li, Jinyao Xie, Jieying Ma, Zhen Qin, Mingke Wang and Jishun Yang
Curr. Issues Mol. Biol. 2024, 46(10), 11630-11645; https://doi.org/10.3390/cimb46100690 - 18 Oct 2024
Cited by 1 | Viewed by 1205
Abstract
Metamorphosis control is pivotal in preventing the outbreak of jellyfish, and it is often studied using common model organisms. The widespread use of the ultraviolet blocking agent homosalate in cosmetics poses a threat to marine ecosystems. Although the impact of homosalate on marine [...] Read more.
Metamorphosis control is pivotal in preventing the outbreak of jellyfish, and it is often studied using common model organisms. The widespread use of the ultraviolet blocking agent homosalate in cosmetics poses a threat to marine ecosystems. Although the impact of homosalate on marine organisms has been extensively examined, there is a notable absence of research on its effects on jellyfish metamorphosis and the underlying mechanisms, warranting further investigation. In this study, we first established a study model by using 5-methoxy-2-methylindole to induce Aurelia coerulea metamorphosis, and selected homosalate as a PI3K agonist and an ERK agonist, while we used YS-49 as a specific PI3K agonist, as well as ERK knockdown, to observe their effect on the metamorphosis of Aurelia coerulea. The results showed that an Aurelia coerulea metamorphosis model was established successfully, and the PI3K agonist homosalate, YS-49, and the knockdown of ERK molecules could significantly delay the metamorphosis development of Aurelia coerulea. We propose that activating PI3K/Akt and inhibiting the ERK pathway are involved in the delayed development of Aurelia coerulea, which provides a new strategy for the prevention and control of jellyfish blooms. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

28 pages, 7534 KiB  
Review
Recent Progress in Photodetectors: From Materials to Structures and Applications
by Tianjun Ma, Ning Xue, Abdul Muhammad, Gang Fang, Jinyao Yan, Rongkun Chen, Jianhai Sun and Xuguang Sun
Micromachines 2024, 15(10), 1249; https://doi.org/10.3390/mi15101249 - 11 Oct 2024
Cited by 20 | Viewed by 8969
Abstract
Photodetectors are critical components in a wide range of applications, from imaging and sensing to communications and environmental monitoring. Recent advancements in material science have led to the development of emerging photodetecting materials, such as perovskites, polymers, novel two-dimensional materials, and quantum dots, [...] Read more.
Photodetectors are critical components in a wide range of applications, from imaging and sensing to communications and environmental monitoring. Recent advancements in material science have led to the development of emerging photodetecting materials, such as perovskites, polymers, novel two-dimensional materials, and quantum dots, which offer unique optoelectronic properties and high tunability. This review presents a comprehensive overview of the synthesis methodologies for these cutting-edge materials, highlighting their potential to enhance photodetection performance. Additionally, we explore the design and fabrication of photodetectors with novel structures and physics, emphasizing devices that achieve high figure-of-merit parameters, such as enhanced sensitivity, fast response times, and broad spectral detection. Finally, we discuss the demonstration of new applications enabled by these advanced photodetectors, including flexible and wearable devices, next-generation imaging systems, and environmental sensing technologies. Through this review, we aim to provide insights into the current trends and future directions in the field of photodetection, guiding further research and development in this rapidly evolving area. Full article
(This article belongs to the Special Issue Advances in Photodetecting Materials, Devices and Applications)
Show Figures

