Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Authors = Igor Semiletov

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2950 KiB  
Review
The Main Geohazards in the Russian Sector of the Arctic Ocean
by Artem A. Krylov, Daria D. Rukavishnikova, Mikhail A. Novikov, Boris V. Baranov, Igor P. Medvedev, Sergey A. Kovachev, Leopold I. Lobkovsky and Igor P. Semiletov
J. Mar. Sci. Eng. 2024, 12(12), 2209; https://doi.org/10.3390/jmse12122209 - 2 Dec 2024
Viewed by 1340
Abstract
The Arctic region, including vast shelf zones, has enormous resource and transport potential and is currently key to Russia’s strategic development. This region is promising and attractive for the intensification of global economic activity. When developing this region, it is very important to [...] Read more.
The Arctic region, including vast shelf zones, has enormous resource and transport potential and is currently key to Russia’s strategic development. This region is promising and attractive for the intensification of global economic activity. When developing this region, it is very important to avoid emergency situations that could result in numerous negative environmental and socio-economic consequences. Therefore, when designing and constructing critical infrastructure facilities in the Arctic, it is necessary to conduct high-quality studies of potential geohazards. This paper reviews and summarizes the scattered information on the main geohazards in the Russian sector of the Arctic Ocean, such as earthquakes, underwater landslides, tsunamis, and focused fluid discharges (gas seeps), and discusses patterns of their spatial distribution and possible relationships with the geodynamic setting of the Arctic region. The study revealed that the main patterns of the mutual distribution of the main geohazards of the Russian sector of the Arctic seas are determined by both the modern geodynamic situation in the region and the history of the geodynamic evolution of the Arctic, namely the formation of the spreading axis and deep-sea basins of the Arctic Ocean. The high probability of the influence of seismotectonic activity on the state of subsea permafrost and massive methane release is emphasized. This review contributes toward better understanding and progress in the zoning of seismic and other geological hazards in the vast Arctic seas of Russia. Full article
(This article belongs to the Special Issue Marine Geohazards: Characterization to Prediction)
Show Figures

Figure 1

18 pages, 5593 KiB  
Article
Rare Earth Elements in Sediments from the Laptev Sea Shelf: Insight into Sources and Distribution Factors
by Alexey Ruban, Oleg Dudarev, Maxim Rudmin and Igor Semiletov
Quaternary 2024, 7(1), 12; https://doi.org/10.3390/quat7010012 - 28 Feb 2024
Cited by 1 | Viewed by 2731
Abstract
The study of rare earth elements (REEs) in marine sediments is a powerful geochemical tool for determining depositional processes and sediment provenance, as well as for understanding paleoenvironmental changes. In this context, we present REE, some major and trace elements, grain size, and [...] Read more.
The study of rare earth elements (REEs) in marine sediments is a powerful geochemical tool for determining depositional processes and sediment provenance, as well as for understanding paleoenvironmental changes. In this context, we present REE, some major and trace elements, grain size, and mineralogy data on surface and core sediments, which were collected in different areas of the eastern Laptev Sea Shelf (LSS; Arctic Ocean). The primary objective of this paper was to assess the principal controlling factors influencing REE concentration and their vertical to lateral distribution. The total REE content (ΣREE) ranged from 139 ppm to 239 ppm within the studied sediment samples, predominantly consisting of silt. The normalized REE distribution patterns, based on North American Shale Composite (NASC) standard, exhibited an enrichment in light REE (LREE) when compared to heavy REE (HREE), which is similar to that in Lena River suspended particulate matter. The primary sources of REEs in the eastern LSS were both the suspended particulate matter from the Lena River and sediments originating from the coastal ice complex. The spatial distribution of REEs was primarily contingent upon the distance from sediment sources and prevailing hydrological conditions and was generally characterized by a decrease in REE concentration seaward. There was a moderate positive correlation between ΣREE and mean grain size in the studied surface sediment. However, this relationship was specific only for surface samples and was not found in the sediment cores, indicating that sediment grain size does not play a significant role in the REE vertical distribution. The strong positive correlation between ΣREE and Al, K, Ti, V, Cr, Zr, Hf, and Th suggests that REEs are hosted by not only heavy but also clay minerals. The vertical fluctuations of LREE/HREE, Eu/Eu*, (La/Lu)N can point at variable dominance of one or another REE source for during sediment accumulation. Full article
(This article belongs to the Special Issue Early Diagenetic Processes in Marine Cold Seeps)
Show Figures

