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Abstract: The effect of hydrogen content on the deformation and fracture behavior of 27Cr−4Mo−2Ni
super ferritic stainless steel (SFSS) was investigated in this study. It was shown that the plasticity and
yield strength of SFSS were very susceptible to hydrogen content. The introduction of hydrogen led
to a significant decrease in elongation and a concurrent increase in yield strength. Nevertheless, a
critical threshold was identified in the elongation reduction, after which the elongation remained
approximately constant even with more hydrogen introduced, while the yield strength exhibited a
monotonic increase with increasing hydrogen content within the experimental range, attributed to
the pinning effect of the hydrogen Cottrell atmosphere on dislocations. Furthermore, the hydrogen-
charged SFSS shows an apparent drop in flow stress after upper yielding and a reduced work
hardening rate during the subsequent plastic deformation. The more hydrogen is charged, the more
the flow stress drops, and the lower the work hardening rate becomes.

Keywords: super ferritic stainless steel; hydrogen embrittlement; mechanical properties; yield
strength; fracture behavior

1. Introduction

Super ferritic stainless steel (SFSS) is extensively utilized in heat exchange equipment
using various water sources as a cooling medium, including seawater, because of its excel-
lent corrosion resistance, high thermal conductivity, low coefficient of thermal expansion,
low production cost, and nickel savings [1–4]. Nonetheless, prolonged exposure to harsh
environments such as seawater may result in hydrogen embrittlement (HE) [5]. To mitigate
corrosion effects, cathodic protection is employed, but this can increase the risk of hydrogen
embrittlement. Furthermore, to enhance the resistance of SFSS against pitting and crevice
corrosion, substantial amounts of alloying elements such as Cr, Mo, and Ti, among others,
are incorporated. This strategy not only enhances corrosion resistance but also markedly
boosts the room-temperature yield strength via solid-solution reinforcement [6–8], conse-
quently increasing the susceptibility to HE. Therefore, understanding the behavior of HE in
SFSS is crucial for its practical applications in engineering.

Hydrogen embrittlement refers to the significant reduction in mechanical properties,
such as ductility, toughness, and fatigue life, caused by the introduction of hydrogen atoms
in a hydrogen environment [9–11]. HE is a multifaceted phenomenon intricately tied to the
microstructure of the material as well as the concentration and distribution of hydrogen
atoms within the material. Extensive research has been conducted on the hydrogen embrit-
tlement of various types of steel, including austenitic stainless steel [12,13], ferritic stainless
steel [14], duplex stainless steel [15], etc. Several hydrogen embrittlement mechanisms
have been proposed to explain the behavior of hydrogen embrittlement in steel, such as
the hydrogen enhanced decohesion mechanism (HEDE), hydrogen enhanced localized
plasticity (HELP), and adsorption-induced dislocation (AIDE). The HEDE mechanism,
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which was first introduced by Troiano in 1959, suggests that dissolved hydrogen reduces
the cohesive strength of the lattice and interfaces [16,17], leading to crack formation and
material failure. In the HELP model, hydrogen accumulation near the crack tip decreases
the resistance to dislocation motion, thereby increasing the mobility of dislocation [18].
Birnbaum et al. [19] observed that hydrogen increased dislocation movement by in-situ
transmission electron microscopy (TEM) and found that hydrogen reduced the microscopic
yield stress. Nevertheless, investigations regarding the HE of super-SFSS are scant, leaving
the impact of hydrogen content on SFSS fracture behavior and mechanisms shrouded
in ambiguity.

In this study, the effect of hydrogen content on the mechanical behavior of 27Cr−4Mo−2Ni
super ferritic stainless steel was evaluated via tensile testing on hydrogen-pre-charged
SFSS samples.

2. Experimental Procedure

An annealed 27Cr−4Mo−2Ni SFSS used in this study was supplied by TISCO Com-
pany of China (Taiyuan, China). The steel had a thickness of 0.8 mm, and its chemical
composition is detailed in Table 1.

Table 1. The chemical composition of 27Cr−4Mo−2Ni SFSS (wt%).

C Cr Mn Mo Nb Ni Ti Si Cu N P S Fe

0.015 27.57 0.23 3.72 0.37 1.98 0.14 0.4 0.05 0.016 0.022 0.002 Bal.