Figure 1

14 pages, 4199 KiB  
Article
Detection Method for Inter-Turn Short Circuit Faults in Dry-Type Transformers Based on an Improved YOLOv8 Infrared Image Slicing-Aided Hyper-Inference Algorithm
by Zhaochuang Zhang, Jianhua Xia, Yuchuan Wen, Liting Weng, Zuofu Ma, Hekai Yang, Haobo Yang, Jinyao Dou, Jingang Wang and Pengcheng Zhao
Energies 2024, 17(18), 4559; https://doi.org/10.3390/en17184559 - 12 Sep 2024
Cited by 4 | Viewed by 1478
Abstract
Inter-Turn Short Circuit (ITSC) faults do not necessarily produce high temperatures but exhibit distinct heat distribution and characteristics. This paper proposes a novel fault diagnosis and identification scheme utilizing an improved You Look Only Once Vision 8 (YOLOv8) algorithm, enhanced with an infrared [...] Read more.
Inter-Turn Short Circuit (ITSC) faults do not necessarily produce high temperatures but exhibit distinct heat distribution and characteristics. This paper proposes a novel fault diagnosis and identification scheme utilizing an improved You Look Only Once Vision 8 (YOLOv8) algorithm, enhanced with an infrared image slicing-aided hyper-inference (SAHI) technique, to automatically detect ITSC fault trajectories in dry-type transformers. The infrared image acquisition system gathers data on ITSC fault trajectories and captures images with varying contrast to enhance the robustness of the recognition model. Given that the fault trajectory constitutes a small portion of the overall infrared image and is subject to significant background interference, traditional recognition algorithms often misjudge or omit faults. To address this, a YOLOv8-based visual detection method incorporating Dynamic Snake Convolution (DSConv) and the Slicing-Aided Hyper-Inference algorithm is proposed. This method aims to improve recognition precision and accuracy for small targets in complex backgrounds, facilitating accurate detection of ITSC faults in dry-type transformers. Comparative tests with the YOLOv8 model, Fast Region-based Convolutional Neural Networks (Fast-RCNNs), and Residual Neural Networks (Retina-Nets) demonstrate that the enhancements significantly improve model convergence speed and fault trajectory detection accuracy. The approach offers valuable insights for advancing infrared image diagnostic technology in electrical power equipment. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

17 pages, 4505 KiB  
Article
Temperature-Dependent Mechanical Behaviors and Deformation Mechanisms in a Si-Added Medium-Entropy Superalloy with L12 Precipitation
by Tuanwei Zhang, Tianxiang Bai, Renlong Xiong, Shunhui Luo, Hui Chang, Shiyu Du, Jinyao Ma, Zhiming Jiao, Shengguo Ma, Jianjun Wang and Zhihua Wang
Metals 2024, 14(7), 749; https://doi.org/10.3390/met14070749 - 25 Jun 2024
Cited by 1 | Viewed by 1736
Abstract
A novel Ni-Co-Cr-based medium-entropy superalloy with a high Si content (7.5 at%) strengthened by an L12 phase was developed. The pure L12 phase, characterized by an average size of 50 nm and a volume fraction of 46%, was precipitated within the [...] Read more.
A novel Ni-Co-Cr-based medium-entropy superalloy with a high Si content (7.5 at%) strengthened by an L12 phase was developed. The pure L12 phase, characterized by an average size of 50 nm and a volume fraction of 46%, was precipitated within the FCC matrix. This alloy exhibits excellent mechanical properties over a wide range of temperatures from 77 K to 1073 K. A yield strength of 1005 MPa, an ultimate tensile strength of 1620 MPa, and a tensile elongation of 36% were achieved at 77 K, with a maximum value of 4.8 GPa at the second stage of the work-hardening rate. The alloy maintains a basically consistent yield strength of approximately 800 MPa from 298 K to 973 K, showcasing significant strain-hardening capabilities, with values of 2.5 GPa, 3.7 GPa, and 4.8 GPa at 873 K, 298 K, and 77 K, respectively. Microscopic analysis revealed that at room and cryogenic temperatures, multilayer stacking faults (SFs), SF bands, and SF networks, rather than twins, effectively stored a large number of dislocations and impeded dislocation movement, thereby enhancing the work-hardening ability of the alloy. Furthermore, at 773 K, the primary deformation mechanism involved high-density dislocation walls (HDDWs) consisting of dislocation tangles and SF lines. As the temperature rose to 973 K, the work-hardening process was influenced by the APB shearing mechanism (in the form of dislocation pairs), SF lines, and microtwins generated through atomic rearrangement. This study not only provides valuable insights for the development of new oxidation-resistant superalloys but also enhances our understanding of high-temperature deformation mechanisms. Full article
Show Figures