Figure 1

16 pages, 12533 KiB  
Article
Manifestation of Gas Seepage from Bottom Sediments on the Sea Surface: Theoretical Model and Experimental Observations
by Aleksey Ermoshkin, Ivan Kapustin, Aleksandr Molkov and Igor Semiletov
Remote Sens. 2024, 16(2), 408; https://doi.org/10.3390/rs16020408 - 20 Jan 2024
Cited by 2 | Viewed by 1590
Abstract
The key area of the Arctic Ocean for atmospheric venting of CH4 is the East Siberian Arctic Shelf (ESAS). Leakage of methane through shallow ESAS waters needs to be considered in interactions between the biogeosphere and a warming Arctic climate. The development [...] Read more.
The key area of the Arctic Ocean for atmospheric venting of CH4 is the East Siberian Arctic Shelf (ESAS). Leakage of methane through shallow ESAS waters needs to be considered in interactions between the biogeosphere and a warming Arctic climate. The development of remote sensing techniques for gas seepage detection and mapping is crucially needed for further applications in the ESAS and other areas of interest. Given the extent of the seepage areas and the magnitude of current and potential future emissions, new approaches are required to effectively, rapidly, and quantitatively survey the large seepage areas. Here, we consider the main features of gas seep detection on the sea surface in the characteristics of wind waves and radar signals. The kinematics of wave packets based on the kinetic equation for the spectral density of the wave action of surface waves is described. The results of a full-scale experiment on the remote radar observation of a model gas seep to the sea surface in the radar equipment signals are considered. The characteristic radar signatures of the gas seep in a wide range of hydrometeorological conditions, the parameters of which were recorded synchronously with the radar mapping, were determined. The results of the first radar observations of natural methane seeps on the ESAS are presented, and their radar contrasts are evaluated. The theoretical conclusions are in good qualitative agreement with the results of the model experiment and field studies and can be used for further research in aquatic areas with potential gas seepage, both of natural or anthropogenic origin, such as bubbling release from broken underwater gas pipelines. Full article
Show Figures

Figure 1

20 pages, 6463 KiB  
Article
Features of Seismological Observations in the Arctic Seas
by Artem A. Krylov, Mikhail A. Novikov, Sergey A. Kovachev, Konstantin A. Roginskiy, Dmitry A. Ilinsky, Oleg Yu. Ganzha, Vladimir N. Ivanov, Georgy K. Timashkevich, Olga S. Samylina, Leopold I. Lobkovsky and Igor P. Semiletov
J. Mar. Sci. Eng. 2023, 11(12), 2221; https://doi.org/10.3390/jmse11122221 - 23 Nov 2023
Cited by 7 | Viewed by 1776
Abstract
This paper is devoted to the features of seismological observations in the Arctic seas, which are complicated by harsh climatic conditions, the presence of ice cover, stamukhi and icebergs, and limited navigation. Despite the high risk of losing expensive equipment, the deployment of [...] Read more.
This paper is devoted to the features of seismological observations in the Arctic seas, which are complicated by harsh climatic conditions, the presence of ice cover, stamukhi and icebergs, and limited navigation. Despite the high risk of losing expensive equipment, the deployment of local networks of bottom seismographs or stations installed on ice is still necessary for studying the seismotectonic characteristics and geodynamic processes of the region under consideration, the deep structure of the crust and upper mantle, seismic hazards, and other marine geohazards. Various types of seismic stations used for long-term and short-term deployments in the Russian sector of the Arctic Ocean, as well as various schemes and workflows for their deployment/recovery, are described. The characteristics of seafloor seismic noise and their features are also considered. The results of deployments demonstrate that the characteristics of the stations make it possible to reliably record earthquake signals and seismic noise. Based on the experience gained, it was concluded that the preferred schemes for deploying ocean-bottom seismographs are those in which their subsequent recovery does not depend on their power resources. Usually, such schemes allow for the possibility of dismantling stations via trawling and are suitable for the shelf depths of the sea. The advantages of such schemes include the possibility of installing additional hydrophysical and hydrobiological equipment. When using pop-up ocean-bottom seismographs, special attention should be paid to the careful planning of the recovery because its success depends on the possibility of a passage to the deployment site, which is not always possible due to changing meteorological and ice conditions. Seismic records obtained on the seafloor are characterized by a high noise level, especially during periods of time when there is no ice cover. Therefore, it is recommended to install bottom stations for periods of time when ice cover is present. The frequency range of the prevailing noise significantly overlaps with the frequency range of earthquake signals that must be taken into account when processing bottom seismic records. Full article
(This article belongs to the Special Issue Recent Advances in Geological Oceanography II)
Show Figures