The electrochemical cathode hydrogen charging experiment was performed at room
temperature in a 1 mol/L NaOH solution supplemented with 1 g/L thiourea, employing a
current density of 50 mA/cm2 to introduce hydrogen into the samples. The samples served
as the cathode, while a platinum sheet functioned as an anode; both were fully submerged
during the hydrogen charging, as depicted in Figure 1. The electrochemical reaction [20] is
as follows:

H+(aq) + e− ↔
(

1
2

)
H2 (g) ↔ H (chem.)
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Figure 1. Schematic of the electrochemical cathode hydrogen charging system. Figure 1. Schematic of the electrochemical cathode hydrogen charging system.

NH4SCN is incorporated to impede the amalgamation of hydrogen atoms. Electro-
chemical cathode hydrogen charging is sensitive to the surface quality of the samples, so all
the samples underwent grinding with SiC papers ranging from 500 to 3000 grit, followed
by polishing before the hydrogen charging procedure.

Thermal desorption spectroscopy (TDS) utilizing JTF-20A equipment was employed
to quantitatively measure the cumulative desorbed hydrogen and identify the hydrogen
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trapping sites. TDS experiments were performed under a continuous flow of Ar gas
ranging from 30 ◦C to 800 ◦C, with specific heating rates (100, 200, and 300 ◦C/h used in
this study) to obtain the hydrogen desorption profiles. The dimensions of the TDS samples
were approximately 45 mm × 6 mm × 0.8 mm. All samples after hydrogen charging
were subsequently cleaned with distilled water and ethanol and dried. To prevent the
escape of diffusible hydrogen, the TDS measurements started within five minutes after
electrochemical hydrogenation.

The tensile experiments were performed using an electronic material testing machine,
employing a strain rate of 3.3 × 10−4 s−1 at room temperature. Tensile specimens were
extracted from the original plate in alignment with the rolling direction, with sample
dimensions outlined in Figure 2. The diffusivity of hydrogen in the BCC structure is
relatively high even at room temperature, with a hydrogen diffusion coefficient reaching
10−5 cm2/s [21,22]. To mitigate the impact of hydrogen atoms diffusing out of the samples
and affecting the experimental outcomes, the time between the end of electrochemical
hydrogen charging and the beginning of stretching was controlled within 10 min. To en-
sure the accuracy of the experimental results, all the tensile experiments were conducted
three times.
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In order to quantitatively describe tensile ductility, the hydrogen embrittlement sensi-
tivity index IHE is calculated by the following equation [23] (1):

IHE(%) =
δ0 − δH

δ0
× 100 (1)

where δ0 and δH are the total elongation obtained after tensile testing of the pristine and
the hydrogen-pre-charged samples, respectively.

The fracture morphology of all the tensile specimens was studied by ultra-high field
emission scanning electron microscopy (JSM 7900F, JEOL, Tokyo, Japan). The microstruc-
ture of the pristine sheet and the tensile fracture were characterized by high-resolution
scanning electron microscopy (HRSEM, S8000, TESCAN, Brno, Czech Republic) equipped
with electron backscatter diffraction (EBSD, Oxford, UK). EBSD images were observed un-
der the following specific conditions: landing energy of 20 kV and a beam current of 3 nA.
We were using the Channel 5 software (version 5.12.74.0) to collect and index Kikuchi
patterns. The samples were electrochemically polished at 25 V and −30 ◦C using a solution
of 5 mL HClO4 and 95 mL C2H5OH.