Figure 1

14 pages, 8217 KiB  
Article
In Situ Study of Precipitates’ Effect on Grain Deformation Behavior and Mechanical Properties of S31254 Super Austenitic Stainless Steel
by Jinyao Ma, Huanyu Tan, Nan Dong, Jiemin Gao, Puli Wang, Zhihua Wang and Peide Han
Materials 2024, 17(11), 2676; https://doi.org/10.3390/ma17112676 - 1 Jun 2024
Viewed by 1388
Abstract
Grain boundary (GB) precipitation-induced cracking is a significant issue for S31254 super austenitic stainless steel during hot working. Investigating the deformation behavior based on precipitate morphology and distribution is essential. In this study, continuous smaller and intermittent larger precipitates were obtained through heat [...] Read more.
Grain boundary (GB) precipitation-induced cracking is a significant issue for S31254 super austenitic stainless steel during hot working. Investigating the deformation behavior based on precipitate morphology and distribution is essential. In this study, continuous smaller and intermittent larger precipitates were obtained through heat treatments at 950 °C and 1050 °C. The microstructure evolution and mechanical properties influenced by precipitates were experimentally investigated using an in situ tensile stage inside a scanning electron microscope (SEM) combined with electron backscatter diffraction (EBSD). The results showed that continuous precipitates at 950 °C had a stronger pinning effect on the GB, making grain rotation difficult and promoting slip deformation in the plastic interval. Continuous precipitates caused severe stress concentration near GB and reduced coordinated deformation ability. Additionally, the crack propagation path changed from transcrystalline to intercrystalline. Furthermore, internal precipitates were a crucial factor affecting the initial crack nucleation position. Interconnected precipitates led to an intergranular fracture tendency and severe deterioration of the material’s plasticity, as observed in fracture morphology. Full article
Show Figures

Figure 1

15 pages, 5711 KiB  
Article
Hydrogen Embrittlement of 27Cr−4Mo−2Ni Super Ferritic Stainless Steel
by Fei Yang, Yujin Nie, Huiyun Zhang, Weiqiang Niu, Quanxin Shi, Jinyao Ma, Liuwei Zheng and Wei Liang
Materials 2024, 17(7), 1546; https://doi.org/10.3390/ma17071546 - 28 Mar 2024
Viewed by 1552
Abstract
The effect of hydrogen content on the deformation and fracture behavior of 27Cr−4Mo−2Ni super ferritic stainless steel (SFSS) was investigated in this study. It was shown that the plasticity and yield strength of SFSS were very susceptible to hydrogen content. The introduction of [...] Read more.
The effect of hydrogen content on the deformation and fracture behavior of 27Cr−4Mo−2Ni super ferritic stainless steel (SFSS) was investigated in this study. It was shown that the plasticity and yield strength of SFSS were very susceptible to hydrogen content. The introduction of hydrogen led to a significant decrease in elongation and a concurrent increase in yield strength. Nevertheless, a critical threshold was identified in the elongation reduction, after which the elongation remained approximately constant even with more hydrogen introduced, while the yield strength exhibited a monotonic increase with increasing hydrogen content within the experimental range, attributed to the pinning effect of the hydrogen Cottrell atmosphere on dislocations. Furthermore, the hydrogen-charged SFSS shows an apparent drop in flow stress after upper yielding and a reduced work hardening rate during the subsequent plastic deformation. The more hydrogen is charged, the more the flow stress drops, and the lower the work hardening rate becomes. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