Figure 1

18 pages, 9706 KiB  
Article
Satellite-Based Evaluation of Submarine Permafrost Erosion at Shallow Offshore Areas in the Laptev Sea
by Alexander Osadchiev, Polina Adamovskaya, Stanislav Myslenkov, Oleg Dudarev and Igor Semiletov
Remote Sens. 2023, 15(20), 5065; https://doi.org/10.3390/rs15205065 - 22 Oct 2023
Cited by 4 | Viewed by 2051
Abstract
Large areas of the seafloor in the Laptev Sea consist of submarine permafrost, which has experienced intense degradation over the last decades and centuries. Thermal abrasion of the submarine permafrost results in upward advection of suspended matter, which could reach the surface layer [...] Read more.
Large areas of the seafloor in the Laptev Sea consist of submarine permafrost, which has experienced intense degradation over the last decades and centuries. Thermal abrasion of the submarine permafrost results in upward advection of suspended matter, which could reach the surface layer in shallow areas. This process is visually manifested through increased turbidity of the sea surface layer, which is regularly detected in optical satellite imagery of the study areas. In this study, satellite data, wind and wave reanalysis, as well as in situ measurements are analyzed in order to reveal the main mechanisms of seafloor erosion in shallow areas of the Laptev Sea. We describe the synoptic variability in erosion at the Vasilyevskaya and Semenovskaya shoals in response to wind and wave conditions. Finally, using reanalysis data, daily suspended matter flux from this area was evaluated during ice-free periods in 1979–2021, and its seasonal and inter-annual variabilities were described. The obtained results contribute to our understanding of subsea permafrost degradation, the sediment budget, and carbon and nutrient cycles in the Laptev Sea. Full article
Show Figures

Figure 1

15 pages, 5436 KiB  
Article
First Calibrated Methane Bubble Wintertime Observations in the Siberian Arctic Seas: Selected Results from the Fast Ice
by Denis Chernykh, Natalia Shakhova, Vladimir Yusupov, Elena Gershelis, Boris Morgunov and Igor Semiletov
Geosciences 2023, 13(8), 228; https://doi.org/10.3390/geosciences13080228 - 28 Jul 2023
Cited by 3 | Viewed by 1951
Abstract
This paper presents the results of an acoustic survey carried out from the fast ice in the shallow waters of the East Siberian Arctic Shelf (ESAS) using a single beam echosounder. The aim of this paper is to demonstrate an improved approach to [...] Read more.
This paper presents the results of an acoustic survey carried out from the fast ice in the shallow waters of the East Siberian Arctic Shelf (ESAS) using a single beam echosounder. The aim of this paper is to demonstrate an improved approach to study seafloor seepages in the Arctic coastal zone with an echosounder calibrated on site. During wintertime field observations of natural rising gas bubbles, we recorded three periods of their increased activity with a total of 63 short-term ejections of bubbles from the seabed. This study presents quantitative estimates of the methane (CH4) flux obtained in wintertime at two levels of the water column: (1) at the bottom/water interface and (2) at the water/sea ice interface. In winter, the flux of CH4 transported by rising bubbles to the bottom water in the shallow part of the ESAS was estimated at ~19 g·m−2 per day, while the flux reaching the water/sea ice interface was calculated as ~15 g·m−2 per day taking into account the diffusion of CH4 in the surrounding water and the enrichment of rising bubbles with nitrogen and oxygen. We suggest that this bubble-transported CH4 flux reaching the water /sea ice interface can be emitted into the atmosphere through numerous ice trenches, leads, and polynyas. This CH4 ebullition value detected at the water/sea ice interface is in the mid high range of CH4 ebullition value estimated for the entire ESAS, and two orders higher than the upper range of CH4 ebullition from the northern thermocarst lakes, which are considered as a significant source to the atmospheric methane budget. Full article
(This article belongs to the Special Issue Permafrost and Gas Hydrate Response to Ground Temperature Rising)
Show Figures