3. Results
3.1. Hydrogen Content

Figure 3a illustrates the hydrogen desorption profiles of 27Cr−4Mo−2Ni SFSS (hy-
drogen desorption rate vs. heat temperature curves; 100 ◦C/h heating rate) for different
times of hydrogen charge. In Figure 3a, two hydrogen desorption peaks were observed
in each hydrogen-pre-charged sample compared with the uncharged sample. Hydrogen
liberation occurred within the 30–160 ◦C temperature range in all hydrogen-pre-charged
samples, with a minor release observed upon further heating to 400–600 ◦C. The intensity
of the hydrogen desorption peak value in the curves increased with increasing hydrogen
charge time, indicating an increase in the hydrogen content in the samples with longer
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hydrogen charge duration. Figure 3b demonstrates the hydrogen content in the samples
after varying durations of charging at a current density of 50 mA/cm2. The diffusion
of hydrogen atoms is governed by the concentration gradient, with a steeper gradient
resulting in faster hydrogen atom diffusion. As the hydrogen charging time was extended,
the hydrogen concentration within the samples initially exhibited a significant increase,
followed by a period of more gradual change. After 720 min of hydrogen charging, the
concentration in the samples approached saturation. The hydrogen concentration in the
pre-charged samples reached a saturation point upon increasing the hydrogen charging
duration to 720 min. Despite employing a higher current density for hydrogen charging in
this study compared to previous reports [24,25], the trend observed was consistent with the
literature, demonstrating that the hydrogen content in the samples will approach saturation
after a certain charging period under the given conditions.
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drogen content after charging at different times.

3.2. Mechanical Properties

The tensile test samples were charged with hydrogen in an electrolyte solution for
different times under a current density of 50 mA/cm2. Figure 4 shows the engineering
stress-train curves of the original sample (a hydrogen-uncharged sample) and samples with
hydrogen-pre-charged. As shown in Figure 4a, the original sample achieved a plasticity
of 27.33% with a yield strength of 465 MPa and an ultimate tensile strength of 585 MPa.
After hydrogen charging, the presence of hydrogen markedly reduced the plasticity of
the samples. The specific elongation and IHE of the samples under different hydrogen
charging times are displayed in Figure 4b. Comparatively, 27Cr−4Mo−2Ni SFSS exhibited
significant hydrogen embrittlement sensitivity compared to conventional ferritic stainless
steel [14,26]. Increasing the hydrogen charging time from 0 min to 15 min resulted in
significant changes in elongation and IHE. The elongation decreased from 27.33% to 7.98%,
while the IHE increased from 0 to 71.00%. When the hydrogen charging time continued
to increase, it was found that the elongation and IHE of the samples changed slightly,
which were basically the same as those of the samples charged with hydrogen for 15 min.
The elongation and hydrogen embrittlement susceptibility index IHE of the specimens
were measured at 7.66% and 72.00%, respectively, which may be related to the hydrogen
content in the hydrogen-charged samples. Figure 5 illustrates the variation in the IHE of
the 27Cr−4Mo−2Ni SFSS concerning hydrogen content. These findings indicated that the
maximum plastic damage occurred when the 27Cr−4Mo−2Ni SFSS samples were charged
with hydrogen at a current density of 50 mA/cm2 for 15 min. Once the hydrogen content
in 27Cr−4Mo−2Ni SFSS reached or surpassed 2.11 ppm, the plasticity loss induced by
hydrogen saturation resulted in no further alterations.
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gen content.

However, the impact on the yield strength of the 27Cr−4Mo−2Ni SFSS specimens
charged with hydrogen for varying times was notably significant. It can be observed from
Figure 6a,b that a distinct yield phenomenon was observable in the stress-strain curves
after long-term hydrogen charging. When the first positive peak (the upper yield point)
is followed by a negative peak (the lower yield point), conventionally, the yield strength
is identified as the stress at the first negative peak (the lower yield strength). The yield
strength of the hydrogen-charged samples increased with the increase in hydrogen charge
time. When the hydrogen charging time was short (from 5 to 15 min), the yield strength
increased but not significantly, as shown in Figure 4a. However, with a longer hydrogen
charging time, both the upper and lower yield strengths showcased substantial increments,
i.e., from 465 MPa to 568 MPa for the lower yield strength and from 465 MPa to 585 MPa for
the upper yield strength, as shown in Figure 6c. Notably, the difference between the upper
and lower yield strengths expanded as the hydrogen charging time increased. Figure 6a,b
illustrate an apparent drop in the flow stresses after reaching the upper yield point, and
this drop became more significant with increasing hydrogen charging time of the samples.
The stress-strain curve gradually flattened during the subsequent plastic deformation, and
the work hardening became weaker.
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3.3. Microstructural Characteristics