19 pages, 4185 KiB  
Article
Combined Computer-Aided Predictors to Improve the Thermostability of Nattokinase
by Yuan Li, Liangqi Chen, Xiyu Tang, Wenhui Zhu, Aixia Ma, Changyu Shi and Jinyao Li
Foods 2023, 12(16), 3045; https://doi.org/10.3390/foods12163045 - 14 Aug 2023
Cited by 7 | Viewed by 2114
Abstract
Food-derived nattokinase has strong thrombolytic activity and few side effects. In the field of medicine, nattokinase has been developed as an adjuvant drug for the treatment of thrombosis, and nattokinase-rich beverages and health foods have also shown great potential in the field of [...] Read more.
Food-derived nattokinase has strong thrombolytic activity and few side effects. In the field of medicine, nattokinase has been developed as an adjuvant drug for the treatment of thrombosis, and nattokinase-rich beverages and health foods have also shown great potential in the field of food development. At present, the poor thermostability of nattokinase limits its industrial production and application. In this study, we used several thermostability-prediction algorithms to predict nattokinase from Bacillus mojavensis LY-06 (AprY), and screened two variants S33T and T174V with increased thermostability and fibrinolytic activity. The t1/2 of S33T and T174V were 8.87-fold and 2.51-fold those of the wild type AprY, respectively, and their enzyme activities were also increased (1.17-fold and 1.28-fold, respectively). Although the thermostability of N218L was increased by 2.7 times, the fibrinolytic activity of N218L was only 73.3% of that of wild type AprY. The multiple-point mutation results showed that S33T-N218L and S33T-T174V-N218L variants lost their activity, and the T174V-N218L variant did not show any significant change in catalytic performance, while S33T-T174V increased its thermostability and activity by 21.3% and 24.8%, respectively. Although the S33T-T174V variant did not show the additive effect of thermostability, it combined the excellent transient thermostability of S33T with the better thrombolytic activity of T174V. Bioinformatics analysis showed that the overall structure of S33T and T174V variants tended to be stable, while the structure of S33T-T174V variant was more flexible. Local structure analysis showed that the increased rigidity of the active center region (positions 64–75) and the key loop region (positions 129–130, 155–163, 187–192, 237–241, and 268–270) determined the increased thermostability of all variants. In addition, the enhanced flexibility of S33T-T174V variant in the Ca1 binding region (positions 1–4, 75–82) and the peripheral region of the catalytic pocket (positions 210–216) may account for the inability to superpose its thermostability. We explored the effective strategy to enhance the thermostability of nattokinase, and the resulting variants have potential industrial production and application. Full article
(This article belongs to the Special Issue Application of Enzyme Biotechnology in Foods)
Show Figures

Figure 1

13 pages, 13261 KiB  
Article
Effects of B and Ce Grain Boundary Segregation on Precipitates in Super Austenitic Stainless Steel
by Song Yang, Jinyao Ma, Chao Chen, Caili Zhang, Junyu Ren, Zhouhua Jiang, Guangwei Fan and Peide Han
Metals 2023, 13(2), 326; https://doi.org/10.3390/met13020326 - 6 Feb 2023
Cited by 20 | Viewed by 2627
Abstract
In order to reduce the segregation of Cr and Mo and inhibit the precipitates, we added a small amount of B and Ce to traditional S31254 steel. Using an air-cooling and low-temperature diffusion treatment, the purpose was to control B and Ce at [...] Read more.
In order to reduce the segregation of Cr and Mo and inhibit the precipitates, we added a small amount of B and Ce to traditional S31254 steel. Using an air-cooling and low-temperature diffusion treatment, the purpose was to control B and Ce at the grain boundary. The heat-treatment process could prompt co-segregation of B, precipitate-forming elements, and Ce at the grain boundary at 950 °C. After aging at 950 °C for different amounts of time, the diffusion treatment had an obvious inhibitory effect on the precipitates that caused them to become discontinuous, fine, and serrated. The B-containing serrated precipitates were only rich in Mo, while Cr was homogeneously distributed in the probed volume. A uniform distribution of Cr reduced the Cr-depleted zone in the area adjacent to the phase interface. Ce was observed to be segregated at the grain boundary. This showed that Ce could inhibit the formation of precipitates at the grain boundary. The serrated precipitates had an obvious resistance to intergranular corrosion. Full article
(This article belongs to the Special Issue Smelting and Solidification Process of Special Steels)
Show Figures