Figure 1

20 pages, 5056 KiB  
Article
Dynamics of the Seawater Carbonate System in the East Siberian Sea: The Diversity of Driving Forces
by Irina Pipko, Svetlana Pugach, Igor Semiletov and Oleg Konstantinov
Water 2023, 15(14), 2670; https://doi.org/10.3390/w15142670 - 24 Jul 2023
Cited by 1 | Viewed by 2058
Abstract
The East Siberian Sea (ESS) is a large and the shallowest part of the Arctic Ocean. It is characterized by high biogeochemical activity, but the seawater carbonate system remains understudied, especially during the late autumn season. Data from the research vessel (RV) “Professor [...] Read more.
The East Siberian Sea (ESS) is a large and the shallowest part of the Arctic Ocean. It is characterized by high biogeochemical activity, but the seawater carbonate system remains understudied, especially during the late autumn season. Data from the research vessel (RV) “Professor Multanovsky” cruise were used to assess the dynamics of the seawater carbonate system, air–sea CO2 fluxes, and the calcium carbonate corrosive waters in the two biogeochemical provinces of the ESS shortly before freeze-up. The ESS waters were mainly a sink for atmospheric CO2 due to the limited dispersion of river waters, autumn water cooling, and phytoplankton blooms in its eastern autotrophic province. The mean value of the CO2 air–sea flux was 11.2 mmol m−2 day−1. The rate of CO2 uptake in the eastern ESS was an order of magnitude larger than that in the western ESS. The specific waters and ice cover dynamics determined intensive photosynthesis processes identified on the eastern shelf and in the northern deep oligotrophic waters. A part of the surface and most of the bottom ESS waters were corrosive with respect to calcium carbonate, with the lowest saturation state of aragonite (0.22) in the bottom layer of the eastern ESS. The eastern ESS was the main source of these waters into the deep basin. The observed export of corrosive shelf waters to the deep sea can have a potential impact on the ocean water ecosystem in the case of mixing with layers inhabited by calcifying organisms. Full article
(This article belongs to the Special Issue Carbon Dynamics in Coastal and Deep Ocean)
Show Figures

Figure 1

34 pages, 33492 KiB  
Article
Large Earthquakes in Subduction Zones around the Polar Regions as a Possible Reason for Rapid Climate Warming in the Arctic and Glacier Collapse in West Antarctica
by Leopold I. Lobkovsky, Alexey A. Baranov, Igor A. Garagash, Mukamay M. Ramazanov, Irina S. Vladimirova, Yurii V. Gabsatarov, Dmitry A. Alekseev and Igor P. Semiletov
Geosciences 2023, 13(6), 171; https://doi.org/10.3390/geosciences13060171 - 8 Jun 2023
Cited by 4 | Viewed by 4842
Abstract
A correlation is observed between changes in the level of Earth’s seismic activity and increments of the atmospheric methane concentration over the past 40 years. Trigger mechanisms are proposed for methane emissions and glacier collapse in polar regions. These mechanisms are due to [...] Read more.
A correlation is observed between changes in the level of Earth’s seismic activity and increments of the atmospheric methane concentration over the past 40 years. Trigger mechanisms are proposed for methane emissions and glacier collapse in polar regions. These mechanisms are due to deformation waves caused by large earthquakes in subduction zones located near the polar regions: the Aleutian and Kuril–Kamchatka subduction zones, closest to the Arctic, and the Antarctica–Chilean and Tonga–Kermadec–Macquarie subduction zones. Disturbances of the lithosphere are transmitted over the distances of 3000–4000 km and more at a speed of about 100 km/year. Additional associated stresses come to the Arctic and Antarctica several decades after the occurrence of large earthquakes. In the Arctic zone, additional stresses affect the low-permeability structure of gas bearing sedimentary strata, causing increased methane emission and climate warming. In West Antarctica, deformation waves could trigger the acceleration and intensive collapse of West Antarctic glaciers, which has been observed since the 1970s. These waves are also capable of activating dormant volcanoes located under the sheet glaciers of West Antarctica, leading to an increase in heat flux, to the melting of ice at the glaciers’ base, and to their accelerated sliding towards the ocean, as is happening with the Thwaites Glacier. Full article
Show Figures