Figure 7 shows the microstructural characterization results of the investigated original
sample of 27Cr−4Mo−2Ni SFSS. The band slope image and inverse pole figure image
in Figure 7a,b presented the microstructure of the original sample, consisting of ferritic
equiaxed grains with an average grain diameter of 22.62 µm. Some small cubic particles
were observed randomly within the interior of ferritic grains and along grain boundaries,
as indicated by the green circle in Figure 7a. Figure 7d–f show the backscattered electron
image and energy dispersive spectroscopy images of these particles. The energy dispersive
spectroscopy result indicated that the black particles with regular shapes were TiN precipi-
tates, with a size range of 3–5 µm. Additionally, the kernel average misorientation image in
Figure 7c represents the difference in the misorientation angle between the test point and
the surrounding test points in the sample. This image reflected the degree of deformation,
showing that the deformation in the original sample had disappeared.

3.4. Fractographic Observations

Figure 8 presents the low-magnification SEM images depicting the fracture mor-
phology of the 27Cr−4Mo−2Ni SFSS samples subjected to varying hydrogen charging
durations. Subscript 1 presents the top views; subscript 2 shows the side views (RD × TD).
Figure 8(a1) demonstrates that the fracture of the hydrogen-uncharged sample exhibited an
obvious necking phenomenon, characteristic of a typical ductile fracture. The micromor-
phology of the hydrogen-uncharged sample displayed a characteristic shear fracture pattern
(Figure 8(a2)), with the fracture extending at an angle of approximately 45◦. In contrast,
the fracture surfaces of the hydrogen-pre-charged samples exhibited divergent morpholo-
gies depending on the hydrogen pre-charge time or the hydrogen concentration. (I) For
short-term hydrogen charging (ranging from 5 min to 15 min), the edge zone displayed
characteristics of brittle fractures while the central zone exhibited traits of ductile fractures.
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This resulted from the decrease in hydrogen content from the surface towards the interior of
the sample. The proportion of the central ductile region decreased as the hydrogen charging
time increased (Figure 8(b1,c1,d1)). Cracks emerged on the outer surface of the sample’s
necking region, oriented perpendicular to the loading direction, as shown in Figure 8(b2,c2).
The formation of these cracks was attributed to fractures within the embrittled layer at the
boundary throughout the tensile process. (II) For long-term hydrogen charging (ranging
from 120 min to 480 min), fractures observed in the hydrogen-charged samples displayed
purely brittle fracture characteristics, with the fracture appearing smoother as hydrogen
charging time increased (Figure 8(e1,f1,g1)). Macroscopically, the necking phenomenon
was significantly reduced in the samples after hydrogen charging. Furthermore, with an
increase in the hydrogen pre-charge time, the fracture mode transitioned from a shear
fracture to a normal fracture and from a mixed ductile and brittle fracture to a solely
brittle fracture.
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Figure 7. Microstructure of the 27Cr−4Mo−2Ni SFSS original sample: (a) the band contrast image,
TiN particles are marked in the green dashed circle; (b) the inverse pole figure image; (c) the kernel
average misorientation image; (d,e) the backscattered electron image; and (f) the energy dispersive
spectroscopy image.

Figures 9 and 10 are high-magnification SEM images of the fracture surfaces. The entire
fracture surface of the hydrogen-uncharged sample was characterized by ductile pores and
dimples, as shown in Figure 9(a1,a2). The fracture surface of the tensile test samples charged
with hydrogen exhibited a more complicated fracture behavior. Figure 9 shows the fracture
morphologies for different electrochemical hydrogen charging times, i.e., 5, 10, and 15 min,
respectively. The fracture exhibited a mixed failure mode of ductility and brittleness.
The central ductile region was characterized by pores and dimples, as indicated in
Figure 9(b2,c2,d2). As hydrogen pre-charge time increased, the number of pores decreased,
the central ductile region decreased, and the thickness of the edge embrittlement layer
gradually increased.