Figure 1

12 pages, 5911 KiB  
Article
Effect of Boron Addition on the Oxide Scales Formed on 254SMO Super Austenitic Stainless Steels in High-Temperature Air
by Junyu Ren, Yi Zhang, Song Yang, Jinyao Ma, Caili Zhang, Zhouhua Jiang, Huabing Li and Peide Han
Metals 2023, 13(2), 258; https://doi.org/10.3390/met13020258 - 28 Jan 2023
Cited by 7 | Viewed by 2066
Abstract
Focusing on the serious volatilization of MoO3 in super austenitic stainless steel with a high Mo content, the influence of B on the formation of oxide film and the distribution of Cr and Mo was investigated at 900 °C and 1000 °C. [...] Read more.
Focusing on the serious volatilization of MoO3 in super austenitic stainless steel with a high Mo content, the influence of B on the formation of oxide film and the distribution of Cr and Mo was investigated at 900 °C and 1000 °C. Without the addition of B, Mo tends to diffuse to the surface, forming porous Cr/Mo-rich oxides, causing the volatilization of Mo. The addition of B can inhibit the diffusion of Mo to the surface, facilitate the diffusion of Cr to the surface and combines with O, providing conditions for the nucleation of Cr2O3. A large amount of Cr2O3 accumulated on the surface to form a dense passive film, which inhibited the diffusion of Mo to the surface, reduced the loss of Mo, and formed Mo/Cr-rich precipitates at grain boundaries that are close to the surface. However, it was difficult to form Mo-rich precipitates at the grain boundaries of a sample without B, which aggravated the volatilization of Mo from grain boundary to surface. Therefore, the addition of B can improve the oxidation resistance of 254SMO and inhibit the volatilization of Mo. Full article
(This article belongs to the Special Issue Corrosion and Protection of Stainless Steels)
Show Figures

Figure 1

10 pages, 4575 KiB  
Article
Effect of Mo and Cr on S-Induced Intergranular Fracture in γ-Fe
by Si Liu, Yi Zhang, Junyu Ren, Nan Dong, Caili Zhang, Jinyao Ma, Zhouhua Jiang, Huabing Li and Peide Han
Metals 2022, 12(10), 1606; https://doi.org/10.3390/met12101606 - 26 Sep 2022
Cited by 7 | Viewed by 2064
Abstract
S is a common corrosion medium for austenitic stainless steels. The severe intergranular fracture of austenitic stainless steels occurs in sulfur environments. In this paper, the permeation of S at different atomic positions for three symmetric tilt grain boundary types, i.e., Σ5(210), Σ5(310), [...] Read more.
S is a common corrosion medium for austenitic stainless steels. The severe intergranular fracture of austenitic stainless steels occurs in sulfur environments. In this paper, the permeation of S at different atomic positions for three symmetric tilt grain boundary types, i.e., Σ5(210), Σ5(310), and Σ9(114) have been computed using first-principles calculations. S has the strongest segregation tendency in the Σ5(210) grain boundary. A high content of S at the grain boundary indicates harm to the grain boundary. Sulfur segregation in the grain boundaries can weaken the strength of the metallic bond. When Mo and Cr are present at the Σ5(210) grain boundary, the sulfur-induced embrittlement is inhibited. With increased S concentration at the grain boundary, the coexistence of Mo and Cr can suppress the intergranular fracture of S on the grain boundary. The reason why high-Mo stainless steel has excellent sulfur-induced intergranular corrosion resistance is explained at the atomic level. Full article
(This article belongs to the Section Computation and Simulation on Metals)
Show Figures

Figure 1

13 pages, 17271 KiB  
Article
Quasi-In-Situ Analysis of As-Rolled Microstructure of Magnesium Alloys during Annealing and Subsequent Plastic Deformation
by Jiafei Deng, Jing Tian, Yancai Zhou, Yuanying Chang, Wei Liang and Jinyao Ma
Materials 2022, 15(19), 6581; https://doi.org/10.3390/ma15196581 - 22 Sep 2022
Cited by 3 | Viewed by 1530
Abstract
In this paper, quasi-in situ experiments were carried out on rolled AZ31 magnesium alloy sheets to track the recrystallization behavior of the rolled microstructure during the heat treatment process and the plastic deformation behavior during the stretching process. The as-rolled microstructures are classified [...] Read more.
In this paper, quasi-in situ experiments were carried out on rolled AZ31 magnesium alloy sheets to track the recrystallization behavior of the rolled microstructure during the heat treatment process and the plastic deformation behavior during the stretching process. The as-rolled microstructures are classified into five characteristics and their plastic deformation behaviors are described. The research shows that annealing recrystallization leads to grain reorganization, resulting in the diversity of grain orientation, and it is easier to activate basal slip. Recrystallization preferentially nucleates in the regions with high stress, while it is difficult for recrystallization to occur in regions with low stress, which leads to the uneven distribution of the as-rolled structure of magnesium alloys. Slip can be better transmitted between small grains, while deformation between large and small grains is difficult to transmit, which can easily lead to the generation of ledges. Incomplete recrystallization is more likely to accumulate dislocations than complete recrystallization, and ledges are formed in the early stage of deformation. Microcracks are more likely to occur between strain-incompatible grains. It is of great significance to promote the application of rolled AZ31 magnesium alloys for the development of heat treatment and subsequent plastic working of rolled magnesium alloys. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