Figure 1

24 pages, 7254 KiB  
Article
The Keivy Domain of the Kola Granulite–Gneiss Area on the Baltic Shield: Most Ancient Median Massif of the Continental Crust
by Nickolay Sorokhtin, Nikolay Kozlov, Igor Semiletov, Leopold Lobkovsky, Sergey Nikiforov, Dmitry Alekseev and Roman Ananiev
Geosciences 2023, 13(5), 142; https://doi.org/10.3390/geosciences13050142 - 12 May 2023
Viewed by 2142
Abstract
Studies of lithotectonic formations within the Keivy domain of the NE Baltic Shield have shown that the domain was tectonically overlapped by adjacent microcontinents during regional collision processes in the Late Archean. As a consequence, the continental crust of the Keivy domain was [...] Read more.
Studies of lithotectonic formations within the Keivy domain of the NE Baltic Shield have shown that the domain was tectonically overlapped by adjacent microcontinents during regional collision processes in the Late Archean. As a consequence, the continental crust of the Keivy domain was submerged, relative to other blocks of the continental crust, and the described domain acquired the features of a classical median massif. Surrounded on all sides by collision systems, the Keivy median massif entered the cratonization regime. This led to intensive processes of denudation of the surrounding domains of the crust and the accumulation of a thick sedimentary cover on the surface. The described processes occurred during the formation of the first supercontinent (Monogea) in the history of the Earth and the manifestation of the Early Precambrian Huronian glaciation, which left its traces on most domains of the Earth’s continental crust. Thus, the processes of peneplain formation within the Keivy massif occurred under the cold weather conditions, high volcanic activity in the peripheral zones, and sedimentary cover saturation with the products of the physical and chemical mineral transformation of tonalite–trondhjemite and greenstone rock assemblages. The unique combination of certain geodynamic and climatic cycles on the Baltic Shield in the Late Archean led to the accumulation of extensive stratiform deposits of alumina raw materials within the Keivy median massif. Full article
Show Figures

Figure 1

20 pages, 5339 KiB  
Article
Time-Domain Electromagnetics for Subsea Permafrost Mapping in the Arctic: The Synthetic Response Analyses and Uncertainty Estimates from Numerical Modelling Data
by Dmitry A. Alekseev, Andrey V. Koshurnikov, Alexey Yu. Gunar, Ermolay I. Balikhin, Igor P. Semiletov, Natalia E. Shakhova, Nikolay A. Palshin and Leopold I. Lobkovsky
Geosciences 2023, 13(5), 144; https://doi.org/10.3390/geosciences13050144 - 12 May 2023
Cited by 3 | Viewed by 2429
Abstract
Subsea permafrost stability is the key to whether pre-performed methane sequestered in hydrate deposits escapes to the overlying strata. By making use of the 1D numerical modeling and field data, we analyze the capabilities of the time-domain (transient) electromagnetic method (TDEM) when being [...] Read more.
Subsea permafrost stability is the key to whether pre-performed methane sequestered in hydrate deposits escapes to the overlying strata. By making use of the 1D numerical modeling and field data, we analyze the capabilities of the time-domain (transient) electromagnetic method (TDEM) when being applied for subsea permafrost mapping, and study the effect of the background resistivity structure on the inversion models’ accuracy for a series of settings typical for the East Siberian Arctic Shelf—the broadest and shallowest shelf in the world ocean, which represents more than 70% of the subsea permafrost. The synthetic response analysis included the construction of a series of resistivity models corresponding to different settings (presence/absence of ice-bonded permafrost layer, different position of its top and bottom boundaries, different width and thickness of thawed bodies or taliks, variable seawater depth and its resistivity), and calculation of synthetic apparent resistivity responses used to assess their sensitivity to changes in the target parameters of the resistivity structure. This was followed by regularized inversion of synthetic responses and comparing resulting models with original (true) ones, which allowed us to understand the possible uncertainties in the geometry and resistivity of the reconstructed permafrost layer, depending on seawater depth and unfrozen layer thickness, as well as confirm the overall efficacy of TDEM technology for the subsea permafrost imaging. That is crucially important for understanding the current state of the subsea permafrost-hydrate system and possible future dynamics. Full article
Show Figures