When the hydrogen charging time was 120 min or more, the sample fracture showed
a complete brittle fracture mode. A “river-type” pattern can be observed on the fracture
surface, as shown in Figure 10. The brittle fracture morphologies showed more complex
states, including quasi-cleavage zones, secondary cracks, and a small number of fine
ductile voids. The quasi-cleavage fractures originated from defects and traversed multiple
neighboring grains. The extent of the cleavage extension zone decreased with increasing
hydrogen content. At the convergence point between the two quasi-cleavage propagation
zones, scarcely any fine dimples were noticeable.
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subscript 2 shows the side views (RD × TD).
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Figure 9. High-magnification SEM images of the fracture surfaces after short-term hydrogen charging.
(a1,b1,c1,d1): Macroscopic fracture morphology. (a2,b2,c2,d2): Ductile region at the center of the
samples. (b3,c3,d3): Brittle region at the edge in hydrogen-charged samples.
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Figure 10. High-magnification SEM images of a hydrogen-charged sample under different times:
(a1,a2): 120 min; (b1,b2): 240 min; and (c1,c2): 480 min. The red arrow indicates the secondary crack,
and the white arrow indicates fine ductile voids.

Figure 11 shows the typical EBSD images of the cross-section near the fracture sur-
faces of the samples after tensile fracture without hydrogen charge and pre-charged with
hydrogen for 240 min. Under hydrogen-uncharged conditions, the microstructure of the
samples underwent plastic deformation only along the loading direction due to disloca-
tion slip, as shown in Figure 11(a1,a2). The EBSD image of the side fracture surface of the
hydrogen-pre-charged sample (in Figure 11(b1)) exhibited the transgranular fracture charac-
teristic of hydrogen-induced crack propagation in 27Cr−4Mo−2Ni SFSS. Microcracks that
formed during mechanical testing were observed in the grains, as shown in Figure 11(c1,c2).
The KAM image reveals the distribution of strain. The five color tones employed in the
KAM image represent five grades of the average misorientation angle between pixels
(from 0◦ to 5◦). A change from blue to red indicates a strain increase. The KAM images
(Figure 11(b2,c2)) of the samples showed that electrochemical hydrogen charging resulted
in strain localization in 27Cr−4Mo−2Ni SFSS, and the grain morphology of the fracture
was basically unchanged. The deformation was localized mainly in the vicinity of the
cracks and at the grain boundary, indicating that hydrogen facilitated dislocation motion in
localized regions under applied stress.
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Figure 11. EBSD microstructure of the fracture surface. (a1,a2) Sample without hydrogen charged;
(b1,b2) sample with hydrogen charged for 240 min; (c1,c2) the enlarged view of the white box
in (b1,b2), the circle indicates the location of cracks. (a1,b1,c1) Inverse pole figure images (IPF);
(a2,b2,c2) kernel average misorientation images (KAM).

4. Discussion
4.1. Hydrogen Trapping Sites

There are many locations where hydrogen can be trapped in stainless steels, including
dislocations [27], grain boundaries [28], phase interfaces [26], and interfaces of inclusions
or precipitates [29,30], and so on. To ascertain the hydrogen trapping locations within
27Cr−4Mo−2Ni SFSS, TDS was employed to obtain the hydrogen desorption activation en-
ergy (Ea) of the samples (with hydrogen-pre-charged samples for 240 min at 50 mA/cm2).
This analysis involved tracking the shift in the hydrogen desorption peak under vary-
ing heating rates (100, 200, and 300 ◦C/h). The value of Ea can be estimated from the
model proposed by Kissinger (obtained from the following Kissinger first-order kinetics
equation [31,32] (2)):

∂ln
(
∅/T2

P
)

∂(1/TP)
= −Ea

R
(2)

where Φ is the heating rate, K·h−1; TP is the desorption peak temperature, K; and R is the
gas constant, 8.314 J·mol−1·K−1. Figure 12a presents the hydrogen thermal desorption
spectra of 27Cr−4Mo−2Ni SFSS under varying heating rates. It is evident that with the
increase in the heating rate, the position of the desorption peak shifted, and the temperature
of the desorption peak gradually increased. Figure 12b shows the relationship between
ln
(
∅/T2

P
)

and 1/TP for the samples that underwent a hydrogen charge for 240 min at
50 mA/cm2. From this data, Ea was estimated based on the slope of the straight line.
According to the fitted linear curve in Figure 12b, the activation energies associated with
the dual peaks were computed to be 20.83 kJ/mol and 48.67 kJ/mol, respectively. This
estimated activation energy of peak 1 was also consistent with the value reported by other
papers [33,34] regarding hydrogen dissociation from the grain boundary or dislocation
diffusion. Combined with the kernel average misorientation diagram shown in Figure 7c,
peak 1 was induced by the grain boundary. Peak 2, in particular, is linked to the release
of hydrogen from the interfaces of inclusions or precipitates possessing high activation
energy (48.67 kJ/mol). Combining with the backscattered electron image depicted in
Figure 7d, peak 2 was induced by TiN particles. Peak 2 was induced by TiN particles.
The hydrogen traps in 27Cr−4Mo−2Ni SFSS are predominantly located within lattices or
grain boundaries, as well as TiN particles.
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4.2. Fracture Behavior