18 pages, 11175 KiB  
Article
Enhanced Formability of Magnesium Alloy Rolled Plates by 101¯2 Tensile Twinning and Recrystallization
by Jiafei Deng, Jing Tian, Yancai Zhou, Yuanying Chang, Wei Liang and Jinyao Ma
Materials 2022, 15(18), 6253; https://doi.org/10.3390/ma15186253 - 8 Sep 2022
Cited by 11 | Viewed by 1777
Abstract
To solve the problem of poor formability of magnesium alloys, the bending and straightening process was used to successfully introduce large-volume 101¯2 tensile twins and dynamic recrystallization into the plates, and the comprehensive mechanical properties of the plates were improved, [...] Read more.
To solve the problem of poor formability of magnesium alloys, the bending and straightening process was used to successfully introduce large-volume 101¯2 tensile twins and dynamic recrystallization into the plates, and the comprehensive mechanical properties of the plates were improved, in which the anisotropy index (Lankford value: r¯) decreased by 77%, and the corresponding Erishen value (IE) increased by 88%. The research shows that most of the continuous dynamic recrystallization (CDRX) and discontinuous dynamic recrystallization (DDRX) inherit the grain orientation of the parent grains, and a few have deviations from the parent grains. The twinning-assisted dynamic recrystallization (TDRX) can effectively inherit the grain orientation of the parent grain and retain the orientation relationship of the 101¯2 tensile twin. The cooperation of the pre-set tensile twinning and various dynamic recrystallization processes leads to the deflection of the basal plane, which effectively weakens the basal texture and promotes the activation of various non-basal slip systems. Combined with grain refinement strengthening and dislocation strengthening, the magnesium alloy plate, after bending and straightening, obtains good comprehensive mechanical properties. Full article
Show Figures

Figure 1

12 pages, 6716 KiB  
Article
Crack Propagation Behavior of a Ni-Based Single-Crystal Superalloy during In Situ SEM Tensile Test at 1000 °C
by Wenxiang Jiang, Xiaoyi Ren, Jinghao Zhao, Jianli Zhou, Jinyao Ma, Wenjing Zhang, Yuefei Zhang and Ze Zhang
Crystals 2020, 10(11), 1047; https://doi.org/10.3390/cryst10111047 - 17 Nov 2020
Cited by 5 | Viewed by 3686
Abstract
An in situ scanning electron microscope (SEM) tensile test for Ni-based single-crystal superalloy was carried out at 1000 °C. The stress displacement was obtained, and the yield strength and tensile strength of the superalloy were 699 MPa and 826 MPa, respectively. The crack [...] Read more.
An in situ scanning electron microscope (SEM) tensile test for Ni-based single-crystal superalloy was carried out at 1000 °C. The stress displacement was obtained, and the yield strength and tensile strength of the superalloy were 699 MPa and 826 MPa, respectively. The crack propagation process, consisting of Model I crack and crystallographic shearing crack, was determined. More interestingly, the crack propagation path and rate affected by eutectics was directly observed and counted. Results show that the coalescence of the primary crack and second microcrack at the interface of a γ/γ′ matrix and eutectics would make the crack propagation rate increase from 0.3 μm/s to 0.4 μm/s. On the other hand, crack deflection decreased the rate to 0.05 μm/s. Moreover, movement of dislocations in front of the crack was also analyzed to explain the different crack propagation behavior in the superalloy. Full article
(This article belongs to the Special Issue Microstructural and Mechanical Characterization of Alloys Volume II)
Show Figures

Figure 1

Back to TopTop