Figure 1

24 pages, 15240 KiB  
Review
A Complex of Marine Geophysical Methods for Studying Gas Emission Process on the Arctic Shelf
by Artem A. Krylov, Roman A. Ananiev, Denis V. Chernykh, Dmitry A. Alekseev, Ermolay I. Balikhin, Nikolay N. Dmitrevsky, Mikhail A. Novikov, Elena A. Radiuk, Anna V. Domaniuk, Sergey A. Kovachev, Georgy K. Timashkevich, Vladimir N. Ivanov, Dmitry A. Ilinsky, Oleg Yu. Ganzha, Alexey Yu. Gunar, Pavel Yu. Pushkarev, Andrey V. Koshurnikov, Leopold I. Lobkovsky and Igor P. Semiletov
Sensors 2023, 23(8), 3872; https://doi.org/10.3390/s23083872 - 10 Apr 2023
Cited by 10 | Viewed by 3897
Abstract
The Russian sector of the arctic shelf is the longest in the world. Quite a lot of places of massive discharge of bubble methane from the seabed into the water column and further into the atmosphere were found there. This natural phenomenon requires [...] Read more.
The Russian sector of the arctic shelf is the longest in the world. Quite a lot of places of massive discharge of bubble methane from the seabed into the water column and further into the atmosphere were found there. This natural phenomenon requires an extensive complex of geological, biological, geophysical, and chemical studies. This article is devoted to aspects of the use of a complex of marine geophysical equipment applied in the Russian sector of the arctic shelf for the detection and study of areas of the water and sedimentary strata with increased saturation with natural gases, as well as a description of some of the results obtained. This complex contains a single-beam scientific high-frequency echo sounder and multibeam system, a sub-bottom profiler, ocean-bottom seismographs, and equipment for continuous seismoacoustic profiling and electrical exploration. The experience of using the above equipment and the examples of the results obtained in the Laptev Sea have shown that these marine geophysical methods are effective and of particular importance for solving most problems related to the detection, mapping, quantification, and monitoring of underwater gas release from the bottom sediments of the shelf zone of the arctic seas, as well as the study of upper and deeper geological roots of gas emission and their relationship with tectonic processes. Geophysical surveys have a significant performance advantage compared to any contact methods. The large-scale application of a wide range of marine geophysical methods is essential for a comprehensive study of the geohazards of vast shelf zones, which have significant potential for economic use. Full article
(This article belongs to the Special Issue Marine Sensors: Recent Advances and Challenges, Volume II)
Show Figures