In this study, we found that the diffusible hydrogen in the SFSS was concentrated
more in the trapping sites with low activation energy. During the process of pre-charging
hydrogen, the diffusible hydrogen was distributed throughout the microstructure. However,
a high concentration of hydrogen was accumulated around the TiN and grain boundaries,
as evidenced in Figure 12a. TiN particles have a higher Ea value compared to lattices or
grain boundaries, indicating that TiN particles possess a greater propensity for capturing
hydrogen atoms. Hydrogen accumulation in the vicinity of TiN will cause the hydrogen
content to reach a critical level. Thus, the captured hydrogen atoms reduced the cohesive
strength of the interface between TiN and the matrix due to the action of HDED. TiN became
the main initiation point for cracks, as illustrated in Figure 13. The cracks then propagated
in the radial direction from the initiation points, leading to the formation of round-shaped
areas on the quasi-cleavage fracture surface, as shown in Figures 10 and 13. The local
strain occurred at the crack tip (Figure 11(c2)), and the newly generated dislocation acted
as reversible traps for hydrogen. Hydrogen was supplied to the crack tip region through
diffusion to maintain the high concentration of hydrogen atoms at the crack tip and promote
crack growth in quasi-cleavage mode. Until the cracks met, a large number of dislocations
gathered in the hydrogen-rich region at the crack tip, and high-density dislocations met and
intersected with each other, forming a large number of vacancies, and eventually the crack
grew in ductile microvoid coalescence mode (Figure 14c). As indicated by the white arrows
in Figure 10(b2), ductile fracture occurred between the two quasi-cleavage zones. With the
increase in hydrogen pre-charge time, the hydrogen concentration in the matrix not only
increased, but also the hydrogen content in the vicinity of the TiN and grain boundaries
reached the critical value. The number of crack initiation points increased and the extent of
the crack extension zone decreased with increasing hydrogen content, as shown in Figure 10.
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Figure 14. Schematic illustration of the fracture mechanism of 27Cr−4Mo−2Ni SFSS with hydrogen pre-
charging for different times. (a–c) 120 min, 240 min, and 720 min; and (d–f) 5 min, 10 min, and 15 min.

During the hydrogen charging process, hydrogen atoms permeate from the surface to
the core of the specimen. When hydrogen was pre-charged for a short time, only hydrogen
was distributed on the sample surface (Figure 14d). Therefore, the ductile void zone can
be observed in the middle, and the quasi-cleavage area can be observed at the edge of
the specimen fracture (Figure 14e,f). When the hydrogen charging time was 15 min, the
thickness of the hydrogen diffusion layer reached the critical thickness of the normal
fracture of the sample. Additionally, the hydrogen content approached a critical threshold,
resulting in the peak of hydrogen-induced plastic damage in 27Cr−4Mo−2Ni SFSS.