Figure 1

23 pages, 4288 KiB  
Article
Late Mesozoic and Cenozoic Geodynamics of the Arctic Region: Implications for Abiogenic Generation of Hydrocarbons
by Nickolay Sorokhtin, Leopold Lobkovsky, Igor Semiletov, Eduard Shipilov, Sergey Nikiforov, Nikolay Kozlov, Natalia Shakhova, Roman Ananiev and Dmitry Alekseev
Geosciences 2023, 13(3), 68; https://doi.org/10.3390/geosciences13030068 - 28 Feb 2023
Cited by 2 | Viewed by 2573
Abstract
Late Mesozoic and Cenozoic geodynamics of the Arctic region is discussed in the context of possible mechanisms which provide multistage cyclic transformations and transport of carbon through crust and mantle. Geodynamic processes control the abiogenic generation of hydrocarbons and the patterns of their [...] Read more.
Late Mesozoic and Cenozoic geodynamics of the Arctic region is discussed in the context of possible mechanisms which provide multistage cyclic transformations and transport of carbon through crust and mantle. Geodynamic processes control the abiogenic generation of hydrocarbons and the patterns of their localization. Possible mechanisms of abiotic hydrocarbon generation are explained in the context of carbon transport from subduction zones to rifts and serpentinization of ultramafic rocks in the rifts in the case of the Laptev Sea and Gakkel Ridge areas. The carbon of shallow crust origin migrates with encapsulated fragments of marine sediments which are consumed in the Pacific subduction zone where they become destroyed and transformed by different chemical and physical processes. The resulting C-species are involved in mantle convection flows and reach the continental rifts of the Laptev Sea and the Gakkel mid-ocean ridge. Thus, the hydrocarbons formed in the crust and in the mantle acquire signatures of abiotic origin. According to the authors, the scale of manifestation of abiogenic methanogenesis in the lower parts of the lithosphere and in the upper mantle is not so wide. Numerous small (mm and fractions of the mm) particles of exogenous matter and dispersed carbon pulled into the mantle can only form a stable crustal geochemical plume that propagates in the plane of movement of convective flows. Indirectly, the scale of manifestation of this process can be judged by the volumes of degassing of hydrocarbon and carbon dioxide gases, as well as hydrogen and its compounds in the rift systems of the earth’s crust, which are extremely insignificant. However, in the cold seas of the Eastern Arctic, massive emissions of bubble methane of mixed genesis were found. As shown in the literature, the range of variability of stable isotopes of carbon and 14C of methane in certain areas of discharge associated with rifting demonstrates values (anomalously heavy 13C, and young 14C) that can be considered as examples of presumably abiogenic origin. Our work is mostly theoretical and suggests further discussion and improvement of the mechanism of formation of abiogenic hydrocarbons and the processes of their transformation. Full article
(This article belongs to the Special Issue Permafrost and Gas Hydrate Response to Ground Temperature Rising)
Show Figures

Figure 1

11 pages, 3820 KiB  
Article
The Extent of Glaciation in the Pechora Sea, Eurasian Arctic, Based on Submarine Glacial Landforms
by Sergey Nikiforov, Roman Ananiev, Martin Jakobsson, Evgeny Moroz, Sergey Sokolov, Nikolay Sorokhtin, Nikolay Dmitrevsky, Elena Sukhikh, Igor Chickiryov, Yulia Zarayskaya, Anatoly Razumovskiy and Igor Semiletov
Geosciences 2023, 13(2), 53; https://doi.org/10.3390/geosciences13020053 - 9 Feb 2023
Cited by 3 | Viewed by 2579
Abstract
The Pechora Sea is optimally located for studying the coalescence of a glacial and periglacial continental shelf zone in the high Arctic. Here, we present data acquired during cruises of the RV Akademik Nikolaj Strakhov in 2018–2021, revealing the distribution of submarine glacial [...] Read more.
The Pechora Sea is optimally located for studying the coalescence of a glacial and periglacial continental shelf zone in the high Arctic. Here, we present data acquired during cruises of the RV Akademik Nikolaj Strakhov in 2018–2021, revealing the distribution of submarine glacial landforms in the central part of the Pechora shelf area. Based on moraines and the distribution of glacial lineations, the extent of the ice sheet during the Last Glacial Maximum (LGM) is proposed. The crests of the moraine ridges and the slopes of their sides express a variation in morphology, and the ridges combine into irregular complexes. The moraines are primarily composed of coarse cobble-sized material with an addition of coarse sand and other sedimentary fractions. The mapped glacial landforms clearly indicate that an ice sheet extended over the area, while the Pechora basin, at the same time, was comprised of lowland characterized by a cryogenic subaerial landscape. Based on the result from this study, the extent and ice-flow pattern of the Barents-Kara Ice Sheet during the LGM were determined. Full article
Show Figures

Figure 1

22 pages, 5403 KiB  
Article
Biogeochemical Activity of Methane-Related Microbial Communities in Bottom Sediments of Cold Seeps of the Laptev Sea
by Alexander S. Savvichev, Igor I. Rusanov, Vitaly V. Kadnikov, Alexey V. Beletsky, Elena E. Zakcharova, Olga S. Samylina, Pavel A. Sigalevich, Igor P. Semiletov, Nikolai V. Ravin and Nikolay V. Pimenov
Microorganisms 2023, 11(2), 250; https://doi.org/10.3390/microorganisms11020250 - 19 Jan 2023
Cited by 16 | Viewed by 3393
Abstract
Bottom sediments at methane discharge sites of the Laptev Sea shelf were investigated. The rates of microbial methanogenesis and methane oxidation were measured, and the communities responsible for these processes were analyzed. Methane content in the sediments varied from 0.9 to 37 µmol [...] Read more.
Bottom sediments at methane discharge sites of the Laptev Sea shelf were investigated. The rates of microbial methanogenesis and methane oxidation were measured, and the communities responsible for these processes were analyzed. Methane content in the sediments varied from 0.9 to 37 µmol CH4 dm−3. Methane carbon isotopic composition (δ13C-CH4) varied from −98.9 to −77.6‰, indicating its biogenic origin. The rates of hydrogenotrophic methanogenesis were low (0.4–5.0 nmol dm−3 day−1). Methane oxidation rates varied from 0.4 to 1.2 µmol dm−3 day−1 at the seep stations. Four lineages of anaerobic methanotrophic archaea (ANME) (1, 2a–2b, 2c, and 3) were found in the deeper sediments at the seep stations along with sulfate-reducing Desulfobacteriota. The ANME-2a-2b clade was predominant among ANME. Aerobic ammonium-oxidizing Crenarchaeota (family Nitrosopumilaceae) predominated in the upper sediments along with heterotrophic Actinobacteriota and Bacteroidota, and mehtanotrophs of the classes Alphaproteobacteria (Methyloceanibacter) and Gammaproteobacteria (families Methylophilaceae and Methylomonadaceae). Members of the genera Sulfurovum and Sulfurimonas occurred in the sediments of the seep stations. Mehtanotrophs of the classes Alphaproteobacteria (Methyloceanibacter) and Gammaproteobacteria (families Methylophilaceae and Methylomonadaceae) occurred in the sediments of all stations. The microbial community composition was similar to that of methane seep sediments from geographically remote areas of the global ocean. Full article
(This article belongs to the Special Issue Microbial Communities Involved in the Methane Cycle)
Show Figures

Figure 1

11 pages, 684 KiB  
Communication
Ice Volumes in Permafrost Landscapes of Arctic Yakutia
by Alexander N. Fedorov, Pavel Y. Konstantinov, Nikolay F. Vasiliev, Nikolay I. Basharin, Andrei G. Shepelev, Varvara A. Andreeva, Valerii P. Semenov, Yaroslav I. Torgovkin, Alexey R. Desyatkin, Mikhail N. Zheleznyak and Igor P. Semiletov
Land 2022, 11(12), 2329; https://doi.org/10.3390/land11122329 - 19 Dec 2022
Cited by 2 | Viewed by 2513
Abstract
This article is devoted to the study of the distribution of ground ice volumes in the upper layers of 5–10 m permafrost in the permafrost landscapes of Arctic Yakutia. Compilation of such a map will serve as a basis for assessing the vulnerability [...] Read more.
This article is devoted to the study of the distribution of ground ice volumes in the upper layers of 5–10 m permafrost in the permafrost landscapes of Arctic Yakutia. Compilation of such a map will serve as a basis for assessing the vulnerability of permafrost to global warming, anthropogenic impact and forecasting the evolution of permafrost landscapes. The map was compiled using ArcGIS software, which supports attribute table mapping. The ground ice map of Arctic Yakutian permafrost landscapes shows that about 19% of the area is occupied by ultra ice-rich (above 0.6 in volumetric ice content) sediments. Very high ice volumes (0.4–0.6) are cover approximately 27%, moderate ice volumes (0.2–0.4)—25% of the area, and low ice volumes (less than 0.2)—about 29% of Arctic Yakutia. Full article
(This article belongs to the Special Issue Permafrost Landscape Response to Global Change)
Show Figures

Figure 1

Back to TopTop