4.3. Effect of Hydrogen on Mechanical Properties

As can be seen from the tensile curve in Figure 4a, hydrogen significantly diminished
the plasticity of SFSS, with the degree of plastic loss escalating alongside the increase in
hydrogen charging time (i.e., the increase in hydrogen content), aligning with the findings
of numerous research studies [14]. However, as shown in Figure 4a, the effect of hydrogen
on strength in 27Cr−4Mo−2Ni SFSS differed significantly. In this study, after hydrogen was
pre-charged, the ultimate tensile strength of the 27Cr−4Mo−2Ni SFSS did not change much,
and the yield strength of the material had a significant increase. The little change in ultimate
tensile strength was attributed to hydrogen-induced premature material failure. The yield
strength increased with the increase in hydrogen content, the fundamental reason for which
was the pinning effect of hydrogen on dislocations [35]. The significant lattice distortion
surrounding dislocations played a key role, acting as an attractive trap. Hydrogen atoms
accumulated toward the dislocation because they were sensitive to strain fields. Hydrogen
atoms were captured by the physical trap, i.e., the dislocation core [36]. Dislocation core
atoms had a higher energy compared to the rest due to the lattice mismatch. Studies [37]
have shown that the H atoms occupy the dislocation core interstitial position, reducing
the lattice mismatch at the edge dislocation core. Hence, H atoms reduced the dislocation
core energy in BCC Fe and increased the shear stress necessary for dislocation mobilization.
As a result, the yield strength of the samples that were pre-charged with hydrogen for a
short time increased. In addition, a large number of diffused hydrogen atoms accumulated
at the dislocation core after the long-time hydrogen pre-charging, forming a hydrogen atom
air mass, the so-called Cottrell atmosphere. It is generally believed that due to the large
diffusion coefficient of hydrogen atoms, the gas atmosphere can move with the dislocation
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at room temperature. However, the diffusion coefficient of hydrogen was related to the
hydrogen concentration according to the following formula [38] (3):

D∗ = D
(

1 +
∂ln γ

∂ lnc

)
(3)

where D is the diffusion coefficient at low hydrogen concentrations; D∗ is the diffusion
coefficient at higher hydrogen concentrations; γ is the activity coefficient; and c is the
hydrogen concentration. When the concentration of hydrogen in the material was high, the
interaction between hydrogen atoms decreased γ, and the hydrogen diffusion coefficient
also decreased. Hence, the Cottrell atmosphere had a pinning effect on the dislocations,
which hindered the dislocation movement in 27Cr−4Mo−2Ni SFSS. During the tensile
deformation process, dislocations move under the pinning effect of the Cottrell atmosphere,
which requires additional stress. This phenomenon contributed to the relatively high yield
strength of the material [39]. As shown in Figure 6, there was an apparent yield platform
on the stress-strain curve after long-time hydrogen pre-charging. The disparity between
the upper and lower yield strengths progressively widens as the hydrogen charging time
is prolonged. This trend indicated an increasingly pronounced pinning effect of the Cot-
trell atmosphere as hydrogen concentrations increased. And the longer the hydrogen
charge time, the higher the required additional stress and the higher the upper and lower
yield strengths.

Furthermore, once the plastic deformation stage was initiated, the high stress envi-
ronment within the tensile specimen led to dislocation and high slip velocity. At the same
time, due to the effect of HEDE, the diffused hydrogen reduced the cohesive strength of the
crystal lattice and decreased the resistance to dislocation motion, i.e., the Peierls–Nabarro
stress. Under the effect of both, the dislocations move rapidly in the crystal. Dislocation
entanglement was reduced, and the work-hardening rate decreased. This effect becomes
more significant in samples with high hydrogen concentrations.

5. Conclusions

The effects of hydrogen on the mechanical properties and the fracture behavior of
27Cr−4Mo−2Ni super ferritic stainless steel were investigated through the electrochemical
cathode hydrogen charging experiment with different hydrogen charge times. The main
findings are as follows:

1. The 27Cr−4Mo−2Ni SFSS exhibits a significant hydrogen-embrittlement sensitivity.
The elongation decreased significantly with the introduction of hydrogen. When
the sample was charged with hydrogen for 15 min, the elongation decreased from
27.33% to 7.98%. Nevertheless, once the elongation reaches a critical value (7.98%),
further reductions are minimal even with additional hydrogen introduction due to
the saturation of plastic deformation loss caused by hydrogen.

2. The yield strength of the SFSS exhibits a monotonic increase with hydrogen content
due to the formation of the Cottrell atmosphere. The hydrogen-charged SFSS shows an
obvious drop in flow stress after upper yielding, followed by a weak work-hardening
deformation stage. The more hydrogen is charged, the more the flow stress drops and
the lower the work hardening rate becomes.

3. The fracture morphology of samples subjected to hydrogen charging is contingent
upon the time of hydrogen charging and the hydrogen content. An extension of the
hydrogen pre-charge time induces a transition in fracture behavior from a combination
of ductile and brittle features to a predominantly brittle quasi-cleavage fracture.
Concurrently, there is a discernible shift in the fracture mode from a shear fracture to
a normal fracture.
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